博碩士論文 93324021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.138.36.113
姓名 徐文祥(Wen-Hsiang Hsu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 鈣鈦礦結構氧化物改質LiCoO2陰極材料之製程與其電池性能研究
相關論文
★ LixNi1-yCoyO2及LiM0.5-yM'yMn1.5O4之合成與電池性能★ 鋅空氣一次電池之自放電與鋅極腐蝕 抑制改善之研究
★ 鋰離子電池陽極碳材料開發★ 鋰離子電池LixNi1-yCoyO2陰極材料之溶膠凝膠法製程研究
★ 鋰離子電池混合金屬氧化物材料之電化學特性分析★ 由天然農作物製備鋰離子電池負極碳材料
★ LiCoO2陰極材料重要製程評估與改質研究★ LiNi0.8Co0.2O2陰極材料製程與改質研究
★ 由花生殼製備鋰離子電池高電容量負極碳材料★ 鋰離子電池層狀結構陰極材料合成與改質研究
★ 以三乙醇氨-蔗糖燃燒法合成LiCoO2製程研究★ 以硝酸銨-環六亞甲基四胺燃燒法合成奈米級LiMn2O4陰極材料製程研究
★ 以奈米級ZrO2為塗佈物質改良鋰離子電池LiCoO2陰極材料充放電性能研究★ 以複合金屬氧化物為塗佈物質表面處理 鋰離子電池LiCoO2 陰極材料之製程研究
★ 鋰離子電池鈷酸鋰陰極材料之表面改質及電池性能研究★ 以天然農作廢棄物製備之碳材合成磷酸亞鐵鋰/碳複合陰極材料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文共分兩部分,前半部份以溶膠凝膠法利用LAP (3LaAlO3: Al2O3)先驅物進行商用LiCoO2陰極材料表面改質之研究,後半部份先以溶膠凝膠法製備LAP粉體,再將此粉體,以機械式熱處理法進行商用LiCoO2陰極材料表面改質之研究,藉以比較不同改質製程對於電池循環穩定性之影響。
利用溶膠凝膠法,以LAP先驅物或利用機械式熱處理法,以LAP粉體表面改質之FMC-LiCoO2,表面皆形成一非結晶相之La-Al-O薄膜,此薄膜可有效地防止LiCoO2與電解質液發生溶解及反應;部分鑭原子擴散進入LiCoO2內部形成LiLayCo1-yO2混合金屬氧化物,可有效地抑制循環時的相轉變。利用溶膠凝膠法改質製程相較於機械式熱處理法改質製程,可得到塗佈厚度較為均一,且La-Al-O薄膜包覆性較佳之LiCoO2。利用交流阻抗分析佐證,以溶膠凝膠法製程改質相較於機械式熱處理法改質製程,可降低改質後材料顆粒與顆粒之間的電阻(Rp),進而可增進循環穩定性。在充放電截止電壓分別為4.40 V和2.75 V,充放電速率為0.2 C,溶膠凝膠法改質製程電池性能表現,以煆燒溫度850 ℃,持溫12小時,1.0 wt.% LAP先驅物改質FMC-LiCoO2的電池性能最佳,其初始電容量為166 mAh/g,至電荷維持率80 %,循環壽命為188次;機械式熱處理法電池性能表現以煆燒溫度550 ℃,持溫10小時,1.5 wt.% LAP粉體改質FMC-LiCoO2的電池性能最佳,其初始電容量為169 mAh/g,至電荷維持率80 %,循環壽命為142次。
由上述結果,利用LAP先驅物或粉體改質LiCoO2可抑制充放電時的相轉換,達到穩定結構之效果。然而,塗佈於LiCoO2之薄膜,其厚度及均一性也影響著電池循環穩定性。溶膠凝膠法塗佈於LiCoO2表面上之La-Al-O薄膜具有較均一厚度及較佳的包覆性,使得其循環穩定性優於機械式熱處理法製程。
摘要(英) This dissertation is divided into two sections:The first relates to the surfaces of LiCoO2 cathode particles coated with various wt.% of LAP (3LaAlO3:Al2O3) precursor by an in-situ sol-gel process. The second relates to LiCoO2 cathode material surface treated with LAP powder by a simple mechano-thermal process. In this study, we discuss the effect of these two different coating procedures on electrochemical performance.
