博碩士論文 93324055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.226.150.175
姓名 李柏毅(Po-I Lee)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以螢光光譜觀測蛋白質吸附於疏水表面後之構型變化與吸附位向
(Monitoring the Conformation and Orientation of Protein on a Hydrophobic Surface)
相關論文
★ 老鼠免疫球蛋白IgG2a之位向性固定法—Fc區域的親和性配體設計★ 量子點表面改質與動物細胞標定
★ 利用雙功能吸附基材進行蛋白復性-蛋白吸附狀態對復性的影響★ 界面聚合之奈米過濾膜的抗氯性研究
★ 以螢光光譜探討Indolicidin及其類似物與微脂粒之交互作用★ 負電性奈米過濾膜之排鹽特性
★ 金奈米粒子親水化及與DNA一對一鍵結之探討★ 以雙重電性表面改質方式製作抗生物吸附之超過濾與奈米過濾膜
★ 以表面修飾之材料控制間葉幹細胞貼附及對其往軟骨分化之影響★ 金奈米粒子與DNA一對一鍵結及其在檢測單一核苷酸變異的應用
★ 以三聚氰氯為單體的抗氯型奈米過濾膜★ 鹼性胜肽抗生素indolicidin及其類似物之溶血作用機制探討
★ 蛋白質特定方向固定化-以α-amylase為例★ Indolicidin及其類似物與微脂粒交互作用之熱力學研究
★ 位向性固定化葡萄糖氧化酶之新方法★ Indolicidin 及其類似物與微脂粒交互作用之焓測 量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究的目的,在利用色胺酸的螢光光譜,來推測蛋白質在Octadecyltrimethoxysilane (ODS)疏水的表面吸附後之構形變化、吸附量及吸附位向。我們所選用的蛋白質,包括BAA、BSA及Lysozyme。首先,根據色胺酸螢光光譜的分析,我們發現當其所處環境為極性時,訊號強度會較所處環境為非極性時來得大。且在非極性環境時,最大波峰位置有藍移的現象發生。
在Lysozyme的吸附實驗中,我們發現當不含DL-Ditheothiol (DTT),吸附於ODS表面後,其構形改變不大。並推測Lysozyme先是以α-Domain的Trp123暴露區域為吸附位向,另外兩個暴露之色胺酸(β-Domain-Trp62、Trp63)再漸漸吸附至疏水表面。而當Lysozyme在含有DTT之情況下,吸附於ODS表面後,訊號強度明顯上升且波峰紅移,明顯表示其構形改變。應是因雙硫鍵被破壞,使得內部的Trp28及Trp108暴露出來。
BSA吸附的實驗中發現,吸附後之波峰位置由340nm先藍移至310nm最後漸漸紅移至325nm,我們認為BSA是以位於IB區域暴露之色胺酸(Trp158)吸附於表面,使得吸附後BSA第I與第II區域逐漸攤開轉向。吸附後色胺酸的螢光幾乎完全被淬滅。
在BAA吸附的實驗部份,我們發現BAA的訊號因吸附而下降,但λmax並無改變,因此構形並無隨時間而改變。並由淬滅率的計算推測,而其可能吸附位向為七個色胺酸的暴露面。
本研究利用色胺酸含量多於酪胺酸的Lysozyme探討時,其形變可由內部色胺酸之暴露而明顯的觀察到。又利用色胺酸含量遠少於酪胺酸的BSA探討,其初始吸附方位可很容易的由其明顯的藍位移及螢光淬滅程度而推測。最後,我們探討色胺酸及酪胺酸均富的BAA,也可由其螢光淬滅程度來推測其吸附位向。
摘要(英) In this study, the orientation and conformation change of protein hydrophobic adsorption were examined. There were three proteins been chosen, which were BAA, BSA and Lysozyme. The quartz surface was modified by octadecyltrimethoxysilane to form the hydrophobic surface. At first, according to the tryptophan fluorescence spectrum analysis, the intensity of tryptophan in polar environment was higher than nonpolar environment and the wavelength of lambda maximum was blue shift when tryptophan located in nonpolar environment. In the experiment of Lysozyme hydrophobic adsorption, it can be found that the structure of Lysozyme on ODS surface did not change obviously in phosphate buffer. The signal of tryptophan was quenched slowly as time increase, we could infer that Lysozyme adsorbed firstly by Try123 at α-Domain and then adsorbed gradually by Trp62 and Trp63 at β-Domain. However, when protein solution contained DL-Dithiothreitol, we could obtain that the intensity of lambda 340nm increased and the lambda maximum was red shift. These indicated that the protein structure was changed because of the disulfide bonds were broken which caused that Trp28 and Trp108 exposed outside the protein surface and oriented to polar environment. In the experiment of BSA, we found that when BSA adsorbed on ODS surface the wavelength was blue shift from 340nm to 310nm then gradually red shift to 325nm. We thought that BSA was adsorbed by Trp158 located at IB-domain firstly then forced the I domain and II domain of BSA changed the direction gradually, and the fluorescence of tryptophan was almost disappear after adsorption. Finally, in BAA hydrophobic adsorption experiment, we found that the intensity of 340nm was decrease due to tryptophan be quenched and the lambda maximum was no change which indicated that the native structure of BAA was still maintains on the ODS surface. Furthermore, by calculating the quench ratio of BAA, we could conjecture that the orientation was the plane of BAA which contained seven tryptophan. In consequence, the conformation change and orientation surmise of protein hydrophobic adsorption can be obtained via the fluorescence spectrum analysis directly.
