博碩士論文 93324022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.146.178.230
姓名 廖茂易(Mao-Yi Liao)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討不同供氧量對Kineosphaera limosa生產PHBV之影響
(Study different supply oxygen limitation for production of PHBV in batch culture of Kineosphaera limosa)
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要
利用微生物系統生產可分解性的材質,來解決全球普遍性的塑膠廢棄物污染問題,是日益重要的課題。由於塑膠所產生的垃圾污染,已造成環境污染上的一大問題,因此生物可分解性塑膠的研究也隨之而起,聚羥基烷polyhydroxyalkanoates (PHAs)為菌體儲存碳源與能量的物質,可以用來當作生物可分解性塑膠的原料。
Kineosphaera limosa是一株由劉文佐博士實驗室在厭氧-好氧活性汙泥系統中發現且分離出來的兼性氧與革蘭陽性菌,在適當菌體生長的情況下會生成聚羥基丁酯-羥基戊酯共聚物(Poly(3-hydroxybutyrate-co-3-hydroxyvalerate), PHBV),而NADH為生成PHAs時所需之還原力(Reducing power),菌體在微氧的情況下有利NADH的生成,本研究探討菌體在不同的攪拌速率下對產物PHBV產出的影響,以及調整此菌株生成不同PHB/PHV比例的策略。
搖瓶實驗結果指出微供氧量培養下,三種不同單一碳源:甘油、葡萄醣和醋酸鈉測試,以葡萄醣為單一碳源時產物PHBV有較高產量且其PHV佔全部產物的比例為85%。
發酵槽實驗中,在不同攪拌速率下,其轉速越高下供氧量就越多,在轉速100至200rpm下,體積氧氣傳送係數(kLa)從1.91 hr-1增3.68 hr-1,
可以發現菌體的比生長速率就有越快趨勢從0.009 hr-1至0.024 hr-1。其轉速越高下供氧量就越多,其產生PHB/PHBV比例也不同,由5%至99%,因此攪拌速率下降會使氧氣質傳下降,造成菌體比生長速率下降而會使PHV產出的比例增加。
在兩階段不同攪拌速率,由高轉速切換至低轉速下,攪拌速率由200 rpm經66小時發酵後切換為100 rpm發酵,其結果是因為在200 rpm的條件下,菌體生長速度快而在葡萄醣的消耗速度太快下,不易選擇適當的切換時間點;有了之前的經驗改由低轉速切換至高轉速下,攪拌速率由150 rpm經85小時發酵後切換為220 rpm發酵,未切換前PHB/PHBV為0%,而切換後,所產生PHB/PHBV比例也由17%降至13%。比固定低攪拌速率100 rpm~150 rpm所產生PHB比例5%~6%為高。
摘要(英) Abstract
Producing the biodegradable material by using mircoorganism system. It is a more important topic to solve the pollution of plastics in the whole world. The environmental pollution is a big problem as a result of the pollution of plastics. For this reason, people start studying biodegradable material. Biodegradable polymers, poly(3-hydroxybutyric) acid (PHB), and a copolymer, poly(3-hydroxybutyric-cohydroxyvaleric) acid [P(HB-co-HV)], are accumulated inside the cells as reserves.
Kineosphaera limosa is a high-G+C Gram-positive, motile, non-spore-forming coccus capable of accumulating significant amounts of polyhydroxyalkanoate (PHA) was isolated from an inefficient biological phosphorus removal activated sludge reactor by Dr. Liu Wen-Tso. The NADH needs reducing power during producing PHAs. And it is good for the bacteria with the few oxygen to producing the NADH. In this study, I researched about different agitation versus producing PHBV and producing different PHB/PHV ratio by using two stages.
In the flask experiments, the test of three different single carbon source:glycerol、glucose and sodium acetate, when the glucose is the only single carbon source, the quantity of PHBV output is more and PHV/PHBV ratio is 85%.
In the fermentation experiments, with different agitation rate, the higher rate will provide more oxygen. The oxygen transfer rate coefficient (kLa) is from 1.91 to 3.68 hr-1,when the agitation rate is from 100 to 200 rpm. With higher agitation rate, the PHB/PHBV ratio is different from 5% to 99%. And lower agitation rate will make the oxygen transfer down, that the specific
growth rate(μ) is decreasing but the PHV/PHBV ratio is increasing.
