博碩士論文 93324026 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:34.204.191.31
姓名 林祐賢(Yu-Hsien Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 氧化鋁-金屬氧化物複合擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究
(Research of gold catalysts loading on Al2O3-MOx (M=Cu, Mg, Zn) binary support applied to partial oxidation of methanol (POM) to produce hydrogen)
相關論文
★ 以離子交換法製備矽-鋁二元氧化物擔體鎳觸媒之研究★ 矽粉對二氧化矽碳熱還原氮化反應影響之研究
★ 稻殼灰分和稻殼灰分- 氧化鋁擔載鎳觸媒特性與反應性之研究★ 氧化鐵粉對二氧化矽碳熱還原氮化反應影響之研究
★ 以稻殼灰分初濕含浸製備擔體銅觸媒之研究★ 以稻殼灰分沈澱固著製備擔體銅觸媒之特性研究
★ 鐵粉對稻殼灰分碳熱還原氮化反應之影響研究★ 矽粉對稻殼灰分碳熱還原氮化反應之影響研究
★ 以稻殼灰分沈澱固著製備擔體銅觸媒 之反應性研究★ 以不同方法製備稻殼灰分-氧化鋁擔載鎳觸媒之研究
★ 氧化鋯擔載奈米金觸媒之製備與應用研究★ 氧化鋁擔載奈米金觸媒之製備與應用研究
★ 稻殼灰分擔載銅觸媒之製備與應用研究★ 氧化鈦擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究
★ 氧化鐵和氧化鐵-金屬氧化物擔載奈米金觸媒之製備與應用研究★ 擔載銅觸媒和金觸媒之製備與應用研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以三氧化二鋁為主要擔體,採含浸法製備成複合擔體,複合物包括了:CuOx、ZnOx及MnOx,目的在進行表面改質,接著利用沈澱固著法製備成複合擔體奈米金觸媒,並進行甲醇部分氧化反應(POM reaction,CH3OH + 1/2O2 → 2H2 + CO2) 產製氫氣的程序,檢測儀器包括:感應耦合電漿質譜分析儀(ICP-AES)、熱重分析儀(TGA)、X射線繞射儀(XRD)、穿透式電子顯微鏡(TEM)、掃描式電子顯微鏡(SEM)、X射線光電子分析儀(XPS)等各項儀器與分析技術,分別對擔體及觸媒進行鑑定,藉以評估觸媒應用於質子交換膜燃料電池的可行性。由BET測試結果,發現不同擔體比表面積差異不大。ICP-AES結果顯示,不同擔體由於表面性質不同影響了金的擔載,以Au/Al2O3-MnOx觸媒的金附著率最高。TEM的分析結果發現,金顆粒的大小會因為擔體的不同而有所差異,複合擔體能提高金晶粒的分散度,金晶粒尺寸也較單一擔體觸媒小,Au/Al2O3-CuOx觸媒經473 K煅燒後Au粒徑約為4.97 nm,但經高溫673 K煅燒之後,呈現燒結現象粒徑達11.6 nm。由XPS的結果中發現,未煅燒過的觸媒中,金以氫氧狀態存在,而在573 K煅燒過的觸媒,則只有金屬態的金(Au0)存在。活性測試後發現,觸媒的活性與擔體複合物的選擇有關,其中以Au/Al2O3-CuOx觸媒活性最佳。觸媒未經煅燒時活性最佳,推測氧化態金能促進反應活性。隨著反應溫度的增加,甲醇轉化率與氫氣選擇率都會同時增加。金觸媒擔載在複合擔體上能有效降低燒結的現象,並且提供更多的活性點。未來可以研製不同複合擔體金觸媒朝向活性更佳並且能有更低的CO選擇率作研究,期望能產製高純度氫氣以提供甲醇燃料電池的氫氣來源。
摘要(英) The effect of binary support of gold catalysts is widely studied. We prepare the binary support via impregnation method(Al2O3-MOx, M=Cu, Zn and Mn). The gold catalysts is then prepared by deposition -precipitation method (Au/Al2O3-MOx). The catalysts were characterized by ICP-AES, TGA, XRD, TEM, and XPS analyses. BET results shows that the surface area does not differ much from the choose of the binary support. ICP-AES results shows the surface property effect of the ability of absorption, Au/Al2O3-MnOx has the greatest gold loading amount. TEM images show that the size of gold decreases because of the binary support, about half compare to the single support catalysts, 4.97 nm after 473 K calcination, but still sintering to 11.6 nm after 673 K calcination. From XPS data, gold exists in metallic state. Selective production of hydrogen by partial oxidation of methanol (CH3OH + 1/2O2 → 2H2 + CO2) over Au/Al2O3-MnOx catalysts, the activity depends strongly on the supports, but also on the state of gold. The activity is better than single support catalysts apparently. It shows the good activity while it goes without calcination, we believe that it is because of the state of gold. Increasing the reaction temperature, the methanol conversion and hydrogen selectivity increase either. Binary supports could lower the condition of sintering and provide more active site.