關鍵字(中) ★ 吸附
★ 蛋白質
★ 變性
關鍵字(英) ★ protein
★ adsorption
★ denature
論文目次 中文摘要 I
英文摘要 III
誌謝 V
目錄 VIII
圖目錄 XI
表目錄 XIII
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 蛋白質吸附量、構型變化及吸附位向之量測方式 4
2.1.1吸附量之量測 4
2.1.1.1 Depetion消耗量 4
2.1.1.2 Quartz Crystal Microbalance石英晶體振盪 5
2.1.1.3 Surface Plasma Resonance表面電漿共振(SPR) 6
2.1.2吸附構形改變之量測 8
2.1.2.1 圓極偏光光譜儀(circular dichroism) 8
2.1.2.2 原子力顯微鏡(Atomic Force Microscopy) 10
2.1.2.3 Total internal reflection fluorescence 12
2.1.2.4 Fluorescence Spectroscopy螢光光譜儀 13
2.1.2.4.1 螢光光譜之簡介 13
2.1.3吸附位向之量測 16
2.1.3.1 分子模擬 16
2.1.3.2 ENZYME–LINKED IMMUNOSORBENT ASSAY免疫酵素分析 17
2.2 蛋白質介紹 19
2.2.1 溶菌酶(Lysozyme)介紹 19
2.2.2 α-amylase 澱粉分解脢簡介 21
2.2.3 Bovine serum albumin牛血清蛋白簡介 23
第三章 研究設計與原理 25
3.1 利用螢光光譜觀測色胺酸與酪胺酸之螢光訊號 25
3. 2 利用色胺酸與酪胺酸之螢光訊號偵測蛋白質吸附於疏水表面之構形改變、吸附量與吸附位向 27
3.2.1 構形變化 27
3.2.2 吸附量 29
3.2.3 吸附位向 31
3.3 研究原理之整理 32
第四章 實驗藥品、設備與方法 33
4.1 實驗藥品 33
4.2 實驗設備 35
4.3 實驗方法 36
4.3.1 蛋白質濃液配製 36
4.3.2 基材表面酸處理 37
4.3.3 基材表面疏水改質 38
4.3.4 夾具製備 39
4.3.5 蛋白質吸附實驗 40
第五章 結果與討論 41
5.1 疏水性表面改質 42
5.1.1 接觸角(Contact Angle)量測 42
5.1.2 利用Atomic Force Microscopy (AFM)量測表面形貌 43
5.2 Lysozyme吸附 45
5.2.1 Lysozyme存在於親水之OH系統中,DTT存在與否之影響 47
5.2.1.1 螢光訊號觀察 47
5.2.1.2 DTT對Lysozyme在親水系統中構形變化討論 49
5.2.2 Lysozyme在不含DTT的環境中吸附於ODS表面 50
5.2.2.1 螢光訊號觀察 50
5.2.2.2構形變化討論 52
5.2.2.3 Lysozyme吸附量探討 52
5.2.2.4 吸附位向的探討 53
5.2.3 Lysozyme在含有DTT的環境中吸附於ODS表面 55
5.2.3.1 疏水作用力的影響 55
5.2.3.1.1 螢光訊號觀察 55
5.2.3.1.2 sozyme吸附構形變化討論 58
5.2.4 Lysozyme吸附結論 59
5.2.4.1 吸附位向及構形變化機制的探討 59
5.3 BSA(Bovine serum albumin)吸附 61
5.3.1 BSA構形變化、吸附量與吸附位向之探討 62
5.3.1.1 螢光訊號觀察 62
5.3.1.2 BSA構形變化之討論 68
5.3.1.3 BSA吸附量探討 70
5.3.1.4 吸附位向之探討 71
5.3.2 BSA吸附結論 73
5.4 BAA(Bacillus amyloliquefaciens α-amylase)吸附 74
5.4.1 BAA構形變化、吸附量與吸附位向之探討 75
5.4.1.1 螢光訊號觀察 75
5.4.1.2 BAA構形變化之討論 81
5.4.1.3 BAA吸附量探討 82
5.4.1.4 吸附位向之探討 84
第六章 結論與建議 86
6.1 結論 86
參考文獻 89
附錄 100
參考文獻 Agnihotri, A.; Siedlecki, C. A. “Time-Dependent Conformational Changes in Fibrinogen Measured by Atomic Force Microscopy.” Langmuir , 20, 8846-8852, 2004.
