博碩士論文 93327006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:52.15.59.163
姓名 洪群泰(Cyun-Tai Hong)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 全場相位式表面電漿共振技術
(Surface plasmon resonance technique with full-field phase detection)
相關論文
★ MOCVD晶圓表面溫度即時量測系統之開發★ MOCVD晶圓關鍵參數即時量測系統開發
★ 應用螢光顯微技術強化RDL線路檢測系統★ 基於人工智慧之PCB瑕疵檢測技術開發
★ 基於 YOLO 物件辨識技術之 PCB 多類型瑕疵檢測模型開發★ 波長調制外差式光柵干涉儀之研究
★ 攝像模組之影像品質評價系統★ 雷射修整之高速檢測-於修整TFT-LCD SHORTING BAR電路上之應用
★ 光強差動式表面電漿共振感測術之研究★ 準共光程外差光柵干涉術之研究
★ 波長調制外差散斑干涉術之研究★ 全場相位式表面電漿共振生醫感測器
★ 利用Pigtailed Laser Diode 光學讀寫頭在角度與位移量測之研究★ 複合式長行程精密定位平台之研究
★ 紅外波段分光之全像集光器應用★ 太陽光譜分光器之設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以偏振干涉術配合SPR技術,再結合了CCD取像,整合出可以量測出一整面的折射率分佈的全場SPR相位儀。本解相系統的相位解析度為0.3度,整體系統對折射率的靈敏度為3*10^-6 RIU(Refractive Index Unit, RIU)。本論文之實驗為量測出細微折射率的改變,以及驗證系統基本功能。此相位儀在實驗上可以分辨出濃度差1%酒精溶液(折射率差約0.0004RIU)。本系統具有即時、高靈敏度、大量平行篩檢等優點。若能實際結合生醫微陣列晶片的設計,對於量測生物分子的反應、DNA檢測等,均有廣泛的應用。
摘要(英) A surface plasmon resonance (SPR) technique with full-field phase detection is proposed. In our full field system, we combine a method of the polarization interference for phase detection, SPR technique and CCD Video camera. The resolution of phase detection is about 0.3 degree, and the measurement sensitivity of refractive index is about 3*10^-6 RIU (Refractive Index Unit). There are several advantages like immediate detection, high sensitivity and parallel examining in our system .
關鍵字(中) ★ 全場量測
★ 表面電漿共振
★ 偏振干涉術
關鍵字(英) ★ SPR
★ polarization interference
★ full-field detection
論文目次 第一章 緒論………………………………….………………..1
1-1 前言……………………………………………………...……….1
1-2 文獻回顧…………………………………………………...…….2
1-3 實驗動機與目的………………………………………...……….6
1-4 論文架構.………………………………………...………...…….7
第二章 SPR基本原理………………………..………………..9
2-1 SPR原理…………………………...…………………………….9
2-2 激發表面電漿波的方式 ………………………………………..13
2-3 kretschmann組態……………………………….………………..17
2-4 小結……………………………………………………….……..21
第三章 解相位理論…………………………...………………22
3-1 解相位架構………………….…………………………………..22
3-2 JONES CALCULATION…………………….………………….24
3-3 全場折射率分佈模擬……………………….…………………..26
3-4 利用四方之一波片當待測物驗證結果與討論…………..…….29
3-5 小結……………………………………………………………..31
第四章 系統設計與架構……………….…...………………..32
4-1 SPR感測器設計.………………………………………………..32
4-2 機構設計…………………….………………………………….35
4-3 整體實驗儀器與架構…………………….…………………….39
4-4 控制程式介面與流程………………………….……………….43
4-5 小結…………………………….……………………………….46
第五章 實驗結果與討論………….…………………………..47
5-1 實驗準備……………………………….……………………….47
5-2 實驗一…………………………………………….…………….51
5-3 實驗二……………………………………………….………….63
5-4 誤差來源分析…………………………………………….…….66
5-5 系統靈敏度分析………………………………………….…….68
5-6 實驗結果…………………………………………….………….72
第六章 結論…………………………………………………..73
參考文獻………………………………………………………74
參考文獻 [1] 安毓英、曾小東, “光學感測與量測,” 五南圖書
[2] 徐照夫, “光感測器及其使用法,” 全華圖書
[3] 林宸生、陳德請, “近代光電工程導論,” 全華圖書
[4] 邱國斌、蔡定平, “左手材料奈米平板的表面電漿量子簡介“ (2002)
[5] 鄒嘉源, “表面電漿共振移項干涉術:即時微陣列DNA雜交分析,” 國立中央大學92學年度碩士論文
[6] H. E. De Bruijin, B. S. F. Altenburg, R. P. H. Kooyman, and J.Greve, “Determination of thickness and dielectric constant of thin transparent dielectric layers using surface plasmon resonance,” Opt. Commun. (1991), Vol. 82, 425–432.
[7] M. T. Flanagan and R. H. Pantell, “Surface plasmon resonance and immunosensors,” Electron. Lett. (1984), Vol. 20, 968–970.
[8] J. W. Sadowski, J. Lekkala, and I. Vikholm, “Biosensors based on surface plasmons excited in non-noble metals,” Biosens. Bioelectron. (1991), Vol. 6, 439–444.
[9] K. Matsubara, S. Kawata, and S. Minami, “A compact surface plasmon resonance sensor for measurement of water in process,” Appl. Spectrosc. (1988), Vol. 42, 1375–1379.