Whether a sol-gel method or mechano thermal method was used for LAP coating on a commercial LiCoO2 surface, in both cases, the surface was an amorphous La-Al-O layer. These thin film layers can prevent LiCoO2 dissolution electrolytes effectively. A part of the lanthanum ion diffuses into the core of LiCoO2, forming the LiLayCo1-yO2 mixed metal oxide that can suppress phase transformation and stabilize the structure during cycling. The compounds obtained from a sol-gel method can form a more uniform La-Al-O layer than the compounds obtained from a mechano thermal method. Impedance spectroscopy demonstrated that the enhanced performance of the coated materials is attributed to slower impedance growth during the charge-discharge processes.
The galvanostatic cycling studies suggest that the 1.0 wt.% LAP precursor-coated LiCoO2 cathode materials had excellent electrochemical performance. The first discharge capacity was 166 mAhg-1 and its cycle stability rose up to 188 cycles over the pristine LiCoO2 cathode material when charged at 4.4 V by an in-situ sol-gel process. The cycling data suggested that the 1.5 wt.% LAP powder-coated LiCoO2 cathode materials had excellent electrochemical performance. The first discharge capacity was 169 mAhg-1 and its cycle stability rose up to 142 cycles over the pristine LiCoO2 cathode material when charged at 4.4 V by a mechano-thermal process.
Coating improved cycle stability by primarily protecting the cathode surface from thick impedance film formation that is normally attributed to the surface chemistry of LiCoO2 and the reactivity of the acidic electrolyte at higher voltage charge-discharge processes. Because the LAP precursor-coated with LiCoO2 by a sol-gel process produced a more uniform thin film, it delivered better cell performance than the one derived by a mechano-thermal process.
關鍵字(中) 關鍵字(英) ★ LiCoO2
論文目次 中文摘要……………………………………………………………………………………….I
英文摘要…………………………………………………………………………………...….II
致謝………………………………………………………………………………………...…III
目錄…..………………………………………………………………………………………IV
圖目錄……………………………………………………………………………………………...…….…VII
表目錄………………………………………………………………………...……………...XI
第一章 緒論……………………………………….…………………………………………01
1.1. 研究源起與目的……………………………………………………………….01
1.2. 研究架構……………………………………………………………………….02
第二章 文獻回顧…………………………………………………………………………….06
2.1. 陰極材料表面改質…………………………………………………………….06
2.1.1. MgO表面改質處理LiCoO2…………...………….……………………07
2.1.2. SnO2表面改質處理LiCoO2………………………….…………………09
2.1.3. ZnO表面改質處理LiCoO2…………..……..……….…………………10
2.1.4. Al2O3表面改質處理LiCoO2……………...………….…………………14
2.1.5. MgAl2O4表面改質處理LiCoO2………….…………….………………19
2.2. 鈣鈦礦型(Perovskite)氧化物之結構性質及合成方法………...……………..21
2.2.1. 鈣鈦礦型氧化物結構簡介……...………..….…………...…………….21
2.2.2. 鈣鈦礦型氧化物之合成方法……...……………..……..……..……….23
2.2.2.1. 溶膠-凝膠法……..….……………….………..……………...24
A. 溶膠-凝膠法反應機構……...……………...…..…..…….24
B. 溶膠-凝膠法的原理……...……………….………...…….24
C. 溶膠-凝膠法的優點……...…………………...………….26
