博碩士論文 93326022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.222.23.119
姓名 林明鋒(Ming-Feng Lin)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 廢鑄砂及石材污泥取代水泥生料之研究
(Use of waste foundry sand and stone sludge as cement raw materials.)
相關論文
★ 半導體業化學機械研磨殘液及盛裝容器資源化再利用可行性評估★ 電子產業廢錫鉛銲材渣資源化操作條件探討
★ 台灣南部海域溢油動態資料庫-應用於海洋污染事故應變模擬分析★ 都市廢棄物固態發酵高溫產氫之研究
★ 以印刷電路板鍍銅水平製程探討晶膜現象衍生之銅層斷裂★ Thermite反應熔融處理都市垃圾焚化飛灰之研究
★ 焚化飛灰與下水污泥灰共熔之操作特性 與卜作嵐材料特性之研究★ 廢棄物衍生Thermite 熔融劑之研究
★ 廢棄物衍生Thermite熔融劑處理焚化飛灰-反應機制及重金屬移行之研究★ 廢棄物鋁熱反應熔融處理焚化飛灰-熔渣基本特性研究
★ 廢棄物衍生Thermite熔融劑處理焚化飛灰熔融物質回收之研究★ 廢棄物衍生鋁熱熔融劑處理鉻污泥
★ 廢棄物衍生鋁熱熔融劑處理不鏽鋼集塵灰★ 濕式冶煉鉻污泥配置廢棄物衍生鋁熱熔融劑回收鉻金屬之研究
★ 水洗前處理與添加劑對都市垃圾焚化飛灰燒結特性的影響★ 下水污泥焚化灰渣燒成輕質骨材特性之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究係將廢鑄砂(殼模砂與水玻璃砂)、石材污泥(大理石污泥)、石灰石及鐵砂等進行環保水泥熟料之燒製,原料前處理研磨後,經由電腦配料系統求解聯立方程式來配置生料,各配比設計之環保水泥生料以實驗室高溫爐燒結處理,燒成之兩系列八組環保水泥熟料,進行各項材料特性分析以及工程性質與水化反應行為之探討。實驗結果如下:實驗燒製之兩系列8組環保水泥熟料,其游離石灰量皆小於1,且製程燒失量介於32.61 % - 36.92 % 間,符合實廠窯燒水泥之品管規範。其重金屬溶出濃度均符合法規標準值,後續資源化利用作為土木工程材料深具潛力。研究中所燒製各組環保水泥熟料與波特蘭水泥成份相同,其單礦物組成皆含有C3S、C2S、C3A及C4AF等晶相物種。FEC系列環保水泥漿體之初終凝時間與OPC漿體比較略有延長之現象;REC系列環保水泥漿體之終凝時間則有稍微縮短之情況。FEC系列環保水泥漿體強度早期 (0 ~ 28天) 發展趨勢較OPC漿體緩慢,齡期28-90天之間強度發展趨勢較為明顯, REC系列環保水泥漿體早期 (0 ~ 28天) 強度發展較為快速,齡期28天之後強度發展趨勢則較為平緩。由XRD之物種分析得知,環保水泥漿體主要產物為CH、C-S-H膠體,並無明顯差異。此外,REC系列環保水泥漿體會產生部分之Mg(OH)2(Brucite)。由FTIR分析結果顯示,隨齡期之發展均可發現,環保水泥漿體矽酸鈣水化產物C-S-H膠體則具有強的Si-O伸縮振動頻帶位於990 - 970 cm-1;碳酸鹽物種為C-O鍵結位於1424 – 1436 cm-1波段;此外,CH為-OH伸縮振動大約位於3650 - 3640 cm-1處寬的頻帶。由核磁共振 (NMR) 技術以29Si 為核種進行分析結果顯示,兩系列8組環保水泥漿體之水化產物Q0峰會隨齡期增加逐漸轉移至Q1與Q2峰,且水化程度與聚矽陰離子皆有隨齡期而增加之趨勢。
摘要(英) The goal of this study is to find the optimal conditions of cement making in order to maximize the replacement of cement clay by ash obtaining from waste foundry sand(including Core sand and glass sand), stone sludge, limestone and ferrate as raw materials. A computational model was used to formulate the composition of the raw clinkers. In this study, the hydration characteristics of these eco-cements and the engineering properties of their pastes, including their compressive strength, speciation and degree of hydration, were studied and compared to those of ASTM type I ordinary Portland cement (OPC). The amount of free CaO less than 1% and LOI all met the criteria of all eco-cement. The heavy metal leaching concentrations for different clinkers complied with the Taiwan Environmental Protection Agency’s regulatory thresholds. The study demonstrates the feasibility and safety to apply waste foundry sand and stone sludge as a cement replacement material. Results indicate that the major components of OPC such as C3S, C2S, C3A, and C4AF were found in the all ECO clinkers. The FEC series pastes had a retard of initial setting time and final setting time to those of the OPC. Nevertheless, the REC series pastes had shorten of initial setting time and final setting time to those of the OPC. The compressive strength of the FEC series pastes was less than the OPC cured at the first 28 d and the strength an apparently development from 28 to 90 d. For the REC series pastes were greater than that of the OPC paste cured at the first 28 d. However, from 28 to 90 d, the compressive strength could cause an insignificant development. The XRD analyses of the hydrates of the OPC and the two series of eco-cement pastes were Ca(OH)2 and C-S-H gels. In the REC eco-cement pastes, the hydration products showed Mg(OH)2 Brucite. The FTIR analysis for eco-cement pastes cured for 90 d have three wavenumbers. The first wavenumber is located at about 990 - 970 cm-1, and was mainly due to the Si-O bond of calcium silicate hydrates (CSH). The second wavenumber can be observed at about 1424 – 1436 cm-1 and represents the C-O bond of the calcium carbonate (CaCO3). The third wavenumber is located at about 3650 - 3640 cm-1 and represents the decomposition of calcium hydroxide (Ca(OH)2).
