博碩士論文 93324038 詳細資訊


姓名 郭忠信(Chung-Shin Kuo)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選
(Crystallization Studise of Acetaminophen: Screening of Solvents. Interfaces and Solid dispersions)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
藥物的研究與發展是一個很費時與昂貴的過程。 平均來說,一個新藥物從在實驗室研發到真正上市大約需要500到880百萬美元,而且整個過程需要約15年。 在本論文中,三個重要的研究方向被用來增進整個藥物研發的效率。 首先,我們建立了一個有關乙烯氨酚(acetaminophen)結晶的資料庫。 利用使用23種有機溶劑篩選的方式,有關乙烯氨酚溶解度(solubility)、多型晶體(polymorph)、晶體外貌(crystal habit)、以及結晶度(crystallinity)的資料被完整收集。 一種粗糙但簡單方便且只需要少量樣品的篩選方法也將在本論文中介紹給大家。 第二,我們利用晶圓發展了一套篩選乙烯安酚與接觸介面間關係的方法。 此法可被用來防止及預測在藥物生產過程中接觸介面所帶來的影響。 而此法通常只需要少量的樣品。 第三部分,我們對乙烯安酚與糖(sucrose)的固態分散(solid dispersion)配方做了一些研究。 經過分散處理的樣品表現出比純乙烯安酚更好的溶解速率,而糖的甜味也可以抑制乙烯安酚的苦味。 因為乙烯安酚具有很高的經濟價值且已經有很多的研究文獻,我們選擇它當作我們的活性藥物成分(active pharmaceutical ingredient, API)。 但是本論文中的研究方法,也可以用在其他的活性藥物成分、藥物候選人或是簡單的有機分子上。
摘要(英) Abstract
Drug discovery and development process is a long and expensive process. The average cost of a new drug from laboratory to market is about US$500 to US$880 million and it takes ten to fifteen years to complete all the process. Three important studies in this thesis were performed to improve the efficiency of the discovery and development process. Firstly, a useful engineering data bank of solubility, polymorphism, crystal habits and crystallinity by solvent screening for acetaminophen would be established and a robust, miniature solvent screening method would be introduced. Secondary, a new chip method for interfacial screening between acetaminophen and templates was developed. This method could be used to predict and avoid the problems caused by templates during manufacturing and was also in miniature scale experiments. Thirdly, a solid dispersion formulation screening of acetaminophen and sucrose were investigated. The dispersion sample showed a better dissolution behavior than pure acetaminophen and sweet taste of sucrose has a potential value of masking the bitterness of acetaminophen. Acetaminophen was chosen as the active pharmaceutical ingredient (API) because of its commercial value and rich literatures. But the investigating methods in this thesis, could also be applied to some other APIs or drug candidates or simple organic materials.
關鍵字(中) ★ 多型晶體
★ 晶貌
★ 溶解度
★ 乙烯氨酚
★ 溶劑篩選
★ 固態分散
★ 幾丁聚糖
★ 界面
★ 蔗糖
★ 結晶度
關鍵字(英) ★ DSC
★ XRD
★ acetaminophen
★ solvent screening
★ solid dispersion
★ interfaces
★ chitosan
★ morphology
★ solubility
★ crystallinity
★ AFM
★ ESCA
★ polymorph
★ sucrose
論文目次 Table of Contents
摘要………………………………………………………………………………………………I
Abstract ………………………………………………………………………………………II
Acknowledgments ……………………………………………………………………………III
Table of Contents……………………………………………………………………………IV
List of Tables ………………………………………………………………………………IX
List of Figures ………………………………………………………………………………X
Chapter 1 Executive Summary ………………………………………………………………1
1.1. Introduction …………………………………………………………………………1
1.2 Brief Introduction of Acetaminophen ……………………………………………4
1.3 Conceptual Framework…………………………………………………………………6
Reference………………………………………………………………………………………10
Chapter 2 Characterization methods ……………………………………………………14
2.1 Introduction …………………………………………………………………………14
2.2 Thermal Analysis ……………………………………………………………………15
2.2.1 Differential scanning calorimetry (DSC)…………………………………15
2.3 Spectroscopic Identification ……………………………………………………18
2.3.1 Powder X-ray Diffractometry (PXRD) ………………………………………18
2.3.2 Fourier Transform Infrared (FT-IR) Spectroscopy………………………20
2.3.3 Electron Spectroscopy for Chemical Analysis (ESCA) …………………22
2.3.4 Ultraviolet and Visible Spectroscopy (UV/Vis)…………………………25
2.4 Microscopic Methods…………………………………………………………………28
2.4.1 Optical Microscopy (OM) ……………………………………………………28
2.4.2 Atomic Force Microscope (AFM)………………………………………………39
2.5 Conclusions…………………………………………………………………………32
References …………………………………………………………………………………33
Chapter 3 Solvent Screening of Acetaminophen: Solubility, Polymorphism,
Morphology, and Crystallinity…………………………………………………38
3.1 Introduction …………………………………………………………………………38
3.1.1 Solubility ………………………………………………………………………38
3.1.2 Polymorphism ……………………………………………………………………40
3.1.3 Crystal Habits …………………………………………………………………42
3.1.4 Crystallinity……………………………………………………………………42
3.2 Materials………………………………………………………………………………43
3.3 Experiments……………………………………………………………………………47
3.3.1 Solubility Test…………………………………………………………………47
