博碩士論文 93326017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.15.0.88
姓名 林東燦(Tung-Tsan Lin)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 污泥類廢棄物取代部分水泥原料燒製環保水泥之可行性研究
(The Feasibility Study of Manufacturing Ecocement by Using Sludge as Raw cement Materials)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究★ 下水污泥灰渣特性及應用於水泥 砂漿之研究
★ 以Microtox檢測方法評估實際廢水生物毒性之研究★ 化學置換程序回收氯化銅蝕刻廢液之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以大理石污泥、下水污泥、淨水污泥、轉爐礦泥為研究對象,初步評估其再利用於水泥生料之可行性後,在較高取代量的目的下,利用不同水泥係數與不同取代量計算生料配比燒製環保水泥,探討其可行性與添加污泥對環保水泥品質的影響。
經由實驗結果發現,本研究之四種污泥灰份均有達50%以上,具有一定的再利用性,且重金屬含量不高,屬於一般事業廢棄物,對水泥的燒結反而有正面的幫助,此外,在化學組成與晶相組成方面,也都與水泥原料有一定的相似度,故極具有取代之潛力。另外,本研究發現完全使用大理石污泥取代石灰石時,會因為大理石污泥CaO含量少於石灰石、SiO2高於石灰石,導致熔流點下降,又含有較多雜質助融,造成熟料部分熔融,而使結晶效果不佳,以致28天抗壓強度,只到對照組的20%。在改以50%大理石污泥取代石灰石後,可以避免部份熔融的現象,但其中仍有因CaO不足,而使水泥以C2S為主,其28天抗壓強度只到對照組的40%;而另外有稍多CaO生成C3S之水泥,則因為下水污泥而含有過量SO3,使得部分C3S轉變成C2S,因此28天抗壓強度約為對照組的80%。最後再提高HM後之環保水泥,均有足夠之CaO生成足夠的C3S,以致其中能有28天抗壓強度能超過對照組;而因添加下水污泥有過量SO3之水泥,則同上之理由,28天抗壓強度沒能超過對照組,但也都接近對照組,應有其應用價值。此外,本研究亦發現轉爐礦泥不但能取代鐵渣,且其含有的少量ZnO還能幫助水泥燒結。
摘要(英) This study evaluated preliminarily the feasibility of using marble sludge, sewage sludge, alum sludge, and BOF sludge as raw cement materials by drying sludge and analyzing their physical and chemical characteristics. In addition, to enhance the amounts of sludge used, this study calculated and designed the mix of all kinds of sludge under different cement moduli and sludge usage to produce the ecocement.
After that, the kinds of physical and chemical character of cement clinker and cement were analyzed, and the microscopic observation of cement paste was analyzed to discuss the feasibility of ecocement and the effect of sludge addition on the properties of ecocement.
According to the experimental results, all of the sludge in this study contained more than 50% of ash, and had low content of heavy metal. Therefore, the sludge did not belong to hazardous waste and had positive effect on sintering cement. Additionally, the sludge and raw cement material had the similarity in chemical and crystalline composition, leading to high potential for the sludge to substitute for cement material.
Moreover, because of the content of CaO in marble sludge was less than limestone and SiO2 was more than that, the melting point in sintering cement would decreased when marble sludge replaced limestone completely. The marble sludge contained more impurities which help melt, so melting of clinker occurred partially and caused crystallization poorly. The compressive strength at age of 28 days only reached 20% of that in controlled cement paste. In contrast, the partial melting of clinker could be avoided when 50% of limestone was replaced by marble sludge. However, the content of CaO in clinker was insufficient and leaded C2S to be formed primarily in cement. The compressive strength at age of 28 days reached 40% of that compared to controlled cement paste. Some cement was observed more CaO be transformed into C3S, but a part of C3S would be transformed into C2S duo to exceeding SO3 if using large amounts of sewage sludge. In this case, the compressive strength at age of 28 days reached about 80% of that compared to controlled cement paste.The compressive strength at age of 28 days of cement paste would higher than that of controlled past when enhancing cement modulus of HM. The reason was CaO was enough to form abundant C3S. Similarly, the compressive strength at age of 28 days of cement paste could not exceed that of controlled paste because of SO3 in sewage sludge. Nevertheless, the strength approached the controlled past and should have application values. Finally, this study investigated the BOF sludge not only could replace iron slag, but few content of ZnO in it could help sinter cement.