The 29Si MAS/NMR spectra of the hydrated samples of the OPC and the eco-cement pastes, the results show the increased intensity of signals from Q1 and Q2 silicone sites in the hydrated pastes. The degree of hydration and the average length of the linear polysilicate anions of OPC pastes, as well as the eco-cement pastes increased with time, up to 90 days.
關鍵字(中) ★ 廢鑄砂
★ 環保水泥
★ 熟料
★ 水化產物
關鍵字(英) ★ waste foundry sand
★ eco-cement
★ clinker
★ hydration product
論文目次 第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 廢鑄砂之來源及特性 3
2-1-1 廢鑄砂之來源及產量 3
2-1-2 廢鑄砂之處理現況 5
2-1-3 廢鑄砂之性質 7
2-1-4 廢鑄砂之資源化技術 8
2-2 石材污泥之來源及特性 14
2-2-1 石材污泥之來源及產量 14
2-2-2 石材污泥之性質 16
2-2-3 石材污泥處理現況 16
2-2-4 石材污泥資源化技術 17
2-3 水泥之製程 22
2-3-1 水泥原料及生產過程 22
2-3-2 水泥配料係數 26
2-3-3 水泥燒製反應與影響因子 32
2-3-4 水泥品保規範 34
2-4 水泥之物化特性 37
2-4-1 水泥水化反應機制 37
2-4-2 水泥MgO系統 41
2-4-3 水泥之Zeta電位 43
2-5 環保水泥 45
2-5-1 環保水泥概要 45
2-5-2 環保水泥物化特性 48
2-5-3 環保水泥相關文獻回顧 50
2-5-4 不純物對水泥燒製之影響 54
第三章 實驗材料與方法 58
3-1 實驗流程 58
3-2 實驗材料 62
3-3 實驗配置 64
3-3-1 實驗燒製條件之配置 64
3-3-2 各系環保水泥之配比設計 65
3-3-3 環保水泥漿體試驗條件配置 67
3-4 實驗設備與方法 68
3-4-1 實驗設備與方法 68
3-4-2 分析方法 72
第四章、結果與討論 89
4-1廢鑄砂與石材污泥基本性質分析 89
4-1-1 廢鑄砂與石材污泥之物化特性 89
4-1-2 廢鑄砂與石材污泥之物種型態 93
4-1-3 廢鑄砂與石材污泥之重金屬總量與TCLP試驗 95
4-2 生料配比與燒製方法 96
4-2-1 取代生料之特性分析 96
4-2-2 生料配比設計結果 98
4-2-3 生料燒製條件 100
4-3水泥熟料之基本性質分析 102
4-3-1 熟料之物化性質 102
4-3-2 熟料之物種型態 103
4-3-3 熟料之重金屬總量與TCLP試驗 107
4-3-4 環保水泥熟料之SEM結構分析 108
4-4 水泥規範品管檢驗分析 110
4-4-1 化學成份規定 110
4-4-2 物理性質規定 113
4-5 環保水泥漿體之巨觀分析 115
4-5-1 凝結行為 115
4-5-2 抗壓強度發展 116
4-5-3 Zeta電位與保斥水性 118
4-6 環保水泥漿體水化產物之分析 122
4-6-1 環保水泥漿體XRD分析 122
4-6-2 環保水泥漿體FTIR分析 129
4-7 環保水泥漿體之水化程度與膠體空間比之發展 134
4-7-1 水化程度 134
4-7-2 膠體空間比 136
4-8 環保水泥漿體NMR分析 138
4-8-1 環保水泥漿體特徵峰變化 138
4-8-2 環保水泥漿體水化程度變化與聚矽陰離子長度變化 149
4-9 環保水泥漿體之SEM觀察 152
4-10 綜合討論 157
第五章 結果與討論 159
5-1 結論 159
5-2 建議 161
參考文獻 162
參考文獻 Altum , A .I. “Effect of CaF2 ang MgO on sintering of cement clinker” Cement and Concrete Research Volume: 29 , 1999, pp. 1847-1850.