3.3.2 Acetaminophen Crystallization by Temperature Cooling ………………48
3.3.3 Polymorph and Morphology Characterize……………………………………49
3.3.3.1 Differential Scanning Calorimetry (DSC)……………………………49
3.3.3.2 Powder X-ray Diffractometry (PXRD) …………………………………50
3.3.3.3 Optical Microscopy (OM) ………………………………………………50
3.4 Result and Discussion………………………………………………………………52
3.4.1 Solubility Analysis……………………………………………………………52
3.4.2 Polymorph Study…………………………………………………………………58
3.4.3 Morphology Study ………………………………………………………………61
3.5 Conclusion ……………………………………………………………………………66
References …………………………………………………………………………………67
Chapter 4 Acetaminophen-Chitosan Template and Acetaminophen-PE-Chl Template:
The Interfacial Studies…………………………………………………………73
4.1 Introduction …………………………………………………………………………73
4.2 Materials………………………………………………………………………………78
4.3 Experiment ……………………………………………………………………………79
4.3.1 Templates Preparation…………………………………………………………79
4.3.2 Acetaminophen Section…………………………………………………………81
4.3.2.1 Crystallization by Temperature Cooling on Templates……………81
4.3.2.2 Solid Dispersion …………………………………………………………81
4.3.3 Characterization ………………………………………………………………82
4.3.3.1 Fourier Transform Infrared (FT-IR) Spectroscopy…………………82
4.3.3.2 Differential scanning calorimetry (DSC)……………………………82
4.3.3.3 Powder X-ray powder Diffractometry (PXRD)…………………………83
4.3.3.4 Optical Microscopy (OM) ………………………………………………83
4.3.3.5 Electron Spectroscopy for Chemical Analysis (ESCA) ……………84
4.3.3.6 Atomic Force Microscopy (AFM) ………………………………………85
4.4 Results and Discussion ……………………………………………………………87
4.5 Conclusions……………………………………………………………………………97
References …………………………………………………………………………………98
Chapter 5 Solid Dispersion screening of Acetaminophen and Sucrose …………102
5.1 Introduction…………………………………………………………………………102
5.2 Materials ……………………………………………………………………………105
5.3 Experimental Methods ……………………………………………………………105
5.3.1 Preparation of Samples………………………………………………………106
5.3.1.1 Preparation of Solid Dispersion Samples ……………………………106
5.3.1.2 Preparation of Re-Crystallized Samples………………………………108
5.3.2 Sucrose Effect on Crystallization ………………………………………108
5.3.3 Dissolution Tests ……………………………………………………………108
5.3.4 Characterization………………………………………………………………110
5.3.4.1 Ultraviolet and Visible Spectroscopy (UV/Vis) …………………110
5.3.4.2 Differential Scanning Calorimetry (DSC) …………………………110
5.3.4.3 Powder X-ray powder Diffractometry (PXRD) ………………………110
5.3.3.4 Optical Microscopy (OM) ………………………………………………111
5.4 Results and Discussion……………………………………………………………112
5.4.1 Sample Analysis ………………………………………………………………112
5.4.1.1 DSC Analysis………………………………………………………………112
5.4.1.2 PXRD Analysis ……………………………………………………………114
5.4.1.2 OM Analysis ………………………………………………………………116
5.4.2 Dissolution Test………………………………………………………………117
5.5 Conclusions …………………………………………………………………………124
References…………………………………………………………………………………125
Chapter 6 Conclusions and Future Works………………………………………………129
Summary of references ……………………………………………………………………133
參考文獻 Summary of References
Chapter 1
1. C. Han, and B. Wang, “Factors That Impact The Developability of Drug Candidates: An Overview,” Chapter 1 of Drug Delivery: Principles and Applications, edited by B. Wang, T. Siahaan, and R. Soltero, John Wiley & Sons, pp. 1-5 (2005)
2. K. Sweeny, “Technology Trends in Drug Discovery and Development: Implications for the Development of the Pharmaceutical Industry in Australia”, Draft Working Paper No. 3, Pharmaceutical Industry Project, CSES, Victoria University, Melbourne.
3. W. H. DeCamp, “The Impact of Polymorphism on Drug Development: A Regulator’s Viewpoint,” XVIII Congress of the International Union of Crystallography
4. G. W. Caldwell, D. M. Ritchie, J. A. Masucci, W. Hageman, and Z. Yan, “The New Pre-Preclinical Paradigm: Compound Optimization in Early and Late Phase Drug Discovery,” Curr. Top. Med. Chem., 1(5), 353-366 (2001)
5. M. Brigell, C. J. Dong, S. Rosolen, and R. Tzekov, “An Overview of Drug Development with Special Emphasis on The Role of Visual Electrophysiological Testing,” Documenta Ophthalmologica, 110(1), 3-13 (2005)
6. O. Almarsson, and M. J. Zaworotko, “Crystal Engineering of The Composition of Pharmaceutical Phases. Do Pharmaceutical Co-Crystals Present a New Path to Improved Medicines? ” Chem. Commun.,17, 1889-1896 (2004)
7. J. Berstein, R. J. Davey and Jan-Olav Henck, “Concomitant Polymorphs,” Angew.
Chem. Int. Ed. 38(23), 3440-3461 (1999).
