博碩士論文 93324032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:2 、訪客IP:13.59.36.203
姓名 黃晟輔(Cheng-Fu Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 鋰離子電池鈷酸鋰陰極材料之表面改質及電池性能研究
相關論文
★ LixNi1-yCoyO2及LiM0.5-yM'yMn1.5O4之合成與電池性能★ 鋅空氣一次電池之自放電與鋅極腐蝕 抑制改善之研究
★ 鋰離子電池陽極碳材料開發★ 鋰離子電池LixNi1-yCoyO2陰極材料之溶膠凝膠法製程研究
★ 鋰離子電池混合金屬氧化物材料之電化學特性分析★ 由天然農作物製備鋰離子電池負極碳材料
★ LiCoO2陰極材料重要製程評估與改質研究★ LiNi0.8Co0.2O2陰極材料製程與改質研究
★ 由花生殼製備鋰離子電池高電容量負極碳材料★ 鋰離子電池層狀結構陰極材料合成與改質研究
★ 以三乙醇氨-蔗糖燃燒法合成LiCoO2製程研究★ 以硝酸銨-環六亞甲基四胺燃燒法合成奈米級LiMn2O4陰極材料製程研究
★ 以奈米級ZrO2為塗佈物質改良鋰離子電池LiCoO2陰極材料充放電性能研究★ 以複合金屬氧化物為塗佈物質表面處理 鋰離子電池LiCoO2 陰極材料之製程研究
★ 鈣鈦礦結構氧化物改質LiCoO2陰極材料之製程與其電池性能研究★ 以天然農作廢棄物製備之碳材合成磷酸亞鐵鋰/碳複合陰極材料
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文分兩部分,均以機械式熱處理法,分別將Li4Ti5O12 和Li4Mn5O12 塗佈
於商用LiCoO2 陰極材料表面,期能改善商用LiCoO2 陰極材料於高充放電截止電
壓及快速充放電速率下,循環穩定性不佳之缺點,以及電池於長循環測試後之熱
安全性。首先針對各製程材料之電池性能進行測試,進而求出最佳製程條件;而
後利用各項材料鑑定,對材料之各種物化性質進行探討;最後以循環伏安法分析
材料氧化還原性質,並利用交流阻抗分析電池內阻之變化。
於本論文中,吾人自行合成Li4M5O12 (M=Ti、Mn)作為塗佈物質,並用於處
理商用FMC-LiCoO2 陰極材料。吾人藉由機械式熱處理法將其塗佈於LiCoO2 材
料表面,藉由粉體緊密包覆形成一緊密的保護層,進而降低充放電過程中,電活
性物質與電解質液間之接觸機會,減緩電極材料因與電解質液反應所造成之電容
量衰退情形,由實驗結果發現,設定充放電截止電壓分別為4.40 V 和2.75 V,
充放電速率為0.2 C,以1.0 wt.% Li4Ti5O12 煆燒450 ℃,持溫10 小時改質
LiCoO2,其循環壽命為148 次,而以1.0 wt.% Li4Mn5O12 煆燒550 ℃,持溫10
小時改質之LiCoO2,則循環壽命為125 次(未改質LiCoO2 材料之循環壽命僅有
38 次)。以ESCA 分析LiCoO2 材料表層至90 nm 深處之元素縱深分佈,確實可
發現塗佈物質中的鈦及錳元素存在,由XPS 圖譜可知,吾人所使用之塗佈物質
與LiCoO2 反應而形成固態溶液。由DSC 測試結果可知,改質後材料之熱解溫度
提高且放熱量降低,顯示材料之熱穩定性已獲得改善。由鈷溶解度測試結果可
知,改質後材料之鈷溶解現象均較未改質材料低,顯示因鈷溶解現象所造成的電
容量衰退獲得改善。由循環伏安法測試可知,改質後材料之氧化還原峰變得較為
圓滑,顯示電極材料於充放電過程中之相變化程度可獲得減緩。由交流阻抗結果
可知,改質後材料可降低電解質液間之總電阻,顯示此表面塗佈技術可減緩電極
材料溶至電解質液中,進而增加電池循環穩定性。
摘要(英) Presently, LiCoO2 is the most widely used cathode material in commercially
available Li-ion batteries, due to its high energy density and good cycle life
performance. However, the phase transformation from a hexagonal to monoclinic
phase, occurring between 4.1 and 4.2 V, induces a nonuniform volume change along
the c direction (~2 % expansion). This change eventually induces strains and extended
defects between and within the particles, leading to the disconnection of electrical
contact between particles and increased cell capacity fading. To overcome this
problem, the LiCoO2 cathode material was surface treated with the Li4M5O12 (M=Ti,
Mn) particles by a simple mechano-thermal process.