Anatoly Gadayev,Boris Kodess ”By-product materials in cement clinker manufacturing” Cement and Concrete.Vol.29,,pp.187-191,1999.
Barros, A.M.; Espinosa, D.C.R.; Tenório, J.A.S. “Effect of Cr2O3 and NiO additions on the phase transformations at high temperature in Portland cement” Cement and Concrete Research Volume: 34, Issue: 10, October, 2004, pp. 1795-1801.
Barros, A.M.; Tenório, J.A.S.; Espinosa, D.C.R. “Evaluation of the incorporation ratio of ZnO, PbO and CdO into cement clinker” Journal of Hazardous Materials Volume: 112, Issue: 1-2, August 9, 2004, pp. 71-78.
Beke, B., “Grinding body size and the hardening of cement” Cement Technology , March/April , 1973 , pp. 47-56.
Bogue ”The Chemistry of PORTLAND CEMENT” ,2nd edition , Reinhold Publishing Co,pp.245-268,1999.
Chen, Guohua; Lee, Harry; Young, King Lun; Yue, Po Lock; Wong, Adolf; Tao, Thomas; Choi, Ka Keung “Glass recycling in cement production—an innovative approach” Waste Management Volume: 22, Issue: 7, November, 2002, pp. 747-753.
Cheng, T.W.; Chen, Y.S. “On formation of CaO–Al2O3–SiO2 glass–ceramics by vitrification of incinerator fly ash” Chemosphere Volume: 51, Issue: 9, June, 2003, pp. 817-824.
Dourdounis, E.; Stivanakis, V.; Angelopoulos, G.N.; Chaniotakis, E.; Frogoudakis, E.; Papanastasiou, D. “High-alumina cement production from FeNi-ERF slag, limestone and diasporic bauxite” Cement and Concrete Research Volume: 34, Issue: 6, June, 2004, pp. 941-947.
Endo, Hisashi; Nagayoshi, Yoshikazu; Suzuki, Kenji “Production of glass ceramics from sewage sludge” Water Science and Technology Volume: 36, Issue: 11, 1997, pp. 235-241.
Ham, R. K., c. w. Boyle, and T. P. Kunes. “Leachability of foundry process Solid Wastes” Journal of Environmental Engineering, ASCE, No. 107, February 1981, pp. 155-70.
Ham, Robert K. and William C. Boyle. January 1993. “Evaluation of Foundry Wastes for Use in Highway Construction”. University of Wisconsin-Madison.
Hughes, Trevor L.; Methven, Claire M.; Jones, Timothy G.J.; Pelham, Sarah E.; Fletcher, Philip; et. al. “Determining cement composition by Fourier transform infrared spectroscopy” Advanced Cement Based Materials Volume: 2, Issue: 3, May, 1995, pp. 91-104.
Javed S., and Lovell C. W. “Use of Waste Foundry Sand in Civil Engineering”. Transportation Research Record No. 1486, Transportation Research Board, Washington D.C., 1995, pp. 109-113.
Javed S., C. W. Lovell, and L. E. Wood. “Waste Foundry Sand In Asphalt Concrete”. Transportation Research Record. ASTM STP 1437. pp. 27-34.
Javed, S. Lovell, C.W. (1994). “Use of Waste Foundry Sand in Highway Construction”. Report JHRP/INDOT/FHWA-94/2J Final Report. West Lafayette: Purdue School of Engineering.
Kakali G. and Parissakis G., ”Investigation of the effect on Zn Oxide on the formation of Portland cement clinker” Cement and Concrete Reserch,Vol.25,pp79-85.,1995.
Kakali, G.; Tsivilis, S.; Kolovos, K.; Choupa, K.; Perraki, T.; Perraki, M.; Stamatakis, M.; et. al. “Use of secondary mineralizing raw materials in cement production. The case study of a stibnite ore” Materials Letters Volume: 57, Issue: 20, June, 2003, pp. 3117-3123。
Krammart, P.; Tangtermsirikul, S. “Properties of cement made by partially replacing cement raw materials with municipal solid waste ashes and calcium carbide waste” Construction and Building Materials Volume: 18, Issue: 8, October, 2004, pp. 579-583.