After the agitation rate 200 rpm for 66 hr, the agitation rate was shifted to the agitation rate 100 rpm In two stage different agitation rate. Because the specific growth rate(μ) is fast during agitation rate 200 rpm, it is difficult to look for the suitable shifted point. With prior experience, I started the agitation rate from 150 rpm to 220 rpm. After the agitation rate 150 rpm for 85 hr, the agitation rate was shifted to the agitation rate 220 rpm. Before shifting ,the PHB/PHBV ratio is 0%. After shifting, the PHB/PHBV ratio is decreasing from 17% to 13%. It is higher than PHB/PHBV ratio 5~6% during the single agitation rate 100~150rpm.
關鍵字(中) ★ 聚羥基丁酯-羥基戊酯共聚物
★ 生物 可分解材料
★ 革蘭陽性菌
關鍵字(英) ★ kineosphaera limosa
★ oxygen
★ PHBV
論文目次 目 錄
目錄………………………………………………………………….....…Ⅰ
表索引……………………………………………………………….....…Ⅵ
圖索引……………………………………………………………….....…Ⅷ
第一章 ﹑緒論…………………………………………..............................1
1.1 研究背景………………………………………………….............1
1.2 研究目的………………………………………………….............5
第二章﹑文獻回顧………………………………………………………..6
2.1 分解性塑膠之簡介……………………….....................................6
2.1.1 分解性塑膠的分類………………………………..................6
2.1.2 生物分解性塑膠的分類…………………..............................8
2.2 微生物的代謝作用..................................................................11
2.2.1 初級 代謝的生合成...........................................................11
2.2.2 次 級 代謝的生合成...........................................................11
2.2.3 微生物生長和產物形成的關係...................................14
2.2.4 微生物發酵動力學-菌種的生長曲線.....................................15
2.3 PHAs之簡介……………………………………............................17
2.3.1 PHAs之發現與發展……………………………………….....17
2.3.2 PHAs之結構與物理化學性質…………………….................19
2.3.3 PHAs之合成代謝路徑….........................................................23
2.3.4 可生產PHAs之菌株...............................................................30
2.3.5 PHAs之生物分解性.................................................................32
2.4 深層液態發酵培養..........................................................................33
2.4.1深層發酵培養的優點................................................................34
2.5 影響發酵的物理化學因子…………………………………..........34
2.5.1 培養基組成…………………………………………...............34
2.5.1.1 碳源…………....................................................................34
2.5.1.2 氮源…………………………………………………........36
2.5.1.3 碳氮比………………………………………………........36
2.5.1.4 無機鹽類……………………………………………........37
2.5.1.5 其他添加物…………………………………………........37
2.5.2 培養條件………………………………………………….......38
2.5.2.1 pH值………………………………………………...........38
2.5.2.2 攪拌速率……………………………………………........38
2.5.2.3 溶氧值……………………………………………............39
2.5.2.4 溫度……………………………………………................40
2.5.2.5 接種量………………………………………....................41
2.5.2.6 不同形式的發酵槽...........................................................42
2.5.2.7 黏度...................................................................................42
2.6 發酵動態行為的數學模式.............................................................43
2.6.1 與生長有關的產物(growth-associated product).....................43
2.6.2 與生長無關的產物(nongrowth-associated product)...............44
2.6.3 混合生長相關的產物(mixed-growth-associated product).....44
2.7 OUR與kLa值的量測.....................................................................45
第三章﹑實驗材料與方法………………………………….....................48
3.1 論文架構........................................................................................48
3.2 實驗材料…………………………………………........................49
3.2.1 實驗菌株……………………………………….....................49
3.2.2 實驗藥品……………………………………….....................51
3.2.3 實驗儀器與設備……………………………..………….......52
3.3 實驗方法………………………………………...........................54
3.3.1 菌株保存…………………………………............................54
3.3.2 菌種之活化............................................................................55
3.3.3 培養基組成及操作條件........................................................55
3.3.3.1 固態平板培養.................................................................55
3.3.3.2 種瓶液態培養.................................................................56