關鍵字(中) ★ 氧化銅
★ 複合擔體
★ 甲醇
★ 活性
★ 氧化鋁
★ 氫氣
★ 燃料電池
★ 觸媒
★ 部分氧化
★ 煅燒
★ 電子顯微鏡
★ 奈米
★ 反應
★ 金
關鍵字(英) ★ hydrogen
★ XRD
★ TEM
★ BET
★ SEM
★ XPS
★ WGS
★ OSRM
★ SRM
★ conversion
★ reaction
★ catalysis
★ POM
★ binary support
★ fuel cell
★ Al2O3
★ CuO
★ methanol
★ calcination
★ ICP
★ TGA
★ gold catalyst
論文目次 目錄
內容 頁數
中文摘要………………………………………………………………….I
英文摘要………………………………………………………………..III
目錄……………………………………………………………………...V
圖索引…………………………………………………………………..IX
表索引……………………………………………………………….....XII
第一章 緒論…………………………………………………………1
1.1 前言………………………………………………………………...1
1.2 燃料電池原理……………………………………………………...1
1.3 燃料電池的種類…………………………………………………...6
1.4 甲醇製氫…………………………………………………………...9
1.5 金觸媒…………………………………………………………….10
1.6 研究內容與論文架構…………………………………………….10
第二章 文獻回顧………………………………………………….12
2.1 金的物性與化性………………………………………………….12
2.2 金觸媒的製備方法……………………………………………….13
2.3 煅燒程序………………………………………………………….18
2.4 擔體效應………………………………………………………….19
2.5 金的活性位置…………………………………………………….20
2.6 金觸媒的應用…………………………………………………….24
2.6-1 一氧化碳反應…………………………………………………24
2.6-2 有機揮發物質氧化反應………………………………………27
2.6-3 水氣轉移反應…………………………………………………27
2.6-4 碳氫化合物選擇性氧化反應…………………………………28
2.6-5 甲醇部分氧化反應……………………………………………29
第三章?篘蝷隤k與裝置………………………………………...32
3.1 複合擔體奈米金觸媒的製備…………………………………….32
3.2 觸媒代號說明…………………………………………………….33
3.3 奈米金觸媒的鑑定分析………………………………………….33
3.3-1 感應耦合電漿原子放射光譜儀(ICP-AES)分析…………..35
3.3-2 觸媒總表面積、孔隙體積及孔徑大小分析………………….36
3.3-3 熱重分析(TGA)……………………………………………..39
3.3-4 X射線繞射分析(XRD)………………………………………41
3.3-5 穿透式電子顯微鏡(TEM)…………………………………...43
3.3-6 掃描式電子顯微鏡分析(SEM)………………………………45
3.3-7 X射線光電子分析(XPS)……………………………………..48
3.4 觸媒活性測試—甲醇部分氧化反應…………………………….50
3.5 實驗流程與操作變數…………………………………………….52
3.6 數據的計算與實例……………………………………………….54
3.6-1 奈米金觸媒理論載量的定義與計算…………………………54
3.6-2 轉化率的定義與計算…………………………………………54
3.6-3 選擇率的定義與計算…………………………………………59
3.7 藥品、氣體及儀器設備…………………………………………...61
3.7-1 藥品……………………………………………………………61
3.7-2 氣體……………………………………………………………62
3.7-3 儀器設備………………………………………………………62
第四章?痕G與討論………………………………………………64
4.1 物性分析………………………………………………………….64
4.1-1 不同複合擔體對金屬載量的影響……………………………64
4.1-2 複合擔體煅燒條件的選擇……………………………………65
4.1-3 觸媒表面積測定………………………………………………68
4.1-4 X射線繞射分析(XRD)…………………………………….68
4.1-5 穿透式電子顯微鏡分析(TEM)…………………………….74
4.1-6 掃瞄式電子顯微鏡(SEM)…………………………………..78
4.1-7 X射線光電子分析(XPS)……………………………………81
4.2化性分析…………………………………………………………...83
4.2-1 擔體對觸媒活性的影響………………………………………84
4.2-2 擔體比例在未煅燒情況對觸媒活性的影響…………………87
4.2-3 擔體比例在煅燒情況對觸媒活性的影響……………………90
4.2-4 煅燒溫度對觸媒活性的影響…………………………………90
4.2-5 反應溫度對觸媒活性的影響…………………………………95
4.2-6 金觸媒與銅、鈀、鉑觸媒對甲醇部分氧化反應活性分析比
較………………………………………………………………97
第五章 結論………………………………………………………..101
參考文獻…………………………………………………………….104
參考文獻 Agrell, J., Germani, G., Jaras, S.G., Boutonnet, M., “Preduction of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts prepared by microemulsion technique”, Applied Catalysis A: General, 242, 233 (2003).