8. W. L. McCabe, J. C. Smith, P. Harriott, “Crystallization”, Chapter 27 of Unit Operations of Chemical Engineering.” Sixth edition, Mc Graw-Hill, pp902-942,(2001)
9. S. L. Wang, S. Y. Lin, and Y. S. Wei, “Transformation of Metastable Forms of Acetaminophen Studied by Thermal Fourier Transform Infrared(FT-IR) Microspectroscopy,” Chem. Pharm. Bull., 50(2), 153-156 (2002)
10. H. A. Garekani, J. L. Ford, M. H. Rubinstein, and A. R. R. Siahboomi, “Formation and compression characteristics of prismatic polyhedral and thin plate-like crystals of paracetamol,” Int. J. Pharm., 187(1), 77-89 (1999)
11. G. Nichols and S. Frampton, “Physicochemical Characterization of the Orthorhombic Polymorph of Paracetamol Crystallized from solution,” J. Pharm. Sci., 87(6), 684-693 (1998)
12. www.accelrys.com, “C2. Polymorph”,Cerius2 Datasheet
13. M. Szelagiewicz, C. Marcolli, S. Cianferani, A. P. Hard, A. Vit, A. Burkhard, M. von Raumer, U. Ch. Hofmeier, A. Zilian, E. Francotte and R. Schenker, “In Situ Characterization of Polymorphic Forms The Potential of Raman Techniques,” J. Therm. Analy. Calor., 57(1), 23-43 (1999)
14. 巢佳莉, ”OTC止痛藥市場概況與發展趨勢,” ITRI (2002)
15. The annual report of GlaxOSmithKline (GSK) from 2002 to 2006.
16. R. A. Granberg and A. C. Rasmuson, “Solubility of Paracetamol in Pure Solvents,” J. Chem. Eng. Data., 44(6), 1391-1395 (1999)
17. B. A. Hendriksen and D. J. W. Grant, “The effect of structurally related substances on the nucleation kinetics of paracetamol (acetaminophen),” J. Cry. Grow., 156(3), 252-260 (1995)
18. R. I. Ristic, S. Finnie, D. B. Sheen, and J. n. Sherwood, “Macro- and Micromorphology of Monoclinic Paracetamol Grown from Pure Aqueous Solution,” J. Phys. Chem. B, 105(38), 9057-9066 (2001)
19. S. L. Morissette, O. Almarsson, M. L. Peteraon, J. F. Remenar, M. J. Read, A. V. Lemmon, S. Ellis, M. J. Cima, and C. R. Gardner, “High-Throughput Crystallization: Polymorphs, Salts Co-Crystals and Solvates of Pharmaceutical Solids,” Adv. Drug Del. Rev., 56(3), 275-300 (2004)
20. M. Lang, A. L. Grzesiak, and A. J. Matzgar, “The Use of Polymer Heteronuclei for Crystalline Polymorph Selection,” J. Am. Chem. Soc., 124(50), 14834-14835 (2002)
21. W. W. Wang and Y. J. Zhu, “Synthesis of PbCrO4 and Pb2CrO5 Rods via a Microwace-Assisted Ionic Liquid Methods,” Cryst. Growth Des., 5(2), 505-507 (2005)
22. J. L. Hilden, C. E. Ryeyes, M. J. Kelm, j. S. Tan, J. G. Stowell, and K. R. Morris, “Capillary Precipitation of a Highly Polymorphic Organic Compound,” Cryst. Growth Des., 3(6), 921-926 (2003)
23. A. M. Garcia and E. S. Ghaly, “Preliminary Spherical Agglomerates of Water Soluble Drug Using Natural Polymer And Cross-Linking Technique,” J. Controlled Release, 40(3), 179-186 (1996)
24. J. E. Aber, S. Arnold, and B. A. Garetz, “Strong dc Electric Field Applied to Supersaturated Aqueous Glycine Solution Induces Nucleation of the γ polymorph,” Phys. Rev. Lett., PRL 94(14), 145503 (2005)
25. K. V. Saban, T. Jini, and G. Varghese, “Influence Of Magnetic Field on The Growth And Properties Of Calcium Tartrate Crystals,” J. Magn. Magn. Mater., 265(3), 296-304 (2003)
26. T. Graham and M. Sarikaya, “Growrh dynamics of red abalone shell: a biominetic model,” Mater. Sci. Eng., C11(2), 145-153 (2000)
Chapter 2
1. T. L. Threlfall, “Analysis of Organic Polymorphs : A Review,” The analyst, 120(10), 2435-2460 (1995)
2. D. Giron, “Thermal Analysis and Calorimetric Methods in the Characterization of Polymorphs and Solvate,” Thermochim. Acta, 248, 1-59 (1995)
3. D. Giron, “Applications of Thermal Analysis and Coupled Techniques in Pharmaceutical Industry,” J. Therm. Anal. Calorim., 68(2), 335-357 (2002)
4. C. Thompson, M. C. Davies, C. J. Roberts, S. J. B. Tendler, and M. J. Wikinson, “The Effects of Additives on the Growth and Morphology of Paracetamol (Acetaminophen) Crystals,” Int. J. Pharm., 280(1-2), 137-150 (2004)
5. S. D. Finnie, R. I. Ristic, J. N. Sherwood, and A. M. Zickic, “Morphological and Growth Rate Distributions of Small Self-Nucleated Paracetamol Crystals Grown fron Pure Aqueous Solutions,” J. Cryst. Growth, 207(4), 308-318 (1999)