關鍵字(中) ★ 污泥
★ 環保水泥
★ 水泥漿體
★ 抗壓強度
★ 水泥係數
關鍵字(英) ★ ecocement
★ cement paste
★ compressive strength
★ cement moduli
★ sludge
論文目次 摘要…………………………………………………………………………………….I
Abstract………………………………………………………………………………..II
目錄…………………………………………………………………………………..III
圖目錄………………………………………………………………………….........V
表目錄……………………………………………………………………………...VII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 4
2.1 各類廢棄污泥之來源、特性與處理現況 4
2.1.1 大理石污泥 4
2.1.2 下水污泥 8
2.1.3 淨水污泥 13
2.1.4 轉爐礦泥 19
2.2 水泥的燒製與組成 21
2.3 水泥熟料與水泥的品質檢驗 25
2.4 水泥的水化反應與微觀結構 28
2.4.1 水泥的水化反應 28
2.4.2 水泥漿體微觀結構 32
2.5 國內外環保水泥相關研究之回顧 35
2.5.1 廢棄物再利用於水泥原料燒製環保水泥 36
2.5.2 燒製環保水泥所遭遇的問題與技術瓶頸 44
2.5.3 小結 46
第三章 研究方法 47
3.1 研究流程與內容 47
3.1.1 污泥類廢棄物及水泥原料的製備 47
3.1.2 污泥類廢棄物與水泥原料基本特性分析 47
3.1.3 污泥類廢棄物作為水泥原料之可行性研究 49
3.2 研究材料 57
3.3 主要設備與儀器 59
3.3.1 主要實驗設備 59
3.3.2 主要分析儀器 61
3.4 研究方法 63
第四章 結果與討論 76
4.1 實驗材料的基本特性分析 76
4.1.1 基本性質分析 76
4.1.2 重金屬總量與毒性特性溶出試驗(TCLP)分析 79
4.1.3 化學組成與礦物結晶型態分析 81
4.1.4 實驗材料SEM微觀分析 85
4.2 各組水泥熟料之特性分析 87
4.2.1 水泥熟料外觀 87
4.2.2 游離石灰分析 89
4.2.3化學組成與潛在礦物含量計算推估 91
4.2.4 XRD結晶相分析 96
4.3 各組水泥之品質檢驗分析與漿體孔隙分析 103
4.3.1 各組配比水泥化學成分規定 103
4.3.2 各組配比水泥物理性質規定 106
4.3.3 水泥漿體孔隙分析 114
4.4 各組水泥漿體之水化產物分析 124
4.4.1 XRD結晶相分析 124
4.4.2 TGA分析 134
4.4.3 SEM微觀分析 143
第五章 結論與建議 153
5.1 結論 153
5.2 建議 155
參考文獻 156
附錄一 各組環保水泥熟料照片.......................................................................附1
附錄二 對照組水泥與市售水泥之比較...........................................................附3
參考文獻 1. Altun, I., “Effect of CaF2 and MgO on sintering of cement clinker,” Cement and Concrete Research, Vol. 29, pp. 1847-1850(1999).
2. Arjuan, P., and D. M. Roy, “Sulfoaluminate-belite cement from low-calcium fly ash and sulfur-rich and other industrial by-products,” Cement and Concrete Resrearch, Vol. 29, pp. 1305-1311(1999).
3. Beretka, J., B. de Vito, L. Santoro, N. Sherman, and G. L. Valenti, “Utilisation of industrial wastes and by-products for the synthesis of special cements,” Resources, Conservation and Recycling, Vol. 9, pp. 179-190(1993).
4. Bhatty, J. I., and K. J. Reid, “Compressive Strength of Municipal Sludge Ash Mortars,” ACI Materials Journal, Vol. 86, pp. 394-400(1989).
5. Caponero, J., and J. A. S. Tenorio, “Laboratory testing of the use of phosphate-coating sludge in cement clinker,” Resources, Conservation and Recycling, Vol. 29,pp. 169-179(2000).
6. Chatterji, S., “Discussion of “Mercury porosimetry an inappropriate method for the measurement of pore size distributions in cement-based materials” by S. Diamond,” Cement and Concrete Research, Vol. 31, pp. 1657-1658(2001).
7. Chen, G., H. Lee, K. L. Young, P. L. Yue, A. Wong, T. Tao, and K. K. Choi, “Glass recycling in cement production-an innovative approach,” Waste Management, Vol. 22, pp. 747-753(2002).
8. Cheriaf, M., C. Rocha, and J. Pera, “Pozzolanic Properties of Pulverized Coal Combustion Botton Ash,” Cement and Concrete Research, Vol. 29, pp. 1387-1391(1999).