Kuhl ‚F.M.Lea ”The Chemistry of Cement&Concrete” Edward Arnold Publishers ‚London ‚pp.334-335,1976.
Kunes, T.P., “Foundry Solid Waste Management for the 1980’s: Challenges and Opportuinities” Residuals Management Technology, Inc. (September 1979).
Kurt E-Peray,Joseph J.Waddell原著”The Rotary Cement Kiln” ,程月初譯 ,pp.63-66,1975.
Lea, F.M. “The Chemistry of Cement and Concrete” Edward Arnold Ltd., London , 3rd Edition,1970.
Li, Dongxu; Xu, Zhongzi; Luo, Zhimin; Pan, Zhihua; Cheng, Lin “The activation and hydration of glassy cementitious materials” Cement and Concrete Research Volume: 32, Issue: 7, July, 2002, pp. 1145-1152.
Long, Shizong; Yan, Caixia; Dong, Jianmiao “Microwave-promoted burning of Portland cement clinker” Cement and Concrete Research Volume: 32, Issue: 1, January, 2002, pp. 17-21.
Lovejoy, M. A., “Evaluation of the Constructive Use of Foundry Sands in Highway Construction” Report for the Degree of Master of Science, Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Wisconsin(1988).
Lovejoy, Mark A., R.K. Ham, and W.C. Boyle. August 1989. “Evaluation of Foundry Wastes for Use in Highway Construction” University of Wisconsin-Madison.
Moropoulou, Antonia; Bakolas, Asterios; Aggelakopoulou, Eleni “Evaluation of pozzolanic activity of natural and artificial pozzolans by thermal analysis” Thermochimica Acta Volume: 420, Issue: 1-2, October 1, 2004, pp. 135-140.
Ooms, E.M.; Egglezos, E.A.; Wolke, J.G.C.; Jansen, J.A. “Soft-tissue response to injectable calcium phosphate cements” Biomaterials Volume: 24, Issue: 5, February, 2003, pp. 749-757.
Qing, Ye; Huxing, Chen; Yuqing, Wang; Shangxian, Wang; Zonghan, Lou “Effect of MgO and gypsum content on long-term expansion of low heat Portland slag cement with slight expansion” Cement and Concrete Composites Volume: 26, Issue: 4, May, 2004, pp. 331-337.
Rai, Amit; Prabakar, J.; Raju, C.B.; Morchalle, R.K. “Metallurgical slag as a component in blended cement” Construction and Building Materials Volume: 16, Issue: 8, December, 2002, pp. 489-494.
Slim, F., “Use of optical microscopy on raw meal fineness optimization” Proc.,18th Intl. Conf. Cement Microscopy ,1996,pp. 21-32.
Stephan, D., et al. “Influence of Cr, Ni and Zn on the properties of pure clinker phases:Part I. C3S” Cement and Concrete Research Volume: 29, 1999, pp. 545-552.
Stephan, D., Mallmann,R.,Knofel,D. “High intakes of Cr, Ni and Zn in clinker: Part I. Influence on burning process and formation of phases” Cement and Concrete Research Volume: 29, 1999, pp. 1949-1957.
Stoch, A.; Zdaniewicz, M.; Paluszkiewicz, Cz. “The effect of polymethylsiloxanes on hydration of clinker phases” Journal of Molecular Structure Volume: 511, Issue: 1, November 23, 1999, pp. 319-325.
Torii, Kazuyuki; Tomotake, Hiroichi; Osafo, Ampadu Kwasi; Echigo, Takuya “Compatibility between ecocement produced from incinerator ash and reactive aggregates in ASR expansion of mortars” Cement and Concrete Research Volume: 33, Issue: 4, April, 2003, pp. 571-577.
Tsakiridis, P.E.; Agatzini-Leonardou, S.; Oustadakis, P. “Red mud addition in the raw meal for the production of Portland cement clinker” Journal of Hazardous Materials Volume: 116, Issue: 1-2, December 10, 2004, pp. 103-110.
Varas, M.J.; Alvarez de Buergo, M.; Fort, R. “Natural cement as the precursor of Portland cement: Methodology for its identification” Cement and Concrete Research Volume: 35, Issue: 11, November, 2005, pp. 2055-2065.