D. 溶膠-凝膠法未來之發展及應用……...….……......…….26
E. 溶膠-凝膠製備鈣鈦礦結構粉末……...………………….27
2.2.2.2. 檸檬酸凝膠法……..…..…...……….….………………..…....27
A. 檸檬酸凝膠法之概述……...………………...…..……….27
B. 檸檬酸錯化合物法反應機構……...……..….……..…….28
C. 檸檬酸凝膠法……...……..……………..……….……….28
D. 檸檬酸鹽法……...………………..………..…….……….29
E. 檸檬酸官能基……...………………..………..…….…….30
第三章 實驗方法…………………………………………..….………………………….….32
3.1. 實驗儀器………………………………………………………….……………32
3.2. 實驗藥品器材……….…………………………………………………………33
3.3. 實驗步驟………………………………………………………….……………34
3.3.1. 以溶膠凝膠法利用LAP先驅物改質商用LiCoO2.………...………34
3.3.2. 利用溶膠凝膠法合成LAP粉體….………….……………....……….37
3.3.3. 以機械式熱處理法利用LAP粉體改質商用LiCoO2………..….….40
3.4. 材料鑑定分析………………………..…..…………...…………..……………42
3.4.1. X光繞射(XRD)…………………………………….………………42
3.4.2. 掃描式電子顯微鏡X光能量分散成份分析………...……………….43
3.4.3. 穿透式電子顯微鏡……………………………………….……...…43 3.4.4. 化學分析電子能譜儀分析……………...………………..………...…43
3.4.5. 感應耦合電漿原子發射光譜分析儀…………………………………44
3.4.6. 熱分析儀………..………………………...…………………………...44
3.5. 材料電化學特性分析………………………..….……………………………..44
3.5.1. 電池性能測試………………………..……….………………………..44
A. 陰極之極片製作…………………..….…….………...……….…..44
B. 硬幣型2032電池組裝………...…………..…..…………………..45
C. 電池性能測試方法步驟………...………….……………………..45
3.5.2. 慢速循環伏安分析………………………………………………….…47
3.5.3. 交流阻抗測試………………………………………………………….47
第四章 結果與討論………………………………………………………………………….49
4.1. 以溶膠凝膠法利用LAP先驅物改質商用FMC-LiCoO2鑑定分析與
電池性能分析…………………..…………...………………………………...49
4.1.1. XRD 分析…...….………………………………...…………..……….52
4.1.2. SEM 分析合成材料之表面形態……………….…………….….………56
4.1.3. EDX分析………………………………………………………………58
4.1.4. TEM分析………………………………………………………………59
4.1.5. 化學分析電子能譜儀分析……………………………………………60
A. 縱深分析……………………………...…..……….………...……60
B. X射線光電子能譜分析………………………………………….62
4.1.6. ICP-AES分析………………………………………………………….64
4.1.7. 電池性能評估………………………………...……………………….65
A. 煆燒溫度變因………...……………………..…………..…….….65
B. 濃度變因……………...……………………..…………….……...68
C. 特徵曲線測試………………...……………..……………………71
D. 微分電容量對電壓作圖……………...……..……………...…….72
4.1.8. 慢速循環伏安法之電化學分析………………………………………74
4.1.9. 交流阻抗法之電化學分析……………………………………...…….76
4.1.10. 微分掃描熱卡儀分析………………………….…………....……….81
4.2. 以機械式熱處理法利用LAP粉體改質商用FMC-LiCoO2鑑定分析與
電池性能分析…………………….……………..……..…………….…….….83
4.2.1. XRD分析…….…..………………..…………...……..…..…..……..….83
4.2.2. SEM分析合成材料之表面形態…….…………..……...…...…………88
4.2.3. EDX分析………………………………………………..…………..….90
4.2.4. TEM分析…….…..………….……………….…...………..…..……….91
4.2.5. 化學分析電子能譜儀分析………...…………………..………………92
A. 縱深分析……………………….……...………….……...…...……92
B. X射線光電子能譜分析……….….…………….………….…….94
4.2.6. ICP-AES分析………………………………………………………....96
4.2.7. 電池性能評估……………………………….….…………………….97
A. 煆燒溫度變因…………...…………..………………..…….…….97
B. 濃度變因…………...………………..………………………..…100
C. 煆燒時間變因…………...…………..……….………………….103
D. 特徵曲線測試………………………..……...…………………..106
E. 微分電容量對電壓作圖.……………..…………………...…….107
4.2.8. 慢速循環伏安法之電化學分析……………………………………..109
4.2.9. 交流阻抗法之電化學分析…………………………………………..111
4.2.10. 微分掃描熱卡儀分析……………………………………...……….115
第五章 結論…………………………………….. ………………...….………...…….……117
第六章 參考文獻……………………………………….………………...…..……...……..121
參考文獻 1. J. N. Reimers and J. R. Dahn, J. Electrochem. Soc., 139, 2091 (1992).