Balcells, M.; Klee, D.; Fabry, M.; Hocker, H. “Quantitative Assessment of Protein Adsorption by Combination of the Enzyme-Linked Immunosorbent Assay with Radioisotope-Based Studies.” Journal of Colloid and Interface Science, 220, 198–204, 1999.
Baron, M.H.; Revanlt, M.; Moinville, S. S.; Abadie, J.; Quiquqmpoix, H. “Chymotrypsin adsorption on montmorillonite: enzymatic activity and kinetic FTIR structural analysis.” J. Colloid Interface Sci., 214, 319-332, 1999
Berges, H.; E. Kassah, D.; Conte, E.; Adjadj, C.; Houee, Levin “Ab-Initio calculations on arginine-disulfide complexes modeling the one-electron reduction of lysozyme. Comparison to an experimental reinvestigation.” J. Phys.Chem., 101, 7809-7817, 1997.
Billsten, P.; Wahlgren, M.; Arnebrant, T.; Mcguire, J.; Elwing, H. “Structural changes of T4 Lysozyme upon adsorption so silica nanoparticles measured by Circular Dichroism.” Journal of Colloid and Interface Science, 175, 77-82, 1995.
Burstein, E. A.; Vedenkina, N. S.; Ivkova, M. N. “Fluorescence and the location of Tryptophan residues in protein molecules.” Photochemistry and Photobiology, 18, 263-279, 1973.
Callen, D. C.; Lowe, C. R. “AFM studies of protein adsorption. I. Time-resolved protein adsorption to highly oriented pyrolytic graphite.” J. Colloid Interface Sci., 166, 102-108, 1994.
Callis, P. R.; Liu, T. “Quantitative Prediction of Fluorescence Quantum Yields for Tryptophan in Proteins.” J. Phys. Chem. B, 108, 4248-4259, 2004.
Caruso, F., Furlong, D.N., and Kingshott, P. “Characterization
of ferritin adsorption onto gold.” J. Colloid Interface Sci.,
186, 129-140 ,1997.
Carlsson, F.; Hyltner, E.; Arnebrant, T.; Malmsten, M.; Linse, P. “Lysozyme Adsorption to Charged Surfaces. A Monte Carlo Study.” J. Phys. Chem. B, 108, 9871-9881, 2004.
Caruso, F.; Rodda, E.; Furlong, D.N. “Orientational aspects of antibody immobilization and immunological activity on quartz crystal microbalanee electrodes.” J. Colloid Interface Sci., 178, 104-115, 1996.
Castro, P. M. L.; Ison, A. P.; Hayter, P. M.; Bull, A. T. “The marcoheterogeneity of recombinant human interferon-γ produced by Chinese hamster ovary cells is affected by the protein and lipid content of the culture medium.” Biotechnol. Appl. Bioche., 21, 87-100, 1995.
Christopher, K. M.; Van Holde K. E.; Kevin, G. A. “Biochemistry” San Francisco:Benjamin cummings, 2000.
Curtis, A. S. J. “The competitive effects of serum proteins on cell adhesion.” J. Cell Sci., 71, 17-135, 1984.