9. Cook, R. A., and K. C. Hover, “Mercury porosimetry of cement-based materials and associated correction factors,” ACI Materials Journal, Vol. 90, pp. 152-161(1993).
10. Diamond, S., “Mercury porosimetry an inappropriate method for the measurement of pore size distributions in cement-based materials,” Cement and Concrete Research, Vol. 30, pp. 1517-1525(2000).
11. Duda, W. H., 楊樹人譯,最新水泥製造業,中外圖書社,臺北(1978)。
12. EproNet,「日Kobe 鋼鐵公司開發採石廠污泥回收設備」,Epro News Globe,第2-3(B)頁(1999)。
13. Escalante, J. I., G. Mendoza, H. Mancha, J. Lopez, and G. Vargas, “Pozzolanic Properties of a Geothermal Silica Waste Material,” Cement and Concrete Research, Vol. 29, pp. 623-625(1999).
14. Espinosa, D. C. R., and J. A. S. Tenorio, “Laboratory study of galvanic sludge’s influence on the clinkerization process,” Resources, Conservation and Recycling, Vol. 31, pp. 71-82(2000).
15. Gadayev, A., and B. Kodess, “By-pordect materials in cement clinker Manufacturing,” Cement and Concrete Research, Vol. 29, pp. 187-191(1999).
16. Galle, C., “Effect of drying on cement-based materials pore structure as identified by mercury intrusion porosimetry a comparative study between oven-, vacuum-, and free-drying,” Cement and Concrete Research, Vol .31, pp. 1467-1525(2001).
17. Goetz-Neunhoeffer, F., and J. Neubauer, “Effects of raw meal substitution by sewage sludge on OPC clinker studied,” Proceedings of the 20th international conference on cement, pp138, 1998, Mexico.
18. Hsuan, Y., “Thermogravimetric analyzer for geosynthetic materials,” Geotechnical Fabrics Report, Vol. 11, pp. 18-21(1991).
19. Kikuchi, R., “Recycling of municipal solid waste for cement production: pilot-scale test for transforming incineration ash of solid waste into cement clinker,” Resources, Conservation and Recycling, Vol. 31, pp. 137-147(2001).
20. Locher, F. W., “Process Technology and Cement Properties”, Zement-Kalk-Gips, Vol.31, pp. 269~277(1978).
21. Locher, F. W., W. Richartz, and S. Sprung, “Setting of Cement–Part II:Effect of Adding Calcium Sulphate,” Zement-Kalk-Gips, Vol. 33, pp. 271~277(1980).
22. Locher, F.W., “Setting of cement – Part IV: Influence of composition solution,” Zement-Kalk-Gips, Vol. 36,pp. 224-231(1983).
23. Ludwig, V., “Influence on sintering behavior of cement raw meal,” Zement-Kalk-Gips, Vol. 34, pp. 175-185(1981).
24. Matthews, P. (Ed.), “A Global Atlas of Wastewater Sludge and Biosolids Use and Disposal,” International Association on Water Quality, 1996, London.
25. Mindess, S., and Young, J.F., Concrete, Prentice-Hall, Inc., New Jersey (1981).
26. Monshi, A., and M. K. Asgarani, “Producing Portland cement from iron and steel slags and limestone,” Cement and Concrete Research, Vol. 29, pp. 1373-1377(1999).
27. Monzo, J., J. Paya, M. V. Borrachero, and A. Corcoles, “Use of Sewage Ash (SSA) - Cement Admixtures in Mortars,” Cement and Concrete Research, Vol. 26, pp. 1389-1398(1996).
28. Monzo, J., J. Paya, M. V. Borrachero, and E. Peris-Mora, “Mechanical Behavior of Mortars Containing Sewage Sludge Ash (SSA) and Portland Cement with Different Tricalcium Aluminate Content,” Cement and Concrete Research, Vol. 29, pp. 87-94(1999).
29. Odler, I., and H. Zhang, “Investigations on high SO3 portland clinkers and cements I. clinker synthesis and cement preparation,” Cement and Concrete Research, Vol. 26, pp. 1307-1313(1996).
30. Odler, I., and O. Schmidt, “Structure and properties of Portland cement clinker doped with Zinc Oxide,” Journal of the American Ceramic Society, Vol. 63,pp. 13-16(1980).
31. Onaka, T., “Sewage can make Portland cement: a new technology for ultimate reuse of sewage sludge,” Water Science and Technology, Vol. 41, pp. 93-98(2000).
32. Osbaeck, B., and E. S. Jones, “The influence of the content and distribution of Al2O3 on the hydration of Portland cement,” Proc., 7th intl. Cong. Chem. Cement , pp. 135-140, Paris(1980).