3.3.3.3 搖瓶液態培養..................................................................57
3.3.3.4 發酵槽液態培養...............................................................58
3.3.4 分析方法…………………………………..............................59
3.3.4.1 取樣………………………………...................................59
3.3.4.2 分離菌體(Biomass)及發酵液(Broth)…………...............59
3.3.4.3 還原糖濃度測定(Glucose,S)…………….....................60
3.3.4.4 菌體乾重測定(Biomass,X)………………....................61
3.3.4.5 溶氧值測定(DO)...............................................................61
3.3.4.6 酸鹼值測定(pH)................................................................61
3.3.4.7 PHAs分析…......................................................................62
3.3.4.7.1 PHAs分析流程圖.......................................................62
3.3.4.7.2 PHAs酯化和萃取實驗步驟.......................................63
3.3.4.7.3 GC儀器測試實驗步驟...............................................64
3.3.4.8 kLa值測定.......................................................................67
3.4 各測試方法之標準檢量線……………………..........................67
3.4.1 葡萄醣殘量之標準檢量線……………………...................67
3.4.2 PHB和PHV之標準檢量線…………………….................68
3.3.4.8 kLa值與攪拌速率關係.......................................................69
第四章﹑結果與討論………………………………...................................70
4.1 搖瓶培養實驗……………………………......................................70
4.1.1 不同碳源對Kineosphaera limosa的生長影響.......................70
4.1.2 不同碳氮比對Kineosphaera limosa的生長影響...................72
4.2 攪拌式反應器批次發酵槽培養實驗..............................................75
4.2.1 不同攪拌速率對Kineosphaera limosa生產PHBV的影響...75
4.2.1.1 發酵動力曲線的比較........................................................75
4.2.1.2 發酵時間的比較................................................................81
4.2.1.3 不同攪拌速率對菌體生長的影響....................................81
4.2.1.4 不同攪拌速度對於產物PHBV的影響..............................82
4.2.2 兩階段不同攪拌速率對Kineosphaera limosa生產PHBV的影響..............................................................................................84
4.2.2 1 發酵動力曲線的比較........................................................84
4.2.2.2 兩階段不同攪拌速率對生成PHBV的影響....................88
第五章﹑結論與建議………………………...............................................90
5.1 結論..................................................................................................90
5.2 建議..................................................................................................92
第六章﹑參考文獻…………………………...............................................93
參考文獻 參考文獻
Ackermann, J.U., Babel, W. 1997. Growth associated synthesis of poly(hydroxybutyric acid) in Methylobacterium rhodesianum as an expression of an internal bottleneck. Appl. Microbiol. Biotechnol. 47:144-149.
Akashi, K., Shibai, H., Hirose, Y. 1979a. Effect of oxygen on L-phenylalanine, L-proline, L-glutamine and L-arginine fermentations. J. Ferment. Technol. 57:317-320.
Akashi, K., Shibai, H., Hirose, Y. 1979b. Inhibitory effects of carbon dioxide and oxygen in amino acid fermentation. J. Ferment. Technol. 57:321-327.
Anderson, A.J., Dawes, E.A. 1990. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev. 54:450-472.
Amass, W., Amass A., Tighe B. 1998. Uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polymer Imternational. 47:89-144.
Brandl, H., Gross, R.A., Lenz, R.W., Fuller, R.C. 1988. Pseudomonas olevoran as a source of polyhydroxyalkanoates for potential application as biodegradable polydsters. Appl. Environ. Microbiol. 54:1977-1982.
Borque, D., Pomerleau, Y., Groleau, D. 1995. High cell density production of poly-hydroxybutyrate (PHB) from methanol by Methylobacterium extorquens production of high molecular mass PHB. Appl. Microbiol. Biotechnol. 44:367-376.
Braunegg, G. 2002. Sustainable ploy(hydroxyalkanoate)(PHA) production. pp. 235-293 In: Netherlands. G. Scott(eds.), Degradable Polymers 2nd Edition. Kluwer Academic Publishers.
Byrom, D. 1987. Polymer synthesis by microorganism, technology and economics, J. Biotech. 5 :246-250.