6. H. Wen, T. Li, K. R. Mprris, and K. Park, “How Solvent Affect Acetaminophen Etching Pattern Formation: Interaction between Solvent and Acetaminophen at the Solid/Liguid Iterface,” J. Phys. Chem. B, 108(7), 2270-2278 (2004)
7. L. Yu, S. M. Reutzel, and G. A. Stephenson, “Physical Characterization of Polymorphic Drugs: An Integrated Characterization Strategy,” Pharm. Sci. Tech. Today, 1(3), 118-127 (1998)
8. P. J. Haines, and F. W. Wilburn, “Differential Thermal Analysis and Differential Scanning Calorimetry,” Chapter 3 of Thermal Methods of Analysis- Principles, Applications and Problems, edited by Peter J. Haines, Blackie Academic and Professional, New York, USA, pp.63- 89 (1995)
9. A. J. Pasztor, “Thermal analysis Techniques,” Chapter 50 of Handbook of Instrumental Techniques foe Analytical chemistry, edited by F. A. Settle, Prentice Hall PTR, New Jersey, USA, pp.909-917 (1997)
10. B. R. Spong, C. P. Price, A. Jayasankar, A. J. Matzger, and N. R. Horndo, “General Principles of Pharmaceutical Solid Polymorphism a Supramolecular Perspective,” Adv. Drug Del. Rev., 56(3), 241-274 (2004)
11. J. Formica, “X-Ray Diffraction,” Chapter 18 of Handbook of Instrumental Techniques foe Analytical chemistry, edited by F. A. Settle, Prentice Hall PTR, New Jersey, USA, pp.339-353 (1997)
12. W. Massa, “The Geometry of X-Ray Diffraction,” chapter 3 of Crystal Structure Determination, Springer-Verlag, Berlin, Germany, pp.13-16 (2000)
13. D. A. Skoog, F. J. Holler, and T. A. Nieman, Principles of Instrucmental Analysis, fifth edition, Thomson Learnin., USA, pp.182-183,396 (2001)
14. F. Rouessac, and A. Rouessac, “Infrared Apectroscopy,” Chapter 10 of Chemical Analysis- Modern Instrumentation Methods and Techniques, John Willy & Sons, chichester, England, pp.170-173 (2001)
15. H. Takahashi, R. Chen, H. Okamoto, and K. Danjo, “Acetaminophen Particle Design Using Chitosan and a Spray-Drying Technique,” Chem. Pharm. Bull., 53(1), 37-41 (2005)
16. D. L. Pavia, G. M. Lampman, and G. S. Kriz, “Infrared Spectroscopy,” Chapter 2 of Introduction to Spectroscopy: A Guide for students of Origanic Chemistry, third edition, Thomson Learning, Inc., USA, pp.45-68 (2001)
17. K. Durose, S. E. Asher, W. Jaegermann, D. Levi, B. E. McCandless, W. Metzger, H. Moutinho, P. D. Paulson, C. L. Perkins, J. R. Sites, G. Teeter, and M. Terheggen, “Physical Characterization of Thin-film Solar Cells,” Prog. Photovolt.: Res. Appl., 12(2-3), 177-217 (2004)
18. B. D. Ratner, and D. G. castner, “Electron Spectroscopy for Chemical Analysis,” Chapter 3 in Surface analysis, edited by J. C. Vickerman, John Wiley & Sons, New York, USA pp.43-45 (1997)
19. D. R. Chopra, and A. R. Chourasia, “X-ray photoelectron Spectroscopy, ” Chapter 43 of Handbook of Instrumental Techniques foe Analytical chemistry, edited by F. A. Settle, Prentice Hall PTR, New Jersey, USA, pp.809-812 (1997)
20. T. W. Adorno, “The Form of the Phonograph Record,” JSTOR Arts and Sciences October, 55, 56-61 (1990)
21. J. McMurry, “Conjugested Dienes and Ultraviolet Spectroscopy,” Chapter 14 of Organic Chemistry, sixed edition, Thomson Learning, USA, pp.482-484 (2004)
22. F. Rouessac, and A. Rouessac, “Ultraviolet and Visible Absorption Spectroscopy,” Chapter 11 of Chemical Analysis- Modern Instrumentation Methods and Techniques, John Willy & Sons, chichester, England, pp.191-192 (2001)
23. D. L. Pavia, G. M. Lampman, and G. S. Kriz, “Ultraviolet Spectroscopy,” Chapter 7 of Introduction to Spectroscopy: A Guide for students of Origanic Chemistry, third edition, Thomson Learnin., USA, pp3535-354 (2001)
24. D. A. Skoog, F. J. Holler, and T. A. Nieman, “An Introduction to Ultraviolet/ Visible Molecular Absorption spectrometry,” Chapter 13 of Principles of Instrucmental Analysis, fifth edition, Thomson Learnin., USA, pp300-306 (2001)