The Li4M5O12 (M=Ti, Mn) material possesses enhanced electrochemical activity,
good reversibility, zero-strain insertion, a very flat discharge-charge plateau and high
cycle stability during the charge–discharge process. The advantages of this compound
led us to focus on preparing Li4M5O12 (M=Ti, Mn) material as a coating material on
commercial LiCoO2 particles by a simple mechano-thermal process and studying its
electrochemical cell performance when charged at higher voltages.
A mixed metal oxide formed as a compact coating over the LiCoO2 cathode
particle to suppress the capacity fading caused by reactions with the electrolyte. The
Li4Ti5O12 and Li4Mn5O12 coated LiCoO2 cathode delivered excellent cyclability for
148 and 125 cycles, respectively, at a 0.2 C-rate between 4.40 and 2.75 V with charge
retention to 80 % of FMC-LiCoO2.
ESCA results revealed that the titanium and manganese ions of coating materials
could be observed on the LiCoO2 surface. The XPS spectra showed the coating
materials would react with LiCoO2 to form the LiMyCo1-yO2 (M=Ti, Mn) mixed metal
oxide. The DSC results showed that the coated LiCoO2 significantly depressed
exothermic activity and reduced heat generation at a highly delithiated state. In
addition, Li4M5O12 (M=Ti, Mn) coated LiCoO2 has better thermal safety
characteristics compared to the pristine LiCoO2 cathode material. The cobalt amounts
dissolved in the electrolyte of the Li4M5O12 (M=Ti, Mn) coated LiCoO2 were less than
the pristine one. Cyclic voltammetry revealed that the
hexagonal-monoclinic-hexagonal phase transformations were retained for the coated
cathode materials upon continuous cycling. Impedance spectra showed the electrolyte
resistance of the coated cathode decreased ( Is this right, wouldn’t a film increase
resistance) because the coating materials would form a thin-film on the cathode
surface to protect the cathode from reacting with the electrolyte.
關鍵字(中) ★ 鈷酸鋰 關鍵字(英) ★ lithium cobalt oxide
論文目次 目 錄
中文摘要.............................................................................................................I
英文摘要............................................................................................................II
誌謝.................................................................................................................. III
目錄..................................................................................................................IV
圖目錄.............................................................................................................VII
表目錄........................................................................................................... XIII
第一章 緒論...................................................................................................... 1
1.1 前言.............................................................................................. 1
1.2 鋰離子電池之發展背景簡介...................................................... 2
1.3 研究目的及架構.......................................................................... 5
第二章 文獻回顧.............................................................................................. 8
2.1 陰極材料之表面改質技術........................................................... 8
2.1.1 單一金屬氧化物表面改質陰極材料................................ 8
2.1.2 電活性物質表面改質陰極材料...................................... 28
2.1.3 複合金屬氧化物表面改質陰極材料.............................. 30
第三章 實驗方法............................................................................................ 40
3.1 實驗儀器設備............................................................................. 40
3.2 實驗藥品器材............................................................................. 41
3.3 實驗步驟..................................................................................... 42
3.3.1 以機械式熱處理法利用Li4Ti5O12 改質FMC-LiCoO2 陰
極材料............................................................................ 42
3.3.2 以機械式熱處理法利用Li4Mn5O12 改質FMC-LiCoO2
陰極材料......................................................................... 44
3.4 材料鑑定分析............................................................................ 48
V
3.4.1 X 光繞射( XRD )分析................................................... 48
3.4.2 掃描式電子顯微鏡分析................................................ 49
3.4.3 穿透式電子顯微鏡分析................................................. 49
3.4.4 化學分析電子能譜儀分析............................................. 49
3.4.5 微分掃描熱卡儀分析..................................................... 49