Chain, E.B., Gualandi, G., Morisi, G. 1996. Aeration studies. Ⅳ. Aeration condition in 3000-liter submerged fermentation with various microorganisms. Biotechnol. Bioeng. 8:596-619
Chen, G.Q., Wu, Q. 2005. The application of polyhydroxyalkanoates as tissue engineering mateials. Biomaterials. 26:6565-6578.
Chiellini, E. and Solaro, R. 1996. Biodegradable polymeric materials. Adv. Mater. 8:305-313.
Chodak, I. 2002. Ployhydroxyalkanoates: properties and modification for high volume applications. pp. 295-319 In: Netherlands. G. Scott(eds.), Degradable Polymers 2nd Edition. Kluwer Academic Publishers.
Comeau, Y., Hall, K.J., Oldham, W.K. 1988. Determination of poly-β-hydroxyvlerate in activated sludge by gas-liquid chromatography. Appl. Environ. Microbiol. 54:2325-2327.
Cox, M.K. 1994. Properties and applications of polyhydroxyalkanoates. pp. 120-135. In: Londom-New York-Tokyo. Y. Doi and K. Fukuda(eds.), Biodegradable plastics and polymers. Elsevier, Amsterdam.
Dawes, E. A., Senior, P. J. 1973. The role and regulation of energy reserve polymers in micro-organisms. In: Advances in microbial physiology. London-New York: Academic Press, 10:135-266.
Doi, Y., Segawa, A., Kunioka, M. 1990. Biosynthesis and characterization of poly(3-hydroxybutrate-co-4-hydroxybutrate) in Alcaligenes eutrophus. Int. J. Biol. Macromol. 12:101-111.
Doi, Y., Sudesh, K., Fukui, T., Taguchi, K., Iwata, T. 1999. Improved production of poly(4-hydroxybutrate) by comamonas acidovorans and its freeze-fracture morphology. Int. J. Biol. Macromol. 25:79-85.
Doi, Y., Sudesh, K., Abe H. 2000. Synthesis, structure and properties of polyhydroxyalkanoates- biological polyesters. Prog. Polym. Sci. 25:1503-1555.
Doi, Y., Sudesh, K., Taguchi, K. 2002. Effect of increased PHA synthase activity on polyhydroxyalkanoates biosynthesis in Synechocystis sp. PCC6803. Int. J. Biol. Macromol. 30:97-104.
Eggink, G., deWaard, P., Huijberts, G.N. 1995. Formation of novel poly(hydroxyalkanoates) from long-chain fatty acids. Can. J. Microbiol. 41:14-21.
Garcia-Ochoa, F., Santos, V.E., Casas, J.A., Gomez, E. 2000. Xanthan gum: production, recovery, and properties. Biotechnol. Adv. 18:549-579
Gerngross, T.U., Slater S.C. 2000. How green are green plastics?. Scientisic American August 2000. 37.
Griffith, L.G. 2000. Polymeric biomaterials. Acta Mater. 48:263-277.
Hollender, J., Van Derkrol, D., Kornborger, L., Grerden, E., Dott, W. 2002. Effect of different carbon sources on the enhanced biological phosphorous removal in a sequencing batch reactor. Appc. Microbiol. Biotechnol. 18:355-360.
Krishna, C., Van Loosdrecht, M.C.M. 1999. Effect of temperature on storage polymers and settleability of activated sludge. Water Res. 33:2374-2382.
Lee, S.Y. 1996a. Bacterial Polyhydroxyalkanoates. Biotechnol. Bioeng. 49:1-14.
Lee, S.Y. 1996b. Plastic bacteria ? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol. 14:431-438.
Lee, S.Y., Wang, F. 1997. Production of poly(3-hydroxybutyrate) by fed-batch culture of filamentation-suppressed recombinant Escherichia coli. Appl. Environ. Microbiol. 63:4765-4769.
Lemoigine, M. 1926. Products of dehydration and of polymerization of β-hydroxybutyric acid, Bull. Soc. Chem. Biol. 8:770-782.
Liebergesell, M., Sonomoto, K., Madkour, M., Mayer, F., Steinbuchel,A. 1994. Purification and characterization of the poly(hydroxyalkanoic acid) synthase from Chromatium vinosum and localization of the enzyme at the surface of poly(hydroxyalkanoic acid) granules. Eur. J. Biochem. 226:71-80.