Alejo, L., Lago, R., Pena, M.A., Fierro, J.L.G., “Partial oxidation of methanol to produce hydrogen over Cu-Zn based catalysts”, Applied Catalysis A: General , 162, 281 (1997).
Andreeva, D., Tabakova, T., Ilieva, L., Naydenov, A., Mehanjiev, D., Abrashev, “Nanosize gold catalysts promotrd by vanadium oxide supported on titania and zirconia for complete benzene oxidation”, Applied Catalysis A: General, 209, 291 (2001).
Arrii, S., Morfin, F., Renouprez, J., Rousset, J.L., “Oxidation of CO on gold supported catalysts prepared by laser vaporization: Direct evidence of support contribution”, Journal of the American Chemical Society, 126, 1199 (2004).
Bethke, G.K., Kung, H.H., “Selective CO oxidation in a hydrogen-rich
” Applied Catalysis A: General 194, 43 (2000).
Boccuzzi, F., Chiorino, A., Manzoli, M., Lu, P., Akita, T., Lchikawa, S., Haruta, M., “Au/TiO2 nanosized samples: a catalytic, TEM, and FTIR study of the effect of calcinations temperature on the CO oxidation”, Journal of Catalysis, 202, 256 (2001).
Bond, G.C., Gold Bull, 5, 11 (1972).
Centeno, M.A., Paulis, M., Montes, M., Odriozola, J.A. “Catalytic combustion of volatile organic compoundson Au/CeO2 and Au/Al2O3 and Au/Al2O3 catalysts” Applied Catalysis A: General, 234, 65, (2002)
Chang, C.K., Yeh, C.T., Chen, Y.J., “Characterizations of alumina- supported gold with temperature-programmed reduction”, Applied Catalysts A: General, 174, 13 (1998).
Choudhary, T.V., Chusuei, C.C., Datye, A.K., Fackler, J.P., Goodman, D.W., “CO Oxidation on Supported Nano-Au Catalysts Synthesized from a [Au6(PPh3)6](BF4)2 Complex”, Journal of Catalysis, 207, 247 (2002).
Costello, C.K., Kung, M.C., Oh, H.-S., Wang, Y, Kung, H.H., “Nature of the active site for CO oxidation on highly active Au/Al2O3”, Applied Catalysis A: General, 232, 159 (2002).
Cubeiro, M.L. and Fierro, J.L.G. “Selective production of hydrogen by partial oxidation of methanol over ZnO-supported palladium catalysts”, Applied Catalysis A: General, 168, 307 (1998).
Date, D., Lchihashi, Y., Yamashita, T., Chiorino, A., Boccuzzi, F., Haruta, M., “Performance of Au/TiO2 catalyst under ambient conditions”, Catalysis Today, 72, 89 (2002).
Dietz, W.A., “Response factors for gas chromatographic analyses”, Journal of GC February, 68 (1967).
Garcia-Serrano, J., Galindo, A.G., Pal, U., “Au-Al2O3 nanocopmposites: XPS and FTIR spectroscopic studies”, Solar Energy Materials & Solar Cells, 82, 291, (2004).