33. Paya, J., J. Monzo, M. V. Borrachero, E. Peris, and F. Amahjour, “Thermogravimetric methods for determining carbon content in fly ashes,” Cement and Concrete Research, Vol. 28, pp. 675-686(1998).
34. Pellant Chris原著,朱靜江譯,岩石與礦物圖鑑,貓頭鷹出版社,臺北(1996)。
35. Pera, J., and A. Amrouz, “Development of Highly Reactive Metakaolin from Paper Sludge,” Cement Basic Materia, Vol. 7, pp. 49-56(1998).
36. Richardson, I. G., “The nature of hydration products in hardened cement pastes,” Cement and Concrete Composites, Vol. 22, pp. 97-113(2000).
37. Riganti, V., and G.B. Odobez, “The use of industrial sludge as raw material in the cement industry,” Waste Management and Research, Vol. 4, pp. 293-302(1986).
38. Strunge, J., D. Knofel, and I. Dreizler, “Influence of Alkalies and Sulphur and the properties of cement,” Zement-Kalk-Gips, Vol. 38, pp. 150-158(1985).
39. Stutzman, P., and S. Leigh, “Phase composition analysis of the NIST reference clinkers by Optical Microscopy and X-ray powder Diffraction,” NIST Technical Note pp. 1441 (2002).
40. Tamai, M., K. Yoshida, and A. Kuromatsu, “Reduction in environmental load with eco-cement and porous concrete,” Proceeding of International Conference on Cleaner Production and Sustainable Development, pp. 20-33, 1999, Taipei.
41. Tay, J. H., and K. Y. Show, “Manufacture of cement from sewage sludge,” Journal of Materials in Civil Engineering, Vol. 5, pp. 19-29(1993).
42. Tay, J. H., and K. Y. Show, “Reuse of Wastewater Sludge in Manufacturing Non-Conventional Construction Materials - an Innovative Approach to Ultimate Sludge Disposal,” Water Science and Technology, Vol. 26, pp. 1165-1174(1992).
43. Tay, J. H., and K. Y. Show, “The Use of Lime-blended Sludge for Production of Cementitious Material,” Water Environment Research, Vol. 64, pp. 6-12(1992b).
44. Wang, K. S., K. L. Lin, and Z. Q. Huang, “Hydraulic activity of municipal solid waste incinerator fly-ash-slag-blended eco-cement,” Cement and Concrete Research, Vol. 31, pp. 97-103(2001).
45. Weber, W. J., Jr., “Physicochemical Processes for Water Quality Control,” John Wiley & Sons, Inc., New York (1972).
46. Wild, S., “Discussion of “Mercury porosimetry an inappropriate method for the measurement of pore size distributions in cement-based materials” by S. Diamond,” Cement and Concrete Research, Vol.31, pp. 1653-1654(2001).
47. Zanni, H., M. Cheyrezy, and V. Maret, “Investigation of Hydration and Pozzolanic Reaction in Reactive Powder Concrete (RPC) Using 29Si NMR,” Cement and Concrete Research, Vol. 26, pp. 93-100(1996).