3.4.6 感應耦合電漿原子發散光譜分析................................. 50
3.5 材料電化學特性分析................................................................ 50
3.5.1 電池性能測試.................................................................. 50
3.5.2 慢速循環伏安分析.......................................................... 52
3.5.3 交流阻抗分析.................................................................. 53
第四章 結果與討論........................................................................................ 55
4.1 以Li4Ti5O12 改質商用LiCoO2 陰極材料之鑑定與電化學行為分
析................................................................................................. 55
4.1.1 以Li4Ti5O12 改質FMC-LiCoO2 材料之電池性能評估
.......................................................................................... 57
(A) 煆燒溫度變因......................................................... 58
(B) 塗佈物濃度變因..................................................... 59
(C) 煆燒時間變因......................................................... 62
(D) 特徵曲線測試......................................................... 63
4.1.2 XRD 分析...................................................................... 65
4.1.3 SEM 分析合成材料之表面型態.................................. 67
4.1.4 TEM 分析合成材料之表面型態.................................. 69
4.1.5 化學分析電子能譜儀測試........................................... 70
4.1.6 DSC 分析材料之熱穩定性........................................... 72
4.1.7 ICP-AES 分析電解質液中之鈷溶解度....................... 75
4.1.8 慢速循環伏安掃描分析............................................... 76
VI
4.1.9 交流阻抗之電化學測試............................................... 78
4.2 以Li4Mn5O12 改質商用LiCoO2 陰極材料之鑑定與電化學行為
分析............................................................................................ 84
4.2.1 以Li4Mn5O12 改質FMC-LiCoO2 材料之電池性能評估
.......................................................................................... 86
(A) 煆燒溫度變因......................................................... 86
(B) 塗佈物濃度變因..................................................... 87
(C) 煆燒時間變因......................................................... 89
(D) 特徵曲線測試......................................................... 91
4.2.2 XRD 分析...................................................................... 93
4.2.3 SEM 分析合成材料之表面型態.................................. 94
4.2.4 TEM 分析合成材料之表面型態.................................. 96
4.2.5 化學分析電子能譜儀測試........................................... 97
4.2.6 DSC 分析材料之熱穩定性........................................... 99
4.2.7 ICP-AES 分析電解質液中之鈷溶解度..................... 101
4.2.8 慢速循環伏安掃描分析............................................. 102
4.2.9 交流阻抗之電化學測試............................................. 103
第五章 結論.................................................................................................. 107
(A) 電池性能評估..................................................... 107
(B) X 光繞射分析..................................................... 107
(C) 掃描式及穿透式電子顯微鏡分析..................... 108
(D) 化學分析電子能譜儀分析................................. 108
(E) 微分掃描熱卡儀分析.......................................... 108
(F) 鈷溶解度測試...................................................... 109
(G) 循環伏安與交流阻抗掃描分析......................... 109
第六章 參考文獻.......................................................................................... 112
參考文獻 01. 溫添進, 科學發展月刊, “鋰離子高分子電池之研究發展簡述”, 國立成
功大學, 第29卷, 第7期, 498頁.
02. “Battery Recall Update”, Adv. Batt. Technol., 25 No. 10, 4 (1989).
03. D.W. Murphy, Mat. Res. Bull., 13, 1395 (1978).
04. M. Armand, Materials for Advanced Batteries, D.W. Murphy , J.
Broadhead, B.C.H. Steele, Eds, Plenum Press, New York, p.145 (1980).
05. S. Basu, U. S. Patent, 4,423,125 (1983).
06. K. Mizushima, P.C. Jones, P.J. Wiseman, and J.B. Goodenough, Mater.
Res. Bull., 15, 783 (1980).
07. H.J. Orman and P.J. Wiseman, Acta. Cryst., 40, 12 (1984).
08. E. Plichta, M. Salomon, S. Slane, M. Uchiyama, D. Chua, W.B. Ebner, and
H.W. Lin, J. Power Sources, 21, 25 (1987).
09. M.G.S.R. Thomas, W.I.F. David, J.B. Goodenough, and P. Grover, Mat.
Res. Bull., 20, 1137 (1985).
10. A. Marini, V. Berbernni, V. Massarotti, G. Flor, R. Riccardi, and M.
Leonini, Solid State Ionics, 32-33, 398 (1989).
11. J.M. Tarascon and D. Guyomard, J. Electrochem. Soc., 138, 2864 (1991).
12. J.M. Tarascon and D. Guyomard, Electrochimica Acta, 38, 1221 (1993).
13. A. Manthiram and J. Kim, Chem. Mater., 10, 2895 (1998).
14. K. Zaghib, K. Striebel, A. Guerfi, J. Shim, M. Armand, and M. Gauthier,
Electrochimica Acta, 50, 262 (2004).
15. 林育潤, 蕭美慧, 陳金銘, “低成本高功率鋰電池正極材料”, 工業材料
雜誌, 218期 (2005) .