Liu, W.T., Mino, T., Nakamura, K., Matsuo, T. 1996. Glycogen accumulating population and its anaerobic substrate uptake in anaerobic-aerobic activated sludge without biological phosphorus removal. Wat. Res. 30:75-82.
Liu, W.T., Mino, T., Matsuo, T., Nakamura, K. 2000. Isolation, characterization and identification of polyhydroxyalkanoate- accumulating bacteria from activated sludge. J. Biosci. Bioeng. 90:494-500.
Liu, W.T., Hanada, S., Marsh, T.L., Kamagata, Y., Nakamura, K. 2002. Kineosphaera limosa gen. nov., sp. Nov., a novel gram-positive polyhydroxyalkanoate-accumulating coccus isolated from activated sludge. Int. J. Syst. Evol. Microbiol. 52: 1845-1849.
Mergaert, J., Webb, A., Anderson, C., Wouters, A., Swings, J. 1993. Microbial degradation of poly(3- hydroxbutyrate) and poly(3-hydroxybutyrate-co-3hydroxyvalerate) in soils. Appl. Environ. Microbiol. 59:3233-3238.
Mirtha, E.F., L_opez, N.I., M_endez, B.S., Furst, U.P., Steinbuchel, A.1995. Isolation and partial characterization of Bacillus megaterium mutants deficient in poly(3-hydroxybutyrate) synthesis. Can. J. Microbiol. 41:77-79.
Oda, Y., Asari, H., Urakami, T., Tonomura, K. 1995. Microbial degradation of poly(3-hydroxybutyrate) and polycaprolactone by filamentous fungi. J. Ferment. Bioeng. 80:265-269.
Poirier, Y., Somerville C. 1995. Synthesis of high-molecular-weight poly([r]-(-)-3-hydroxybutyrate) in transgenic Arabidopsis thaliana plant cells. Int. J. Biol. Macromol. 17:7-12.
Pouton, C.W. 1988. Biocompatibility of polyhydroxybutyrate and related copolymers. Proc Int, Symp. Controlled Release Bioact. Mater. 15:179-180.
Reddy C.S.K., Kalia, V.C., Ghai, R. 2003. Polyhydroxyalkanoates: an overview. Bioresource Technol. 87:137-146.
Salehizadeh, H., Van Loosdrecht, M.C.M. 2004. Production of polyhydroxyalkanoates by mixed culture: recent trends and biotechnological importance. Biotech. Adv. 22:261-279.
Shahidi, F., Arachchi, J.K.V., Jeon, Y.J. 1999. Food applications of chitin and chitosans. Trends in Food Science & Technol. 10:37-51.
Shioya, S., Ishihara, Y., Shimizu, H. 1996. Mole fraction control of poly(3-hydroxybutyric-co-3-hydroxybutyric) acid in fed-batch culture of Alcaligenes eutrophus. J. Ferment. Bioeng. 81:422-428.
Shioya, S., Shimizu, H., Kozaki, Y., Kodama, Hironobu. 1996. Maximum production strategy for biodegradable copolymer P(HB-co-HV) in fed-batch culture of Alcaligenes eutrophus. Biotechnol. Bioeng. 62:518-525.
Shu, C.H., Liao, C.C. 2002. Optimization of L-phenylalanine production of Corynebacterium glutamicum under product feedback inhibition by elevated oxygen transfer rate. Biotechnol. Bioeng. 77:131-141.
Shuler, M.L., Kargi, F. 2002a. Bioprocess Engineering: Basic Concepts. pp. 155-168. In: U.S.A. Prentice Hall PTR.
Shuler, M.L., Kargi, F. 2002b. Bioprocess Engineering: Basic Concepts. pp. 292-297. In: U.S.A. Prentice Hall PTR.
Song, J.J., Yoon, S.C., 1996. Biosynthesis of novel aromaticc opolyesters from insoluble 11-phenoxyundecanoic acid by Pseudomonas putida BM01. Appl. Environ. Microbiol. 62,536–544.
Sonnletiner, B. 1998. Dynamic adaptation of microbes. J. Biotechnol. 65:47-60.
Srivastava, A.K., Khanna, S. 2005. Recent advances in microbial polyhydroxyalkanoates. Process Biochem. 40:607-619.