Gardner, S.D., Hoflund, G.B., Upchurch, B.T., Schryer, D.R., Kielen, E.J., Schryer, J., “Comparison of the performance-characteristics of Pt/SnOx and Au/MnOx catalysts for low-temperature CO oxidation”, Journal of Catalysis, 129, 114 (1991).
Gluhoi, A.C., Bogdanchikova, N., Nieuwenhuys, B.E. “The effect of different types of additives on the catalytic activity of Au/Al2O3 in propene total oxidation: transition metal oxides and ceria” Journal of Catalysis, 229, 154 (2005).
Goodman, D.W., Valden, M., “Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties”, Science, 281, 1647 (1998).
Grisel, R.J.H., Kooyman, P.J., Nieuwenhuys, B.E., “Influence of the preparation of Au/Al2O3 on CH4 oxidation activity”, Journal of Catalysis, 191, 430 (2000).
Grisel, R.J.H., Nieuwenhuys, B.E., “A comparative study of the oxidation of CO and CH4 over Au/MOx/Al2O3 catalysts” Catalysis Today, 64, 69 (2001)
Grisel, R.J.H., Weststrate, C.J., Goossens, A., Crajé, M.W.J., van der Kraan, A.M., Nieuwenhuys, B.E., “Oxidation of CO over Au/MOx/Al2O3 multi-componentcatalysts in a hydrogen-rich environment”, Catalysis Today, 72,123, (2002)
Haruta, M., “Nanoparticulate Gold Catalysts for low-Temperature CO Oxidation”, Journal of New Materials for Electrochemical Systems, 7, 163, (2004).
Haruta, M., “Size- and support-dependency in the catalysis of gold”, Catalysis Today, 36, 153 (1997).
Haruta, M., Daté , M., ” Advances in the catalysis of Au nanoparticles”, Applied Catalysis A: General, 222, 427 (2001).
Haruta, M., Kobayashi, T., Sano, H., Yamada, N., Catalysis Letters, 405 (1987).
Haruta, M., Tsubota, S., Kobayashi, T., Kagetama, H., Genet, M.J., Delmon, B., “Low-temperature oxidation of CO over gold supported on TiO2, α-Fe2O3, and Co3O4”, Journal of Catalysis, 144, 175 (1993).
Haruta, M., Tsubota, S., Kobayashi, T., Kageyama, H., Genet, M.J.; Delmon, B. “Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4” Journal of Catalysis, 144, 175 (1993)
Hcyashi, T. and Haruta, M. “Effect of an loading on selectivity in the reaction of propylene on Au/TiO2 catalyst”, Shokubai, 37, 75 (1995).
Haruta, M., Ueda, A., Tsubota, S., Torres Sanchez, R.M., “Low temperature catalytic combustion of methanol and its decomposed of methanol and its decomposed derivatives over supported gold catalysts”, Catalysis Today, 29, 443 (1996).
Huang, T. J. and Chren, S. L. “Kinetics of partial oxidation of methanol over a copper-zinc catalyst”, Applied Catalysis A: General, 40, 43 (1988).
Hutchings, G.J., Gold Bull, 29, 123 (1996).
Idakiev, V., Tabakova, T., Yuan, Z.Y., Su, B.L., “Gold catalysts supported on mesoporous titania for low-temperature water-gas shift reaction”, Applied Catalysis A: General, 270, 135 (2004).
Konlov, A.I., Kozlove, A.P., Liu, H., Iwasawa, Y., “A new apporoach to active supported Au catalysts”, Applied Catalysis A: General, 182, 9 (1999).
Kozlova, A.P., Sugiyama, S., Kozlov, A.I., Asakura K., Iwasawa, Y., “Iron-Oxide Supported Gold Catalysts Derived from Gold-Phosphine Complex Au(PPh3)(NO3): State and Structure of the Support” Journal of Catalysis, 176, 426 (1998).
Kumar, R., Ahmed, S., Krumplet, M., Myles, K.,M., Agron National Laboratory Report, ANL-92/31, Argone, IL, USA, (1992).
Lin, S.D., Gluhoi, A.C., Nieuwenhuys, B.E., “Ammonia oxidation over Au/MOx/γ-Al2O3—activity, selectivity and FTIR measurements”, Catalysis Today, 90, 3, (2004)
Li, W.C., Comotti, M,, Schüth, F., “Highly reproducible syntheses of active Au/TiO2 catalysts for CO oxidationby deposition– precipitation or impregnation”, Journal of Catalysis, 237, 190 (2006)
Luengnaruemitchau, A., Osuwan, S., Gulari, E., “Comparative studies of low-temperature water-gas shift reaction over Pt/CeO2, Au/CeO2, and Au/Fe2O3 catalysts”, Catalysis Communications, 4, 215 (2003).