25. J. A. Howell, “Ultraviolet and Visible Molecular Absorption Spectrometry,” Chapter 25 of Handbook of Instrumental Techniques for Analytical chemistry, edited by F. A. Settle, Prentice Hall PTR, New Jersey, USA, pp.481-493 (1997)
26. M. J. Ayora Cañada, M. I. P. Reguera, A. Mo. Diaz, and L. F. C.Vallvey, “Solid-phase UV spectroscopic multisensor for the simultaneous determination of caffeine, dimenhydrinate and acetaminophen by using partial least squares multicalibration,” Talanta, 49(3), 691-701 (1999)
27. T. C. Kriss, V. M. Kriss, and M.Vesna, “History of the Operating Microscope: From Magnifying Glass to Microneurosurgery,” Neurosurgery, 42(4), 899-907 (1998)
28. G. Binnig, C. F. Quate, and Ch. Gerber, “Atomic Force Microscope,” Phys. Rev. Lett., 56(9), 930-933 (1986)
29. A. D. Stefanis and A. A. G. Tomlinson, “Scanning Probe Microscopies-From Surface Structure to Nano-scale Engineering,” Trans Tech Publications LTD, New Hampshire, USA, pp.51, 44 (2001)
30. D. A. Skoog, F. J. Holler, and T. A. Nieman, “Surface Characterization by Spectroscopy and Microscopy,” Chapter 21 of Principles of Instrucmental Analysis, fifth edition, Thomson Learnin., USA, pp557-561 (2001)
31. C.B. Prater, P. G. Maivald, K.J. Kjoller, M.G. Heaton, “TappingMode Imaging
Applications and Technology,” Vecco Instrument Inc. AN04, Rev A1 (2004)
Chapter 3
1. S. L. Morissette, O. Almarsson, M. L. Peterson, J. F. Remenar, M. J. Read, A. V. Lemmo, S. Ellis, M. J. Cima and C. R. Gardner, “High-Throughput crystallization: polymorphs, salts co-crystals and solvates of pharmaceutical solids,” Adv. Drug Del. Rev., 56(3), 275-300 (2004)
2. J. R. Fritch, O. S. Fruchey, T. Horlenko, D. A. Aguilar, C. B. Hilton, P. S. Snyder, and W.J. Seeliger, “Production of Acetaminophen,” United State Patent, NO. 5,155,273 (1992)
3. B. Tozkoparan, N. Gokhan, G. Aktay, E. Yesilada, and M. Ertan, “6-Benzylidenethiazolo[3,2-b]-1,2,4-triazole-5(6H)-ones substituted with ibuprofen: synthesis, characterization and evaluation of anti-inflammatory activity,” Eur. J. Med. Chem., 35(7-8), 743-750 (2000)
4. O. S. Fruchey, E. G. Zey, and L. O. Wheeler, “”Method for The Purification of Acetaminophen,” United State Patent, NO. US 6,277,783 B1 (2001)
5. S. Rohani, “Control of Product Quality in Batch Crystallization of Pharmaceuticals and Fine Chemicals. Part 1: Design of Crystallization Process and the Effect of Solvent,” Org. Process Res. Dev., 9(6), 858-872 (2005)
6. A. M. Railkar, and J. B. Schwartz, “Evaluation and Comprison of a Moist Granulation Technique to Conventional MMethods,” Drug Dev. Ind. Pharm., 26(8), 885-889 (2000)
7. H. Wen, K. R. Morris, K. Park, “Study on the interaction between Polyvinylpyrrolidone(PVP) and Acetaminophen Crystals: Partial Dissolution Pattern Change,” J. Pharm. Sci., 94(10), 2166-2174 (2005)
8. J. Burke, “Solubility Parameters: Theory and Application,” Appeared in the AIC Book and Paper Group Annual, 3, 13-58 (1984)
9. Q. Li, C. Zhong, Z. Zhang, and Q. Zhou, “Modeling of the Solubility of solid Solution in Supercritical CO2 with and without Cosolvent using Solution Theory,” Korean. J. Chem. Eng., 21(6), 1173-1177 (2004)
10. C. J. Price, “Take Some Solid Steps to Improve Crystallization,” Chem. Eng. Prog., 93(9), 34-43 (1997)
11. S. Pfeffer-Hennig, P. Piechon, M. Bellus, C. Goldbronn, and E. Tedesco, “Physico-Chemical Characterization of an Active Pharmaceutical Ingredient: Crystal Polyorphism and Structrual Analysis,” J. Therm. Analy. Calor., 77(2) 663-679 (2004)
12. N. Rasenaack and B. W. Muller, “Crystal habit and tableting behavior,” Int. J. Pharm., 244(1-2), 45-57 (2002)
13. F. Giordano, A. Rossi, R. Bettini, A. Savioli, A. Gazzaniga, and Cs. Novak, “Thermal Behavior of Paracetamol-Polymeric Excipients Mixtures,” J. Therm. Anal. Calorim., 68(2), 575-590 (2002)
14. H. Takahashi, R. Chen, H. Okamoto, and K. Danjo, “Acetaminophen Particle Design Using Chitosan and a Spryay-Drying Technique,” Chem. Pharm. Bull., 53(1), 37-41 (2005)
15. J. Berstein, R. J. Davey and Jan-Olav Henck, “Concomitant Polymorphs,” Angew.
Chem. Int. Ed. 38(23), 3440-3461 (1999).