113
16. 王志峰, 碩士論文, "鋰離子電池層狀結構陰極材料合成與改質研究",
國立中央大學, 中華民國臺灣 (2003).
17. J. Cho, T.J. Kim, Y.J. Kim, and B. Park, Angew. Chem. Int. Ed., 40, 3367
(2001).
18. J. Cho, T.J. Kim, Y.J. Kim, and B. Park, Electrochem. Solid State Lett., 4,
A159 (2001).
19. Z. Chen and J.R. Dahn, Electrochimica Acta, 49, 1079 (2004).
20. H.J. Kweon, S.J. Kim, and D.G. Park, J. Power Sources, 88, 255 (2000).
21. H.J. Kweon and D.G. Park, Electrochem. Solid-State Lett., 3, 128 (2000).
22. H. Zhao, L. Gao, W. Qiu, and X. Zhang, J. Power Sources, 132, 195
(2004).
23. Y. Iriyama, H. Kurita, I. Yamada, T. Abe, and Z. Ogumi, J. Power Sources,
137, 111 (2004).
24. J. Cho, Y.J. Kim, and B. Park, Chem. Mater., 12, 3788 (2000).
25. L. Liu, Z. Wang, H. Li, L. Chen, and X. Huang, Solid State Ionics,
152–153, 341 (2002).
26. D. Zhang, B. S. Haran, A. Durairajan, R.E. White, Y. Podrazhansky, and
B.N. Popov, J. Power Sources, 91, 122 (2000).
27. J. Cho, Y.J. Kim, T.J. Kim, and B. Park, J. Electrochem. Soc., 149, A127
(2002).
28. S. Oh, J.K. Lee, D. Byun, W.I. Cho, and B.W. Cho, J. Power Sources, 132
249 (2004).
29. G.T.K. Fey, Z.X. Weng, J.G. Chen, C.Z. Lu, T.P. Kumar, S.P. Naik, A.S.
T. Chiang, D.C. Lee, and J.R. Lin, J. Appl. Electrochem., 34, 715 (2004).
30. H. Cao, B. Xia, Y. Zhang, and N. Xu, Solid State Ionics, 176, 911 (2005).
114
31. G.T.K. Fey, J.G. Chena, and T.P. Kumar, J. Power Sources, 146, 250
(2005).
32. J.N. Reimers, E. Rossen, C.D. Jones, and J.R. Dahn, Solid State Ionics, 61,
335 (1993).
33. J.R. Dahn, U.V. Sacken, and C.A. Michal, Solid State Ionics, 44, 87
(1990).
34. G.T.K. Fey, C.Z. Lu, T.P. Kumar, and Y.C. Chang, Surface & Coatings
Tech., 199, 22 (2005).
35. J. Cho, G. Kim, H. Lim, C. Kim, and S.I. Yoo, Electrochem. Solid State
Lett., 2, 607 (1999).
36. G.G. Amatucci, A. Blyr, C. Siagala, P. Alfonse, and J.M. Tarascon, Solid
State Ionics, 104, 13 (1997).
37. G.G. Amatucci, US Pat., 5759720, 1997.
38. J. Cho, T.J. Kim, Y.J. Kim, and B. Park, Chem. Comm., 1074 (2001).
39. J. Cho, C.S. Kim, and S.I. Yoob, Electrochem. Solid State Lett., 3, 362
(1999).
40. Y.K. Sun, K.J. Hong, and J. Prakash, J. Electrochem. Soc., 150, A970
(2003).
41. D. Shu, G. Kumar, K.B. Kim, K.S. Ryu, and S.H. Chang, Solid State
Ionics, 160, 227 (2003).
42. J. Cho, Solid State Ionics, 160, 241 (2003).
43. G.T.K. Fey, Z.F. Wang, C.Z. Lu, and T.P. Kumar, J. Power Sources, 146,
245 (2005).
44. G.T.K. Fey, C.Z. Lu, J.D. Huang, T.P. Kumar, and Y.C. Chang, J. Power
Sources, 146, 65 (2005).
115
45. K.M. Colbow, J.R. Dahn, and R.R. Haering, J. Power Sources, 26, 397
(1989).
46. M. Kamata, T. Esako, N. Kodama, S. Fujine, K. Yoneda, and K. Kanda, J.
Electrochem. Soc., 143, 1866 (1996).
47. S. Bach, J.P.P. Ramos, and N. Baffier, J. Power Sources, 81-82, 273
(1999).