Mavrikakis, M., Stoltze, P., Norskov, J.K., “Making gold less noble”, Catalysis Letters, 64, Iss 2-4, 101 (2000).
Merck & Co., The Merck Index, (1996).
Minico, S., Scire, S., Crisafulli, C., Maggiore, R. and Galvagmo, S. “Catalytic combustion of volatile organic compounds on gold/iron oxide catalysts”, Applied Catalysis B: Environmental, 28, 245 (2000).
Navarro, R.M., Pena, M.A., Fierro, J.L.G, “Production of hydrogen by partial oxidation of methanol over a Cu/ZnO/Al2O3 catalyst: Influence of the initial state of the catalyst on the start-up behaviour of the reformer”, Journal of Catalysis, 212, 112 (2002).
Oh, H.S., Yang, J.H., Costello, C.K., Wang, Y.M., Bare, S.R., Kung, H.H., Kung, M.C., “Selective Catalytic Oxidation of CO: Effect of Chloride on Supported Au Catalysts”, Journal of Catalysis, 210, 375 (2002)
Okumura, M.T., Haruta, M., “Hydrogenation of 1,3-butadiene and of crotonaldehyde over higher dispersed Au catalysts”, Catalysts Today, 74, 265 (2002).
Piao, H., McIntyre, N.S., Beamson, G., Abel, M.L., Watts, J.F., “Electronic structure of Au-Al thin-film alloys by high-energy XPS and XANES” Journal of Electron Spectroscopy and Related Phenomena, 125, 35 (2002).
Prati L., Rossi, M., “Gold on Carbon as a New Catalyst for Selectivity Liquid Phase Oxidation of Diols”, Journal of Catalysis, 176, 552 (1998)
Schubert, M.M., Hackenberg, S., van Veen, A.C., Muhler, M., Plzak, V., Behm, R.J., “CO Oxidation over Supported Gold Catalysts—“Inert” and “Active” Support Materials and Their Role for the OxygenSupply during Reaction” Journal of Catalysis, 197, 113 (2001)
Velu, S., Suzuki K., Osaki, T., “Selective production of hydrogen by partial oxidation of methanol over catalysts derived from CuZnAl-layered double hydroxides” Catalysis Letters, 62,159 (1999)
Wang, D., Hao, Z., Cheng, D., Shi , X., Hu, C.,“Influence of pretreatment conditions on low-temperature CO oxidation over Au/MOx/Al2O3 catalysts” Journal of Molecular Catalysis A: Chemical, 200,229 (2003).
Wang, Z., Xi, J., Wang, W., Lu, G., “Selective production of hydrogen by partial oxidation of methanol over Cu-/Cr catalysts”, Journal of Molecular Catalysis A: Chemical, 191, 123 (2003).
Wang, Z., Wang, W., Lu, G., “Studies on the active species and on dispersion of Cu in Cu/SiO2 and Cu/Zn/SiO2 for hydrogen production via methanol partial oxidation”, International Journal of Hydrogen Energy, 28, 151 (2003).
Wasmus, S., Küver, A., “Methanol oxidation and direct methanol fuel cells: aselective review”, Journal of Electroanalytical Chemistry, 461, 14,(1999)
Wolf ,A., Schüth. F., ” A systematic study of the synthesis conditions for the preparation of highly active gold catalysts”, Applied Catalysis A: General , 226, 1 (2002).
Wolf, A., Schüth, F., “A systematic study of the synthesis conditions forthe preparation of highly active gold catalysts” Applied Catalysis A: General, 226,1 (2002).
Yeh, C.T., Chen, Y.J., “Deposition of higher dispersed gold on alumina support”, Journal of Catalysis, 200, 59 (2001).
Zanella, R., Giorgio, S., Shin, C.H., Henry, C.R., Louis, C., “Characterization and reactivity in CO oxidation of gold nanoparticles supported on TiO2 prepared by deposition-precipitation with NaOH and urea”, Journal of Catalysis, 222, 357 (2004).
指導教授 張奉文(Feg-Wen Chang) 審核日期 2006-6-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明