Dayal, B.; Ertel, N. H. “ProteinChip Technology: A New and Facile Method for the Identification and Measurement of High-Density Lipoproteins apoA-I and apoA-II and Their Glycosylated Products in Patients with Diabetes and Cardiovascular Disease.” Journal of Proteome Research, 1, 375- 380, 2002.
Duburcq, X.; Olivier, C.; Urbe`s, F.; Auriault, C.; He´le`ne Gras-Masse
“Peptide Arrays for Highly Sensitive and Specific Antibody-Binding Fluorescence Assays Oleg Melnyk.” Bioconjug Chem. 13,713-720, 2002
Ellison, E. H.; Castellino, F. J. “Adsorption of Vitamin K-Dependent Blood Coagulation Proteins To Spread Phospholipid Monolayers as Determined from Combined Measurements of the Surface Pressure and Surface Protein Concentration” Biochemistry, 37, 7997-8003, 1998
Elizabeth, D. H. “Cell biology of extracellular matrix.” Plenum Press, NY, 113-124, 1991.
Flemming, H. C. “Microb, S.G.; Influenced Corros. Mater.” Heitz, E.; Flemming, H. C.; Sand, W. Eds.; Springer, Berlin, pp 39, 1999.
Ge, Y.; Gibbs, B. F.; Masse, R. “Complete Chemical and Enzymatic Treatment of Phosphorylated and Glycosylated Proteins on ProteinChip Arrays.” Anal. Chem., 77, 3644-3650, 2005
Glidle, A.; Yasukawa, T.; Hadyoon, C. S.; Anicet, N.; Matsue, T.; Nomura, M.; Cooper, J. M. “Analysis of Protein Adsorption and Binding at Biosensor Polymer Interfaces Using X-ray Photon Spectroscopy and Scanning Electrochemical Microscopy.” Anal. Chem., 75, 2559-2570, 2003.
Green, R. J.; Davies, M. C.; Roberts, C. J.; Tendler, S. J. B. “Competitive protein adsorption as observed by surface plasmon resonance.” Biomaterials, 20, 385-391, 1999.
Gregorius, K.; Caruso, T. M. “In Situ Deprotection: A Method for Covalent Immobilization of Peptides with Well-Defined Orientation for Use in Solid Phase Immunoassays such as Enzyme-Linked Immunosorbent Assay” Analytical Biochemistry ,299, 84–91 ,2001
Hamaguchi, K. “Conformation and enzymatic activity of lysozyme.” Tampakushitsu. Kakusan Kosa., 13, 98 ,1968.
Hansford, D.; Desai, T.; Tu, J.; Ferrari, M.“Biocompatible Silicon Wafer Bonding for. biomedical Microdevices” Proc. SPIE-Int. Soc. Opt. Eng. 3258, 164-168, 1998.
Healy, K. E.; Rezania, A.; Stile, R. A.“Designing Biomaterials to Direct Biological Responses” Ann. N. Y. Acad, Sci, 875, 24-35, 1999
Hillebrandt, H.; Tanaka, M. “Electrochemical Characterization of Self-Assembled Alkylsiloxane Monolayers on Indium-Tin Oxide (ITO) Semiconductor Electrodes.”J. Phys. Chem. B, 105 (19), 4270 -4276, 2001
Hlady, V.; Buijs, J. “Protein adsorption on solid surfaces.” Current Opinion in Biotechnology, 7, 72-77, 1996.
Huang B.X.;Kim, H. Y. “Probing three-dimensional structure of Boving Serum Albumin by chemical cross-linking and mass spectrometry.” J. Am. Soc. Mass Spectrom, 15, 1237-1247, 2004.
Huang , T. T.; Geng , T.; Akin , D.; Chang , W. J.; Sturgis , J.; Bashir , R.; Bhunia , A. K.; Robinson, J. P.; Ladisch, M. R. “Micro-assembly of Functionalized Particulate Monolayer on C18-Derivatized SiO2 Surfaces.” Biotechnoledge and Bioengineering, 83,416-427, 2003
Huang, T.; Geng, T.; Sturgis, J.; Li, H.; Gomez, R.; Bashir, R.; Bhunia, A. K.; Robinson, J. P.; Ladisch, M. R. “Lysozyme for capture of microorganisms on protein biochips.” Enzyme and Microbial Technology, 33, 958–966, 2003.