Steinbuchel, A., Aerts, K., Babel, W., Follner, C., Liebergesell, M., Madkour, M.H., Mayer, F., Pieper-Furst, U., Pries, A., Valentin, H.E. 1995. Considerations on the structure and biochemis try of bacterial polyhydroxyalkanoic acid inclusions. Can J Microbiol. 41 Suppl 1:94-105.
Tan, I.K.P., Alias, Z. 2005. Isolation of palm oil-utilising, polyhydroxyalkanoate(PHA)-producing bacteria by an enrichment technique. Bioresource Technol. 96:1229-1234.
Tan, L.K.P., Kumar, K.S., Theanmalar, M., Gan, S.N., Gordon III, B. 1997. Saponified palm kernel oil and its major free fatty acids as carbon substrates for the production of polyhydroxyalkanoates in Pseudomonas putida PGA1. Appl. Microbiol. Biotechnol. 47:207-211.
Takeda, M., Matsuoka, H., Hamana, H., Hikuma, M. 1995. Biosynthesis of poly-3-hydroxybutyrate by Sphaerotilus natans. Appl. Microbiol. Biotechnol. 43:31–34.
Too, J.R., Yu, S.T., Lin, C.C. 2005. PHBV production by Ralstonia eutropha in a continuous stirred tank reactor. Process Biochem. 40:2729-2734.
Witter, R., Baumgartl, H., Lubbers, D.W., Schugerl, K. 1986. Investigations of oxygen transfer into Penicillium chrysogenum pellets by microprobe neasurements. Biotechnol. Bioeng. 1024-1036.
Yamane, T., Chen, X.-F., Ueda, S. 1996. Growth associated production of poly(3-hydroxyvalerate) from n-pentanol by a methylotrophicbac terium, Paracoccus denitrificans. Appl. Environ. Microbiol. 62:380-384.
Yim, K.S., Lee , S.Y., Chang, H.N. 1996. Synthesis of poly(3-hydroxybutyrate-co-hydroxybutyrate) by recombinant Escherichia coli. Biotechnol. Bioeng. 49:495-503.
Yu, J., Du, G.C., Chen, J., Lun, S. 2001. Feeding strategy of propionic acid for production of poly(3-hydroxybutyrate-co-hydroxybutyrate) with Ralstonia eutropha. Biochem. Eng. J. 8:103-110.
Zhang, H., Obias, V., Gonyer, K., Dennis, D. 1994. Production of polyhydroxyalkanoates in sucrose-utilizing recombinant Escherichia coli and Klebsiella strains. Appl. Environ. Microbiol. 60:1198-1205.
王建龍,文湘華,2001,現代環境生物技術 ,清華大學出版社,北京。
尤明村,2003,生物高分子-PHA的生物相容性之評估,天主教輔仁大學生命科學研究所碩士論文。
向明,1998,生物技術的發展與應用 (田蔚城編彙),九州圖書, 台北,151-164。
何志煌,1998,生物技術的發展與應用(田蔚城編彙 ),九州圖書,台北,207-212。
沈曉復,2000,生物分解性塑膠之發展及認識,塑膠資訊,49:20-32。
林碧洲,1996,清潔生產資訊,5:29-38。
柯志強,1997,生物分解謝塑膠之發展及認識,塑膠資訊,12:59-71。
柯勇,2003,現代微生物學,藝軒圖書出版社,25-26。
姜燮堂,2001,分解性塑膠,產業調查與技術,173:28-40。
黃怡菁,2004,生物可分解材料澱粉與PHB(poly-3- hydroxy butyrate)合膠之製備及性質研究,私立中國文化大學材料科學與製造研究所碩士論文。
黃賜源,1996,靈芝液態培養及氣舉式生化反應器應用之研究,私立東海大學化學工程研究所碩士論文。
傅俊中,2005,生物反應工程技術,機械工業,第265期,154-166。
鄭瑞洲,1999,可分解性塑膠,科技博物,5(3):96-100。
蘇遠志、黃世佑,2001,微生物化學工程學。
蘇遠志,2003,生物可分解性塑膠之開發與課題,生物產業Bioindustry ,14:3。
指導教授 徐敬衡(Chin-Hang Shu) 審核日期 2006-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明