48. P.P. Prosini, R. Mancini, L. Petrucci, V. Contini, and P. Villano, Solid
State Ionics, 144, 185 (2001).
49. C.M. Shen, X.G. Zhang, Y.K. Zhou, and H.L. Li, Mater. Chem. & Phys.,
78, 437 (2002).
50. K. Nakahara, R. Nakajima, T. Matsushima, and H. Majima, J. Power
Sources, 117, 131 (2003).
51. T. Takada, H. Hayakawa, and E. Akiba, J. Solid State Chem., 115, 420
(1995).
52. R. Stoyanova, M. Gorova, and E. Zhecheva, J. Phys. & Chem. of Solids,
61, 615 (2000).
53. Y.C. Zhang, H. Wang, B. Wang, H. Yan, A. Ahniyaz, and M. Yoshimura,
Mater. Res. Bull., 37, 1411 (2002).
54. Y. Tanaka, Q. Zhang, and F. Saito, Powder Tech., 132, 74 (2003).
55. B.D. Cullity, “Elements of X-ray Diffraction,” Addison-Wesley Pub. Co,
MA, (1978).
56. D. Rahner, S. Machill, and K. Siury, J. Power Sources, 68, 69 (1997).
57. G.T.K. Fey, Y.Y. Lin, and T. P. Kumar, Surface & Coatings Technology,
191, 68 (2005).
58. G.T.K. Fey, P. Muralidharan, and Y.D. Cho, J. Power Sources, In Press.
116
59. G.T.K. Fey, P. Muralidharan, C.Z. Lu, and Y.D. Cho, Solid State Ionics,
177, 877 (2006).
60. N. Pereira, C. Matthias, K. Bell, F. Badway, I. Plitz, J. Al-Sharab, F.
Cosandey, P. Shah, N. Isaacs, and G.G. Amatuccia, J. Electrochem. Soc.,
152, A114 (2005).
61. G.T.K. Fey, P. Muralidharan, C.Z. Lu, Y.D. Cho, Solid State Ionics, 176,
2759 (2005).
62. G.T.K. Fey , P. Muralidharan, C.Z. Lu, Y.D. Cho, Electrochimica Acta, 51,
4850 (2006).
63. T. Miyazaki, T. Doi, M. Kato, T. Miyake, and I. Matsuura, Applied
Surface Science, 121-122, 492 (1997).
64. J.C. Dupina, D. Gonbeaua, H. Benqlilou-Mouddenb, Ph. Vinatier, A.
Levasseur, Thin Solid Films, 384, 23 (2001).
65. D.D. MacNeil and J.R. Dahn, J. Electrochem. Soc., 148, A1205 (2001).
66. Y. Baba, S. Okada, and J. Yamaki, Solid State Ionics, 148, 311 (2002).
67. H.S. Kim, T.K. Ko, B.K. Na, W.I. Cho, and B.W. Chao, J. Power Sources,
138, 232 (2004).
68. L.J. Fu, H. Liu, C. Li, Y.P. Wu, E. Rahm, R. Holze, and H.Q. Wu, Solid
State Sciences, 8, 113 (2006).
69. E. Plichita, S. Slane, M. Uchiyama, M. Salomon, D. Chua, W.B. Ebner,
and H.W. Lin, J. Electrochem. Soc., 136, 1865 (1989).
70. H. Wang, Y.I. Jang, B. Huang, D.R. Sadoway, and Y.M. Chiang, J.
Electrochem. Soc., 146, 473 (1999).
71. G.G. Amatucci, J.M. Tarascon, and L.C. Klein, Solid State Ionics, 83, 167
(1996).
117
72. M.D. Levi, K. Gamolsky, D. Aurbach, U. Heider, and R. Oesten,
Electrochimica Acta, 45, 1781 (2000).
73. Y.M. Choi, S. Pyun, and S.I. Moon, Solid State Ionics, 89, 43 (1996).
74. Y.M. Choi, S. Pyun, J.S. Bae, and S.I. Moon, J. Power Sources, 56, 25
(1995).
75. B.E. Conway, J. Electrochem. Soc., 138, 1539, (1991).
76. G.T.K. Fey, J.G. Chen, V. Subramanian, T. Osaka, J. Power Sources, 112,
384 (2002).
77. Y.D. Zhong, X.B. Zhao, G.S. Cao, Materials Science and Engineering B,
121, 248 (2005).
指導教授 費定國(George Ting-Kuo Fey) 審核日期 2006-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明