48. 中國國家標準CNS 1010【卜特蘭水泥抗壓強度】
49. 中國國家標準CNS 2924【卜特蘭水泥細度(氣透析法)】
50. 中國國家標準CNS 3590【卜特蘭水泥正常稠度】
51. 中國國家標準CNS 486【粗細粒料篩析法】
52. 中國國家標準CNS 61【卜特蘭水泥】
53. 中國國家標準CNS 786【卜特蘭水泥凝結時間(費開式針法)】
54. 王年福,「水泥製程於資源再利用之研究」,國立中央大學土木工程研究所碩士在職專班碩士論文(2003)。
55. 朱進平,李篤中,「污泥處置(III):污泥後處理」,國立台灣大學台大工程學刊,第83期,第59-81頁(2001)。
56. 余淑惠,「生態水泥特性及鋼筋在生態水泥砂漿中腐蝕行為之研究」,國立臺灣海洋大學河海工程研究所碩士在職專班碩士論文(2002)。
57. 宋祖芳,水泥試驗,臺灣區水泥工業同業公會印行,臺北(1971)。
58. 尾花博,「新資源再利用體系-環保水泥」,87年廢棄物處理與資源回收國際研討會論文集,台北(1998)。
59. 李榮發,「生料中之P2O5對水泥品質的影響」,台灣水泥公司研究報告(2002)。
60. 沈永年、王河源、林仁益、郭文田,混凝土技術,全華出版社,臺北(2004)。
61. 沈政儒,「焚化飛灰與下水污泥灰共熔之操作特性與卜作嵐材料特性之研究」,國立中央大學環境工程研究所碩士論文(2005)。
62. 林忠逸,「水處理工程廢棄污泥及煉鋼廢爐渣燒製環保水泥之材料特性研究」,國立中央大學環境工程研究所碩士論文(2003)。
63. 林凱隆,「都市垃圾焚化溶渣粉體調製環保水泥之卜作嵐反應特性研究」,國立中央大學環境工程研究所博士論文(2002)。
64. 林聖寰,「淨水污泥取代黏土作為水泥生料之研究」,國立交通大學環境工程研究所碩士論文(2003)。
65. 花蓮縣環保局,「花蓮縣事業廢棄物之貯存、清除、處理之方法及最終處置」,花蓮縣環保局研究報告,花蓮(1997)。
66. 邱承美,儀器分析原理,科文出版社,台北(1981)。
67. 邱玟韶,「焚化灰渣取代部分水泥生料燒製環保水泥之可行性研究」,國立雲林科技大學營建工程研究所碩士論文(2003)
68. 孫國鼎,「水庫淤泥及淨水污泥在利用製磚之研究」,國立交通大學環境工程研究所碩士論文(2002)。
69. 荒川康夫,石膏化學的研究動向,Gypsum and Lime,第167期,第135-142頁(1980)。
70. 康世芳,「淨水污泥餅再利用技術調查及應用於台北自來水事業處淨水場可行性評估」,台北自來水事業處委託研究計劃研究報告書,臺北(2001)。
71. 康世芳、劉明仁,「淨水污泥餅再利用技術調查及應用於台北自來水事業處淨水場可行性評估」,臺北市自來水事業處期中報告,臺北(2001)。
72. 張祖恩,「廢污資源化零排放策略」,2000年民間環保政策白皮書研討會,第1-19頁,(2000)。
73. 張祖恩、蔣立中、盧幸成、施百鴻、張國益,「重金屬污泥作為水泥替代原料可行性研究」,第十八屆廢棄物處理技術研討會,臺中(2003)。
74. 郭子豪,「經前處理焚化底灰作為水泥原料之研究」,國立成功大學環境工程研究所碩士論文(2001)。
75. 郭容忍,「焚化灰渣作為水泥生料對卜特蘭水泥影響之研究」,國立交通大學環境工程研究所碩士論文(2004)。
76. 陳信榮,陶錫富,「煤灰礦泥拌合料研發與利用」,中鋼公司研究報告,高雄(2001)。
77. 程敏益,「不同化學調理搭配低溫調理對脫水污泥之影響」,國立交通大學環境工程研究所碩士論文(2000)。
78. 黃兆龍,混凝土性質與行為,詹氏書局,臺北(1997)。
79. 黃志強,「石材污泥再利用於水泥產業之可行性研究」,國立東華大學自然資源管理研究所碩士論文(1999)。
80. 黃忠信,土木材料,三民書局,初版,臺北(1998)。
81. 黃進福,「大理石污泥化學成份分析報告」,花蓮區石材資源化處理股份有限公司研究報告(2004)。
82. 楊焜池,「影響卜特蘭水泥抗壓強度的主要因素」,台灣水泥股份有限公司研究報告(1998)。
83. 經濟部工業局,「轉爐礦泥、熱軋礦泥替代水泥原料再利用」,資源化產業資訊,2003。
84. 劉又瑞,「淨水污泥混合營建廢棄土製磚及燒結人造骨材的研究」,國立交通大學環境工程研究所碩士論文(2002)。
85. 歐陽嶠暉、許鎮龍、藍文忠,「都市污水處理廠之污泥處理與資源化再利用之研究」,第八屆下水道技術研討會論文集,第19-33頁(1998)。
86. 謝寅雲,「淨水污泥/工業廢水污泥之燒結資源化研究」,國立台灣大學環境工程研究所碩士論文(2001)。
87. 羅雅含,「工業廢水污泥/淨水污泥共同融熔處理之資源化研究」,國立台灣大學環境工程研究所碩士論文(2002)。
88. 鏡田誠、鈴木英人, “Summary of the technical seminar for Taiwan cement manufacturers’ association on Waste and Cement industry in Japan,” Taiheiyo cement corporation and Taiheiyo engineering corporation(2003).
89. 龔人俠,水泥化學概論,臺灣區水泥工業同業公會印行,再版,臺北(1977)。
指導教授 曾迪華(Dyi-Hwa Tseng) 審核日期 2006-10-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明