16. D. J. W. Grant, chapter 1 :“Theory and Origin of polymorphism.” Table 3, “Polymorphism in Pharmaceutical Solids.” Edited by H. G. Brttain, Marcel Dekker, New Yourk, pp.7-21, pp.395-400 (1999)
17. W. H. DeCamp, “The Impact of Polymorphism on Drug Development: A Regulator’s Viewpoint,” XVIII Congress of the International Union of Crystallography
18. D. Giron, “Thermaal analysis and calorimetric methods in the characterization of polymorphs and solvates,” Thermochem. Acta, 248, 1-59 (1995)
19. T. Threfall, “Crystallization of polymorphs: Thermodynamic Insight into the Role of Solvent,” Org. Process Res. Dev., 4(5), 384-390 (2000)
20. J. W. Mullin, chapter 6.4 “Crystal habit modification.”, “Crystallization,” Paperback edition, Butterworth-Heinemann, pp93, pp248-250 (1997)
21. A. K. Tiwary, “Modification of Crystal Habit and Its Role in Dosage Form Performance,” Drug Dev. Ind. Pharm., 27(7), 699-709 (2001)
22. M. Lahav and L. Leiserowitz, “The effect of solvent on crystal growth and morphology,” Chem. Eng. Sci., 56(7), 2245-2253 (2001)
23. J. Hu, T. L. Rogers, J. Brown, T. Young, K. P. Johnston, and R. O. Williams III, “Improvement of Dissolution Rates of Poorly Water Soluble APIs Using Novel Spray Freezing into Liquid Technology,” Pharm. Res., 19(9), 1278-1284 (2002)
24. S. P. Hennig, P.Piechon, M. Bellus, C. Goldbronn, and E. Tedesco, “Physico-Chemical Characterization of an Active Pharmaceutical Ingredient Crystal Polymorphism and Structural analysis,” J. Therm. Analy. Calor., 77(2), 663-679 (2004)
25. N. Rasenack, and B. W. Muller, “Properties of Ibuprofen Crystallized Under Various Conditions: A Comparative Study,” Drug Dev. Ind. Pharm., 28(9), 1077-1089 (2002)
26. P. D. Martino, A-M. G. Hermann, P. Conflant, M. Drache, and J-C Guyot, “A new pure paracetamol for direct compression: the orthorhombic form,” Int. J. Pharm., 128(1), 1-8 (1996)
27. M. Sacchetti, “Thermodynamic analysis of DSC data for acetaminophen polymorphs,” J. Therm. Anal. Calorim., 63(2), 345-350 (2001)
28. N. A. Zoubi, J. E. Koundourellis, and S. Malamataris, “FT-IR and Raman spectroscopic methods for identification and quantitation of orthorhombic and monoclinic paracetamol in powder mixes,” J. Pharm. Biomed. Anal., 29(3), 459-467 (2002)
29. H. A. Garekani, J. L. Ford, M. H. Rubinstein, and A. R. R. Siahboomi, “Formation and compression characteristics of prismatic polyhedral and thin plate-like crystals of paracetamol,” Int. J. Pharm., 187(1), 77-89 (1999)
30. G. Nichols and S. Frampton, “Physicochemical Characterization of the Orthorhombic Polymorph of Paracetamol Crystallized from solution,” J. Pharm. Sci., 87(6), 684-693 (1998)
31. R. A. Granberg and A. C. Rasmuson, “Solubility of Paracetamol in Pure Solvents,” J. Chem. Eng. Data., 44(6), 1391-1395 (1999)
32. Y. Yi, D. Hatziavramidis, and A. S. Myerson, “Development of a Small-Scale Sutomated Solubility Measurement Apparatus,” Ind. Eng. Chem. Res., 44(15), 5427-5433 (2005)
33. K. Park, J. M. B. Evans, and S. Myerson, “Determination of Solubility of Polymoephs Using Differential Scanning Calormetry,” Cryst. Grow. Des., 3(6), 991-995 (2003)
34. M. L. Peterson, S. L. Morissette, C. McNulty, A. Goldsweig, P. Shaw, M LeQuesne, J. Monagle, N. Encina, J. Marchionna, A. Johnson, J. G. Zugasti, A. V. Lemmo, S. J. Ellis, M. J. Cima, and O. Almarsson, “Iterative High-Throughput Polymorphism Studies on Acetaminophen and an Experimentally Derived Structure for Form III,” J. Am. Chem. Soc., 124(37), 10958-10959 (2002)
35. M. Szlagiewicz, C. Marcolli, S. Cianferani, A. P. Hard, A. Vit, A. Burkhand, M. von Raumer, U. C. Hofmeier, A. Zilian, E. Francotte and R. Schenker, “In situ characterization of polymorphic forms : The Potential of Raman Techniques,” J. Therm. Anal. Calorim., 57(1), 23-43 (1999)
36. P. J. Haines, “Thermal Methods of Analysis – Principles, Applications and Problems,” Blackie Acadmic & Professional, p89 (1995)
37. M. A. Mikhailenko, “Growth of large single crystals of the orthorhombic paracetamol,” J. Cryst. Growth, 265(3-4), 616-618 (2004)