2. T. Ohzuka and A. Ueda, J. Electrochem. Soc., 141, 2091 (1994).
3. M. Holzapfel, R. Schreiner, and A. Ott, Electrochim. Acta. 46, 1063 (2001).
4. M. Holzapfel, C. Haak, and A. Ott, J. Solid State Chem. 156, 470 (2001).
5. S. NietoRamos, M. S. Tomar, S. Hermandez, and F. Aliev, Thin Solid Films, 377, 745 (2000).
6. Z. L. Liu, A. S. Yu, and J. Y. Lee, J. Power Sources, 81, 416 (1999).
7. S. T. Nyung, N. Kumagai, S. Komaba, and H. T. Chung, Solid State Ionics, 139, 47 (2001).
8. C. Julien, G. A. Nazri, and A. Rougier, Solid State Ionics, 135, 121, (2000).
9. W. S. Yoon, K. K. Lee, and K. B. Kim, J. Electrochem. Soc., 147, 2023 (2000).
10. Y. I. Jang, B. Y. Huang, H. F. Wang, D. R. Sadoway, G. Ceder, Y. M. Chiang, H. Liu, and H. Tamura, J. Electrochem. Soc., 146, 862 (1999).
11. J. D. Perkins, C. S. Bahn, P. A. Parilla, J. M. McGraw, M. L. Fu, M. Duncan, H. Yu., and D. S. Ginley, J. Power Sources, 81-82, 675 (1999).
12. H. Tukamoto and A. R. West, J. Electrochem. Soc., 144, 3164 (1997).
13. C. Pouillerie, L. Croguennec, Ph. Biensan, P. Willmann, and C. Delmas, J. Electrochem. Soc., 147, 2061 (2000).
14. C. Pouillerie, L. Croguennec, and C. Delmas, Solid State Ionics, 132, 15 (2000).
15. Z. Wang, C. Wu, L. Liu, F. Wu, L. Chen, and X. Huang, J. Electrochem Soc. 149 466 (2002).
16. J. Cho, C.S. Kim, and S.I. Yoo, Electrochem. Solid State Lett., 3, 362 (2000).
17. T. Fang, J. G. Duh, and S. R. Sheen, Thin Solid Films, 469-470, 361 (2004).
18. J. Cho, Y.J. Kim, and B. Park, Chem. Mater., 12, 3788 (2000).
19. J. Cho, Y.J. Kim, and B. Park, J. Electrochem. Soc., 148, A1110 (2001).
20. L. Liu, Z. Wang, H. Li, L. Chen, and X Huang, Solid State Ionics, 152, 341 (2002).
21. 王志峰, 碩士論文, “鋰離子電池層狀結構陰極材料合成與改質研究”, 國立中央大學, 中華民國台灣 (2003).
22. G. G. Amatucci, J. M. Tarascon, and L. C. Klein, Solid State Ionics, 83, 167 (1996).
23. Z. Zhand, D. Fouchard, and J. R. Ren, J. Power Sources, 70, 16 (1998).
24. D. Zhang, B.S. Haran, A. Durairajan, R.E. White, Y. Podrazhansky, and B.N. Popov, J. Power Sources, 91, 122 (2000).
25. 林淑萍, 碩士論文, “LaMnO3粉末之製備及其性質之研究”, 國立成功大學, 中華民國台灣 (2001).
26. R. J. H. Voorhoeve, D. W. Johnson, J. P. Remeika, and P. K. Gallagher, “Perovskite Oxides:Materials Science in Catalysis Science”, 195, 827 (1977).
27. J. B. Goodenough, and J. M. Longo, “Landolt-Bornstein New Series”, Speinger-Verlag Berlin and New York, V4. Parta. 126 (1970).