Inglis, W.; Sanders, G. H. W.; Williams, P. M.; Davies, M .C.; Roberts, C. J.; Tendler, S. J. B. “A Simple Method for Biocompatible Polymer Based Spatially Controlled Adsorption of Blood Plasma Proteins to a Surface.” Langmuir, 17, 7402-7405, 2001.
Itoh A., "Motion Control of Protozoa for Bio-MEMS" IEEE/ASME Trans. on Mechatronics,5, 181-188, 2000.
Itoh, H.; Nagai, T.; Saeki, T.; Sakiyama, T.; Nnkanishi,K. “Adsorption of protein onto stainless steel particle surface and its desorption behavior.” Proc. of the 8th International Congress on engineering and food, 59,811-813,1995.
Itoh, H.; Nagata, A.; Toyomasu, T.; Sakiyama, T.; Nagai, T.; Saeki, T.; Nakanishi, K. “Adsorption of ~b-lactoglobulin onto the surface of stainless steel particles” 91,1648-1651, 1995.
Jordan, C. E.; Corn, R. M. “Surface Plasmon Resonance Imaging Measurements of Electrostatic Biopolymer Adsorption onto Chemically Modified Gold Surfaces.” Anal. Chem., 69, 1449-1456, 1997.
Kelly, S. T.; Zydney, A. L. “Mechanisms for BSA fouling during microfiltration.” Journal of Membrane Science, 107, 115-127, 1995.
Kim, J.; Somorjai, G. A. “Molecular Packing of Lysozyme, Fibrinogen, and Bovine Serum Albumin on Hydrophilic and Hydrophobic Surfaces Studied by Infrared-Visible Sum Frequency Generation and Fluorescence Microscopy.” J. AM. CHEM. SOC., 125, 3150-3158, 2003.
Kondo, A.; Murakami, F.; Higashitani, K. “Circular dichroism studies. on conformational changes in protein molecules upon adsorption on. ultrafine polystyrene particles. Biotechnol. Bioeng” Biotechnol. Bioeng. 40, 889, 1992.
Kondo, A.; Oku, S.; Higashitani, K.“Structural changes in protein adsorbed on ultrafine silica particles.” J. Colloid Interface Sci. 143(1), 214-221, 1991.
Lassen, B.; Malmsten, M. “Structure of protein layers during competitive adsorption.” J. Colloid Interface Sci., 180, 339- 349, 1996.
Lehmann, R.; Melle, C.; Escher, N.; Eggeling, F. V. “Detection and Identification of Protein Interactions of S100 Proteins by ProteinChip Technology.” Journal of Proteome Research , 4, 1717- 1721, 2005.
Lin, G.; Pister, K. S. J.; Roos, K. P. “Heart cell contractions measured using a micromachined polysilicon force transducer, in micromachined devices and components.” Proc. SPIE-Int. Soc. Opt. Eng. 2642,130-137, 1995.
Lok, B. K.; Cheng, Y. L.; Robertson, C. R. “Total internal reflection fluorescence: a technique for examining interactions of macromolecules with solid surfaces.” J. Colloid Interface Sci., 91, 87-103, 1983.
Lu, D.R.; Park, K. “Effect of surface hydrophobicity on the conformational changes of adsorbed fibrinogen.” J. Colloid Interface Sci., 144, 271-281, 1991.
Mannen, T., S. Yamaguchi, J. Honda, S. Sogimono, A.
Kitayama, T. Nagamune.“Observation of charge state and
conformational change in immobilized protein using surface
plasmon resonance sensor.” Anal. Biochem., 293, 185-193
,2001.
Marchin, K. L.; Berrie, C. L. “Conformational Changes in the Plasma Protein Fibrinogen upon Adsorption to Graphite and Mica Investigated by Atomic Force Microscopy.” Langmuir , 19, 9883-9888, 2003.
Maste, C. L. M.; Pap, E. H. W.; van Hoek, A.; Norde, W.; Visser, A. J. W. G. “Spectroscopic investigations of the structure of a protein on a hydrophobic latex.” J. Colloid Interface Sci. 180, 632, 1996.
Maste, M. C. L.; Norde, W.; Visser, A. J. W. G. “Adsorption-Induced Conformational Changes in the Serine Proteinase Savinase: A Tryptophan Fluorescence and Circular Dichroism Study.” Journal of Colloid and Interface Science. 196, 224–230, 1997.