38. M. Lang, A. L. Grzesiak, and A. J. Matzger, “The Use of Polymer Heteronuclei for Crystalline Polymorph Selection,” J. Am. Chem. Soc., 124(50), 14834-14835, (2002)
39. J. M. E. Bunyan, N. Shankland, and D. B. Sheen, “Solvent Effect on The Morphology of Ibuprofen,” Particle Design via Crystallization AIChE Symp. Series, 87(284), 44-57 (1991)
Chapter 4
1. J. W. Mullin, “Crystallization,” Paperback edition, Butterworth-Heinemann, pp172-188 (1997)
2. R.I. Ristic, S. Finnie, D. B. Sheen, and J. N. Sherwood, “Macro- and Micromorphology of Monoclinic Paracetamol Grow from Pure Aqueous Solution,”, J. Phys. Chem. B 2001, 105(38), 9057-9066 (2001)
3. R. A. Granberg, D. G. Bloch, A. C. Rasmuson, “Crystallization of paracetamol in acetone-water mixtures,” J. Cryst. Growth, 198/199(2), 1287-1293 (1999)
4. M. Lang, A. L. Grzesiak, and A. J. Matzger, “The Use of Polymer Heteronuclei for Crystalline Polymorph Selection,” J. Am. Chem. Soc., 124(50), 14834-14835, (2002)
5. C. P. Price. L. Grzesiak, and A. J. Matzger, “Crystalline Polymorph Selection and Discovery with Polymer Heteronuclei,” J. Am. Chem. Soc., 127(15), 5512-5517 (2005)
6. T. Lee, “crystal nucleating chip,” United States Patent Application, NO. 20030068252 (2003)
7. D. J. W. Grant, chapter 1 :“Theory and Origin of polymorphism.” Table 3, “Polymorphism in Pharmaceutical Solids.” Edited by H. G. Brttain, Marcel Dekker, New Yourk, pp.25-26 (1999)
8. S. Pfeffer-Hennig, P. Piechon, M. Bellus, C. Goldbronn, and E. Tedesco, “Physico-Chemical Characterization of an Active Pharmaceutical Ingredient: Crystal Polyorphism and Structrual Analysis,” J. Therm. Analy. Calor., 77(2), 663-679 (2004)
9. T. Graham and M. Sarikaya, “Growrh dynamics of red abalone shell: a biominetic model,” Mater. Sci. Eng., C11(2), 145-153 (2000)
10. Gunnison, K. E., Sarikaya, M., and Aksay, I. A., “Structure-Mechanical Property Relationships in a Biological ceramic-Polymer Composite: Nacre,” Mat. Res. Soc. Proc. 255, 171-183 (1992)
11. S. L. Wang, S. Y. Lin, and Y. S. Wei, “Transformation of Metastable Forms of Acetaminophen Studied by Thermal Fourier Transform Infrared(FT-IR) Microspectroscopy,” Chem. Pharm. Bull., 50(2), 153-156 (2002)
12. E. Mangala, T. S. Kumar, S Baskar, and K. P. Rao, “Delvelopment of chitosan/poly(vinyl alcohol) blend membranes as burn dressings,” Trends Biomater. Artif. Organs., 17(1), 34-40, (2003)
13. H. Takahashi, R. Chen, H. Okamoto, and K. Danjo, “Acetaminophen Particle Design Using Chitosan and a Spray-Drying Technique,” Chem. Pharm. Bull., 53(1), 37-41 (2005)
14. M. Szelagiewicz, C. Marcolli, S. Cianferani, A. P. Hard, A. Vit, A. Burkhard, M. von Raumer, U. Ch. Hofmeier, A. Zilian, E. Francotte and R. Schenker, “In Situ Characterization of Polymorphic Forms The Potential of Raman Techniques,” J. Therm. Analy. Calor., 57(1), 23-43 (1999)
15. N. Al-Zoubi, J. E. Koundourellis, and S. Malamataris, “FT-IR and Raman spectroscopic methods for indentification and quantitation of orthorhombic and monoclinic paracetamol in powder mixes,” J. Pharm. Biomed. Analy., 29(3), 459-467 (2002)
16. B. D. Ratner and D. G. Castner, chapter 3“Electro Spectroscopy for Chemical Analysis,” “Surface Analysis: The principal Techniques,” edited by J. C. Vickerman, John Wiley and Sons, New York, pp.50-59, (1997)
17. A. Roychoudhury and P. P. DE, “Studies on Chemical Interactions Between Chlorosulphonated Polyethylene and Carboxylated Nitrile Rubber,” J. Appl. Poly. Sci., 63(13), 1761-1768, (1996)
18. G. Saraswathy, S. Pal, C. rose and T. P. Sastry, “A novel bio-inorganic bone implant containing deglued bone, chitosan and gelatin,” Bull. Mater. Sci., 24(4), 415-420 (2001)
19. N. B. Colthup, L. H. Daly and S. E. Wiberley, “Introduction to Infrared and Raman Spectroscopy,” Third Edition, Axademic Press, Inc., P.339, P.340, P.335-336 (1990)
20. D. T. Mcquade, S. L. Mckay, D. R. Powell and S. H. Gellman, “Indifference to hydrogen bonding in a family of secondary amides,” J. Am. Chem. Soc., 119(36), 8528-8532 (1997)
21. H. Lu, S. Zheng, B. Zheng and X. Tang, “Miscibility and Intermolecular Specific Interactions in Blends of Poly(hydroxyether sulfone) and Poly(N-vinylpyrrolidone),” Macromol. Chem. Phys. 205(6), 834-842 (2004)