28. R. J. H. Voorhoeve, “Advanced Materials in Catalysis”, Academic Press, New York, Chap. 5 (1977).
29. A. Roger, D. Souza, M. Saiful Islam, and E. Ivers-Tiffèe, J. of Mater. Chem., 9, 1621 (1999).
30. F. Donald Bloss, “Crystallography and Crystal Chemistry”, 第253頁.
31. 吳榮宗, ”工業觸媒概論”, 247-262 (1983).
32. G. Blyholder., and J. Phys. Chem. 68, 第2772頁 (1964).
33. A. Leleckaite and A. Kareiva, Optical Materials, 26, 123 (2004).
34. B. Jirhennsons and M. E. Straumanis, “Colloid Chemistry”, McMillan Co. New York (1962).
35. 陳慧英, “溶膠凝膠法在薄膜製備上之應用”, 化工技術,第80 期, 11月 (1999).
36. J. Livage and M. Henry, “Ultrastructure Processing of Advanced Ceramics”, (J. D. Mackenzie, and D. R. Ulrich, eds.), Wiley, New York , p183. (1988).
37. C. J. Binker and G. W. Scherer, J. Non-Cryst. Solids 70 , 301-322 (1985).
38. D. C. Bradley, R. C. Mehrotra, and D. P. Gaur, “Metal alkoxide”, Academic Press, London (1978).
39. J. Zarzycki and J. Phalipon, J. Mater. Sci., 17, 3371-3379 (1982).
40. M. P. Pechini, ”Barium Titanium Citrate, Barium Titanate and Processes for Producing Same”, U.S. Pat., No. 3 231 328, Jan. 25 (1969).
41. D. Hennings and W. Mayr, J. Solid State Chem., 26, 329 (1978).
42. G. A. Hutchins, G. H. Maher, and S. D. Ross, Am. Ceram. Soc. Bull., 66(4), 681 (1987).
43. M. Rajendran and M. S. Rao, J. Solid State Chem., 113, 239-247 (1994).
44. M. P. Pechini, “Method of Preparing Lead and Alkaline Earth Titanates and Niobates and Coationg Method Using the Same to Form a Capacitor”, U. S. Pat., No. 3 330 697, Jul. 11 (1967).
45. L. M. Falter, D. A. Pane, T. A. Friedmann, W. H. Wright, and D. M. Ginsberg, Bri. Ceram. Proc., 41, 261 (1988).
46. H. Salze, P. Odier, and B. Cales, J. Non-Cryst. Solids, 82, 314 (1986).
47. P. A. Lessing, Am. Ceram. Soc. Bull., 68(5), 1002-1007 (1989).
48. S. Kumar and G. L. Messing, Mater. Res. Soc. Symp. Proc., 271, 95 (1992).
49. S. G. Cho, P. F. Johnson, and R. A. Condrate, J. Mater. Sci., 25, 4738 (1990).
50. A. Bianco, M. Paci, and R. Freer, J. Eur. Ceram. Soc., 18, 1235 (1998).
51. W. J. Lee and T. T. Fang, J. Mater. Sci., 30, 4329 (1995).
52. M. Kakihana, M. M. Milanova, M. Arima, T. Okubo, M. Yashima, and M. Yoshimura, J. Am. Ceram. Soc., 79 (6), 1673 (1996).
53. K. Polawski, J. Lichtenberger, J. Keil Frerich, K. Schnitzlein, and M. D. Amirdis , Catalysis Today , 62, 329 (2000).