Mooney, J. F.; Hunt, A. J.; Mcintosh, J. R.; Liberko, C. A.; Walba, D. M.; Rogers, C. T.“Patterning of functional antibodies and other proteins by photolithography of silane monolayers (self-assembled monolayers/biotin/streptavidin/adsorption isotherms)” Biophysics., 93, 12287-12291, 1996
Mrksich, M.; Sigal, G. B.; Whitesides, G. M.“Surface Plasmon Resonance Permits in Situ Measurement of Protein Adsorption on Self-Assembled Monolayers of Alkanethiolates on Gold.”Langmuir, 11, 4383-4385, 1995.
Nabe, A.; Staude, E.; Belfort, G. “Surface modification of polysulfone ultrafiltration membranes and fouling by BSA solutions.” Journal of Membrane Science, 133, 57-72, 1997.
Nakanishi, K.; Sakiyama, T.; Imamura, K. “On the Adsorption of Proteins on Solid Surfaces, a Common but Very Complicated Phenomenon” Bioscience and Biengineering ,91, 233-244,2001
Raford, S. E.; Dobson, C. M.; Evans, P. A. “The folding of hen lysozyme involves partially structure intermediates and multiple pathways.” Nature, 358, 302-307, 1992.
Reimhult, E.; Larsson, C.; Kasemo, B.; Ho1o1k, F. “Simultaneous Surface Plasmon Resonance and Quartz Crystal Microbalance with Dissipation Monitoring Measurements of Biomolecular
Adsorption Events Involving Structural Transformations and Variations in Coupled Water.” Anal. Chem., 76, 7211-7220, 2004.
Rezwan, K.; Vo1ro1s, A. R. S. J.; Gauckler, L. J. “Change of ζ Potential of Biocompatible Colloidal Oxide Particles upon Adsorption of Bovine Serum Albumin and Lysozyme.” J. Phys. Chem. B, 109, 14469-14474, 2005.
Rothwarf, D. M.; Scheraga, H. A. “Role of non-native aromatic and hydrophobic interaction in the folding of hen egg white lysozyme.” Biochemistry, 35, 13797-13807, 1996.
Saboury, A. A.; Karbassi, F. “Thermodynamic studies on the interaction of calcium ions with alpha-amylase.” Thermochimica Acta, 362,121-129, 2000.
Teale, F. W.; Weber, G. “Ultraviolet fluorescence of the aromatic amino acids.” Biochem. J., 65, 476-482, 1957
Rebeski, D. E.; Winger, E. M.; Shin, Y. K.; Lelenta, M.; Robinson, M. M.; Varecka, R.; Crowther, J. R. “Identification of unacceptable background caused by non-specific protein adsorption to the plastic surface of 96-well immunoassay plates using a standardized enzyme-linked immunosorbent assay procedure.” Journal of Immunological Methods, 226, 85–92, 1999.
Shen, B.; Shimmon, S.; Smith, M. M.; Ghosh, P. “Biosensor analysis of the molecular interactions of pentosan polysulfate and of sulfated glycosaminoglycans with immobilized elastase, hyaluronidase and lysozyme using surface plasmon resonance (SPR) technology.” Journal of Pharmaceutical and Biomedical Analysis, 31, 83-93, 2003
Sigal, G. B.; Bamdad, C.; Barberis, A.; Strominger, J.; Whitesides, G. M. “A Self-Assembled Monolayer for the Binding and Study of Histidine-Tagged Proteins by Surface Plasmon Resonance.” Anal. Chem., 68, 490-497, 1996.
Soldatkin, A. P.; Montoriol, J.; Sant, W.; Martelet, C.; Renault, N. J. “Creatinine sensitive biosensor based on ISFETs and creatinine deiminase immobilised in BSA membrane.” Talanta, 58, 351–357, 2002.
Soumita Das, S.; Sierra, J. C.; Soman, K. V.; Suarez, G.; Mohammad, A. A.; Dang, T. A. T.; Luxon, B. A.; Reyes, V. E. “Differential Protein Expression Profiles of Gastric Epithelial Cells Following Helicobacter pylori Infection Using ProteinChips.” Journal of Proteome Research , 4, 920- 930, 2005.
Tan, J. S.; Martic, P. A. “Protein Adsorption and Conformational Change on Small Polymer Particles.” Journal of Colloid and Interface Science, 136, 2, 415-431, 1990.