W.H. Duga著,楊樹人譯,「最新水泥製造學」,中外圖書出版社,1975。
Xiaocun Liu, Yanjun Li, Ning Zhang “Inf luence of MgO on the formation of Ca3SiO5 and 3CaO•3Al2O3•CaSO4 minerals in alite–sulphoaluminate cement” Cement and Concrete Research Volume: 32,2002, pp. 1125-1129.
中興顧問社,「廢鑄砂資源化應用技術手冊」,90年度經濟部工業局專案計畫執行結果報告,2001。
內政部營建署,http://www.cpami.gov.tw/,2005。
太平洋株式會社,2005。
王年福,「水泥製程於資源再利用之研究」,國立中央大學土木工程學系碩士在職專班,2003。
台灣區鑄造品工業同業公會,1999。
石材工業發展中心 ,1994 ~ 1998。
石材加工業環境管理系統建制指引,1998。
石礦製品工業同業公會。
旭華石業股份有限公司,資源化蛇紋石廢料計畫。
行政院環保署,http://www.epa.gov.tw/,2005。
余淑惠,「生態水泥特性及鋼筋在生態水泥砂漿中腐蝕行為之研究」,國立海洋大學河海工程學系碩士在職專班論文,2003。
吳子碩,「玻璃資源砂應用於水泥原料之研究」,國立台北科技大學土木與防災技術研究所碩士論文,2003。
沈永年,「高性能混凝土水化作用機理之研究」,國立台灣科技大學營建工程所博士論文,1997年。
林世強,「以生產環保水泥解決台灣垃圾焚化灰問題」,第十五屆環境規劃與管理研討會,2002。
林世強,「以垃圾焚化灰為原料之環保水泥生產技術與物性探討」,第十七屆廢棄物處理研討會,2002。
林忠逸,「水處理工程廢棄污泥及煉鋼廢爐渣燒製環保水泥之材料特性研究」,國立中央大學環境工程研究所碩士論文,2002。
林珊如,「高科技產業氟化鈣污泥做為水泥生料之可行性研究」,國立交通大學產業安全與防災學程碩士班碩士論文,2001。
林家宏,「飛灰調質熔渣成份對卜作嵐反應特性之影響」,碩士論文,國立中央大學環境工程學研究所,2004。
林凱隆,「都市垃圾焚化熔渣粉體調製環保水泥之卜作嵐反應特性研究」,博士論文,國立中央大學環境工程學研究所,中壢2002。
林聖寰,「淨水污泥取代黏土作為水泥生料對卜特蘭水泥影響之研究」,國立交通大學環境工程所碩士論文,2002。
花蓮區石材資源化處理股份有限公司。
邱玟韶,「焚化灰渣取代部分水泥生料燒製環保水泥之可行性研究」,雲林科技大學營建工程系碩士班論文,2003。
美國混凝土協會材料試驗 (ASTM) 彙編。
美國鑄造協會 (AFS)。
許仲瑋,「蛇紋石廢料合成碳化矽之研究」,國立台北科技大學材料及資源工程系碩士班論文,2001。
郭子豪,「經前處理焚化底灰作為水泥原料之研究」,國立成功大學資源工程研究所碩士論文,2001。
陳清齊,「再資源化水泥纖維板之研究」,國立台北科技大學材料及資源工程研究所碩士論文,2002。
曾博榆,「都市垃圾焚化飛灰熔融處理取代部分水泥之研究」,碩士論文,國立中央大學環境工程學研究所,2002。
程月初,「漫談我國水泥工業」,台灣區水泥工業同業公會水泥工業叢書第五輯,1996。
黃兆龍,「高等混凝土技術」,國立台灣工業技術學院工程技術研究所講義,台北1985。
黃兆龍,「混凝土性質與行為」,詹氏書局,1997。
黃志強,「石材污泥再利用於水泥產業之可行性研究」,國立東華大學自然資源管理研究所碩士論文,1998。
黃榮吾,「土木材料」,三民書局出版,1995。
經濟部工業局,2003。
澐鋒實業股份有限公司。
盧幸成,「氧化鋅對矽鋁鈣氧化物燒製水泥之影響」,國立成功大學環境工程學系碩士論文,2002。
環保署事業廢棄物管制中心統計資料,2004。
謝素蘭,「以高壓及高溫燒結技術鑄造水泥.黏土及飛灰混合料組件之研究」國立台灣工業技術學院工程技術研究所營建工程技術組 ,1990。
蘇俊賓,「焚化底灰作為水泥替代原料之可行性研究」,國立成功大學資源工程研究所碩士論文,2000。
龔人俠,「水泥化學概論」,台灣水泥工業同業公會,1977。
指導教授 林凱隆、王鯤生
(Kai-Long Lin、Kuen-Sheng Wang)
審核日期 2006-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明