22. www.accelrys.com, “C2. Polymorph”,Cerius2 Datasheet
Chapter 5
1. M. J. Habib, “Pharmaceutical Solid Dispersion Technology,” Technomic Publishing Company, Inc., Pennsylvania, USA, pp. ix,12,17-25,66-70 (2001)
2. S. Sethia, E. Squillante, ”Physicochemical Characterization of Solid Dispersions of Carbamazepine Formulated by Supercitical Carbon Dioxide and Conventional Solvent Evaporation Method,” J. Pharm. Sci., 91(9), 1948-1957 (2002)
3. A. T. M. Serajuddin, “Solid Dispersion of Poorly Water-Soluble Drugs: Early Promises, Subsequent Problems, and Recent Breakthroughs,” J. Pharm. Sci., 88(10), 1058-1066 (1998)
4. S. X. yin, M. Franchini, J. Chen, A. Hsieh, T. Lee, M. Hussain, and R. Smith, “Bioavailability Enhancement of a COX-2 Inhibitor, BMS-347070, from a Nanocrystalline Dispersion Prepared by Spray-Dring,” J. Pharm. Sci., 94(7), 1958-1607 (2005)
5. S. L. Wang, S. Y. Lin, and Y. S. Wei, “Transformation of Metastable Forms of Acetaminophen Studied by Thermal Fourier Transform Infrared(FT-IR) Microspectroscopy,” Chem. Pharm. Bull., 50(2), 153-156 (2002)
6. M. Heil, R. Buchler, and W. Boland, “Quantification of Invertase Activity in Ants under Field Conditions,” J. Chem. Ecol., 31(2), 431-437 (2005)
7. J. McMurry, “Biomolecules: Carbohydrates,” Chapter 25 of Organic Chemistry, Thomson Learning, Inc., Belmont, USA, p. 969 (2004)
8. H. Hirschmuller, “Physical Prperties of Sucrose,” Chapter 2 of Principles of Sugar Technology Volume 1, edited by P. Honig, Elsevier Publishing Company, Amsterdam, Holland, p.22 (1965)
9. S. A. Altaf, S. W. Hoag, J. W. Ayres, “Bead Compacts. II. Evaluation of Rapidly Disintegrating Nonsegregating Compressed Bead Formulations, ” Drug Dev. Ind. Pharm., 25(5), 635-642 (1999)
10. S. Stolen, T. Grande, and N. L. Allan, “Phase diagrams,” chapter 4 of Chemical Thermodynamics of Materials, John Wiley & Sons, Ltd, San Francisco, USA, pp. 106-109 (2004)
11. M. Sacchetti, “Thermodynamic analysis of DSC data for acetaminophen polymorphs,” J. Therm. Anal. Calorim., 63(2), 345-350 (2001)
12. N. A. Zoubi, J. E. Koundourellis, and S. Malamataris, “FT-IR and Raman spectroscopic methods for identification and quantitation of orthorhombic and monoclinic paracetamol in powder mixes,” J. Pharm. Biomed. Anal., 29(3), 459-467 (2002)
13. W. Beckmanm, “Seeding the Desired Polymorph: Background, Possibilities, Limitations, and Case Studies,” Org. Pro. Res. Dev., 4(5), 372-383 (2000)
14. H. Wen, T. Li, K. R. Morris, and K. Park, “How Solvents Affect Acetaminophen Etching Pattern Formation: Interaction between Solvent and Acetaminophen at the
Solid/Liquid Interface,” J. Phys. Chem. B, 108(7), 2270-2278 (2004)
15. H. Wen, K. R. Morris, and K. Park, “Study on the Interactions between Polyvinylpyrrolidone (PVP) and Acetaminophen Crystals: Partial Dissolution Pattern Change,” J. Pharm. Sci., 94(10), 2166-2174 (2004)
16. M. K. Lai and R. C. C. Tsiang, “Microcapsulation of Acetaminophen into Poly(L-lactide) by Three Different Emulsion Solvent-Evaporation Methods,” J. Microencap., 22(3), 261-274 (2005)
17. M. N. F. Oyewo, and M. S. Spring, “Studies on Paracetamol Crystals Produced by Growth in Aqueous solutions, ” Int. J. Pharm., 112(1), 17-28 (1994)
18. J. W. Mullin, “Nucleation,” Chapter 5 of Crystallization, third Edition, Butterworth-Heinemann Ltd, London, England, pp.172-179 (1993)
19. A. S. Myerson and R. Ginde, “Crystals, Crystal Growth, and Nucleation,” Chapter 2 of Handbook of Industrial Crystallization, Butterworth-Heinemann Ltd, London, England, pp.44-46 (1993)
20. D. Turnbull and J. C. Fisher, “Rate of Nucleation in Condensed Systems,” J. Chem. Phys., 17(1), 71-73 (1949)
21. R. I. Petrova, and J. A. Swift, “Selective Growth and Distribution of Crystalline Enantiomers in Hydrogels, ” J. Am. Chem. Soc., 126(4), 1168-1173 (2004)
22. Y. Oaki and H. Imai, “Experimental Domonstration for Morphological Evolution of crystals Grown in Gel Media,” Cryst. Grow. Des., 3(5), 711-716 (2003)
指導教授 李度(Tu Lee) 審核日期 2006-6-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