Thomas, C. H.; McFarland, C. D.; Jenkins, M. L.; Rezania, A.; Steele, J. G.; Healy, K. E. “The role of vitronectin in the attachment and spatial distribution of bone-derived cells on materials with patterned surface chemistry.” J. Biomed. Mater. Res., 37, 81-93, 1997.
Tilton, R. D.; Robertson, C. R.; Gust, A. P. “Lateral diffusion of bovine serum albumin adsorbed at the solid-liquid interface.” J. Colloid Interface Sci., 137, 192-203, 1989.
Van den B. Berg; Chung, E. W.; Robinson, C. V.; Dobson, C. M. “Characterization of the dominant oxidative folding intermediate of hen lysozyme.” J. Mol. Biol., 290, 781-796, 1999.
Vermeer, A. W. P.; Bremer, M. G. E. G.; Norde, W. “Structural changes of IgG induced by heat treatment and by adsorption onto a hydrophobic Teflon surface studied by circular dichroism
spectroscopy.” Biochimica et Biophysica Acta, 1425, 1-12, 1998.
Vermeer, A.W. P.; Bremer, M. G. E. G.; Norde.W. “Unfolding of IgG induced by heat treatment and adsorption onto a hydrophobic surface studied by circular dichroism.” Biochim. Biophys. Acta, 1, 1425, 1998.
Vermeer, W. P.; Nordey, W. “CD Spectroscopy of Proteins Adsorbed at Flat Hydrophilic Quartz and Hydrophobic Teflon Surfaces Arnoldus” J. Colloid Interface Sci. 225:394 –397,2000.
Vijayendran, R. A.; Leckband, D. E. “A Quantitative Assessment of Heterogeneity for Surface-Immobilized Proteins.” Anal. Chem., 73, 471-480, 2001.
Webb, K.; Hlady, V.; Tresco, P. A. “Relative important of surface wettability and charged functional group on NIH 3T3 fibroblast attachment, spreading, and cytoskeletal organization.” J. Biomed. Mater. Res., 41, 422-430, 1998.
Weinberger, S. R.; Dalmasso, E. A.; Fung, E. T. “Current achievements using ProteinChip® Array technology.” Current Opinion in Chemical Biology 2001, 6, 86–91, 2001.
Williams, L. M.; Evans, S. D.; Flynn, T. M.; Marsh, A.; Knowles, P. F.; Bushby, R. J.; Boden, N. “Kinetics of the Unrolling of Small Unilamellar Phospholipid Vesicles onto Self-Assembled Monolayers.” Langmuir, 13, 751-757, 1997.
Wolf, B.; Klaus, M.; Brischwein, M.; Ehret. R.; Baumann, W.; Lehmann, M. “Biofunktional hybrid structures-cell-silicon hybrids for applications in biomedicine and bioinformatics.” Bioelectrochem.Bioenerg. 46, 215-225, 1998.
Yang, Z.; Galloway, J. A.; Yu, H. “Protein Interactions with Poly(ethylene glycol) Self-Assembled Monolayers on Glass Substrates: Diffusion and Adsorption.” Langmuir , 15, 8405-8411, 1999.
Yongli, C.; Xiufang, Z.; Yandao, G.; Nanming, Z.; Tingying, Z.; Xinqi, S. “Conformational Changes of Fibrinogen Adsorption onto Hydroxyapatite and Titanium Oxide Nanoparticles.” Journal of Colloid and Interface Science, 214, 38–45, 1999.
Zhang, H.; Wang, R.; Tan, H.; Nie, L.; Yao, S. “Bovine serum albumin as a means to immobilize DNA on a silver-plated bulk acoustic wave DNA biosensor.” Talanta, 46, 171–178, 1998.
Zhou, J.; Zheng, J.; Jiang, S. “Molecular Simulation Studies of the Orientation and Conformation of Cytochrome c Adsorbed on Self-Assembled Monolayers.” J. Phys. Chem. B, 108, 17418-17424, 2004.
Zoungrana, T.; Findenegg, G. H.; Norde, W. “Structure, stability, and activity of adsorbed enzyme.” J. Colloid Interface Sci., 190, 437-448, 1997.
夏錦堯, “實用螢光分析法”中國人民公安大學出版社
孫逸民、陳玉舜、趙敏勳、謝明學、劉興鑑 “儀器分析”. 全盛圖書有限公司. 1997
黃世權. “澱粉分解脢摺疊程序之研究” 2001
指導教授 阮若屈(Ruoh-Chyu Ruaan) 審核日期 2006-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明