54. M. Kakihana, J. Sol-Gel Sci. Tech., 6, 7 (1996).
55. S. Irusta, M. P. Pina, M. Menendez, and J.Santamara, J. of Catalysis 179, 400 (1998).
56. C. Marcilly, P. Courty, and B. Delmon, J. Am. Ceram. Soc., 53(1), 56 (1970).
57. J. H. Choy, and Y. S. Han., J. Mater. Chem., 7(9), 1815 (1997).
58. J. H. Choy, Y. S. Han, J. T. Kim, and Y. H. Kim, J. Mater. Chem., 5(1), 57 (1995).
59. J. H. Choy, Y. S. Han, S. H. Hwang, S. H. Byeon, and G. Demazeau, J. Am. Ceram. Soc., 81(12), 3197 (1998).
60. M. T. Causa, G. Alejandro, R. Zysler, F. Prado, A. Caneiro, and M. Tovar,
J. Magnetism and Magnetic Materials 196-197, 506 (1999).
61. H. M. Zhang, Y. Teraoka, and N. Yamazoe, Catal. Today 6, 155 (1989).
62. H.Tahuchi, S. Matsu-ura, M. Nagao, T. Choso, and K. Tasata, J. Solid State Chem. 129, 60 (1997).
63. H. Lintz and K. Wittstock, Catal. Today, 29, 457 (1996).
64. H. S. Kim, T. K. Ko, B. K. Na, W. I. Cho, and B. W. Chao, J. Power Sources, 138, 232 (2004).
65. J. N. Reimers, E. Rossen, C. D. Jones, and J. R. Dhan, Solid State Ionics, 61, 335 (1993).
66. H. J. Kweon, J. J. Park, J. W. Seo, G. B. Kim, B. H. Jung, and H. S. Lim, Journal of Power Sources, 126, 156 (2004).
67. G. T. K. Fey, P. Muralidharan, C. Z. Lu, and Y. D. Cho, Solid State Ionics, 176, 2759 (2005).
68. N. Van Landschoot, E. M. Kelder, P. J. Kooyman, C. Kwakernaak, J. Schoonman, Journal of Power Sources, 138, 262 (2004).
69. http://www.xpsdata.com/XI_BE_Lookup_table.pdf.
70. S. Oh, J. K. Lee, D. Byun, W. I. Cho, and B. W. Cho, , Journal of Power Sources, 132, 249 (2004).
71. E. Plichita, S. Slane, M. Uchiyama, M. Salomon, D. Chua, W.B. Ebner, and H.W. Lin, J. Electrochem. Soc., 136, 1865 (1989).
72. H. Wang, Y.-I. Jang, B. Huang, D.R. Sadoway, and Y.-M. Chiang, J. Electrochem. Soc., 146, 473 (1999).
73. G.G. Amatucci, J.M. Tarascon, and L.C. Klein, Solid State Ionics, 83, 167 (1996).
74. L.H. van Vlack, Physical Ceramics for Engineers, Addison-Wesley Publishing, Reading, MA (1964).
75. K. Dokko, M. Nishizawa, S. Horikoshi, T. Itoh, M. Mohamedi, and I. Uchida, Electrochem. Solid-State Lett., 3, 125 (2000).
76. G. T. K. Fey, C. Z. Lu, and T. P. Kumar, Journal of Power Sources, 115, 332 (2003).
77. 蕭巧玲, 碩士論文, “以複合金屬氧化物為塗佈物質表面處理鋰離子電池LiCoO2陰極材料之製程研究”, 國立中央大學, 中華民國台灣 (2005).
78. Y. M. Choi, S. Pyun, J. S. Bae, and S. I. Moon, J. Power Sources, 56, 25 (1995).
79. M. D. Levi, K. Gamolsky, D. Aurbach, U. Heider, and R. Oesten, Electrochimica Acta, 45, 1781 (2000).
80. Y. M. Choi, S. I. Pyun and S. I. Moon, Solid State Ionics, 89, 43 (1996).
81. S. J. Bao, Y. Y. Liang, W. J. Zhou, B. L. He, and H. L. Li, J. Power Sources, 154, 239 (2006)
82. T. Y. Chen and K. Z. Fung, Journal of Alloys and Compounds 368, 106 (2004).
83. D. Lybye, F. W. Poulsen, and M. Mogensen, Solid State Ionics, 128, 91 (2000).
84. T. L. Nguyen , M. Dokiya, S. Wang, H. Tagawaa, and T. Hashimoto, Solid State Ionics, 130, 229 (2000).
指導教授 費定國(George Ting-Kuo Fey) 審核日期 2006-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明