[10] R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensorbased on surface plasmon resonance,” Sens. and Actuators B (1993), Vol.12, 213–220.
[11] M. Manuel, B. Vidal, R. Lopez, S. Alegret, J. Alonso-chamarro, I. Graces, and J. Mateo, “Determination of probable alcohol yield in musts by means of a SPR optical sensor,” Sens. and Actuators B (1993), Vol. 11, 455–459.
[12] E. Kretschmann and H. Raether, “Radiative decay of nonradiative surface plasmons excited by light,” Z. Naturforsch (1968), Vol. 23, 2135–2136.
[13] U. Jonsson, L. Fagerstam, B. Ivarsson, B. Johnsson, R. Karlsson, D. Persson, H. Roos, I. Ronnberg, S. Sjolander, E. Stenberg, R. Stahlberg, C. Urbaniczky, H. Ostlin, and M. Malmqvist, “Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology,” Biotechniques (1991),Vol. 11, 620–627.
[14] X. Sun, S. Shiokawa, and Y. Matsui, “Interaction of surface plasmons with surface acoustic waves and the study of the properties of Ag films,” J. Appl. Phys.(1991), Vol. 69, 362–366 .
[15] P. D. Gershon and S. Khilko, “Stable chelating linkage for reversible immobilization of oligohistidine tagged proteins in the BIAcore Surface Plasmon Resonance detector,” J. Immunol. Methods (1995), Vol. 183, 65–76 .
[16] H. Raether, “Surface Plasmons on Smooth and Rough Surfaces and on Gratings,” Springer Tracts in Modern Phys.(1988), Vol. 111.
[17] E. Kretschmann, “Die Bestimmung Optischer Konstanten von Metallen durch Anregung von Oberflaechenplasmaschwingungen,” Z. Phys. (1971), Vol. 241, 313–324.
[18] R. Georgiadis, K. A. Peterlinz , “Surface Plasmon Resonance Spectroscopy as a Probe of In-Plane Polymerization in Monolayer Organic Conducting Films,” American Chem. Soc. (2000), Vol.16, No.17, 6759-6763.
[19] A. A. Kolomenskii, P. D. Gershon, “Sensitivity and detection limit of concentration and adsorption measurements by laser-induced surface-plasmon resonance,” Appl. Opt. (1997), Vol. 36, No. 25, 6539-6548.
[20] H. E. Brujin, R. P. H. Kooyman, and J. Greve, “Choice of metal and wavelength for surface plasmon resonance sensors: some considerations,” Appl. Opt. (1992), Vol. 31, 440–442.
[21] S. Otsuki, K. Murai, and S. Yoshikawa, “Development of a two-dimensional evaluation method for thin layers using surface plasmon resonance,” Chem. Lett. (2001), 1312–1313.
[22] S. Otsuki, K. Tamada, and S. Wakida, “Wavelength-scanning surface plasmon resonance imaging,” Appl. Opt. (2005), Vol. 44, No. 17, 3468-3472.
[23] I. Stemmler, A. Brecht, and G. Gauglitz, “Compact surface plasmon resonance-transducers with spectral readout for biosensing applications,” Sens. and Autuators B (1999) , Vol. 54, 98-105.
[24] E. Stenberg, B. Persson, H. Roos, and C. Urbaniczky, “Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins,” J. Colloid Interface Sci. (1991), Vol. 143, 513–526 .
[25] B. Chadwick and M. Gal, “An optical temperature sensor using surface plasmons,” Jpn. J. Appl. Phys. (1993) , Vol.32, 2716-2717.
[26] K. H. Chen, C. C. Hsu, D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun`. (2002), Vol.209, 167–172.
[27] W. C. Kuo, C. Chou, and H. T. Wu, “Optical heterodyne surface-plasmon resonance biosensor,” Opt. Lett. (2003), Vol. 28, No. 15, 1329-1331.
[28] S. G. Nelson, K. S. Johnston, S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. and Autuators B(1996), Vol.35, 187-191.
[29] A. V. Kabashin and P. I. Nikitin, “Surface plasmon resonance interferometer for bio- and chemical-sensors,” Opt. Commun. (1998), Vol.35, 5-8.
[30] P. I. Nikitin, A. A. Belogazov, V. E. Kochergin M. V. Valeiko, and T. I. Ksenevich, “Surface plasmon resonance interferometry for biological and chemical sensing,” Sens. and Autuators B(1999), Vol.54, 43-50.
[31] N. R. Sivakumar, W. K. Hui, K. Venkatakrishnan, B. K. A. Ngoi, “Large surface profile measurement with instantaneous phase-shifting interferometry,” Opt. Eng.(2003), Vol.42(2), 367–372.
[32] S. G. Nelson, K. S. Johnston and S. S. Yee, “High Sensitivity Surface Plasmon Resonance Sensor Based on Phase Detection,” Sens. and Actuators B(1996), vol.35, 187-191.
[33] N. Destouches, H. Giovannini, and M. Lequime, “Interferometric measurement of the phase of diffracted waves near the plasmon resonances of metallic gratings,” Appl. Opt.(2001), Vol. 40, No. 31, 5575-5583.
[34] S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, “Silicon-based surface plasmon resonance sensing with two surface plasmon polariton modes,” Appl. Opt. (2003), Vol. 42, No. 34, 6905-6910.
[35] A. Arce, A. Arce Jr., A. Soto, “Physical and excess properties of binary and ternary mixtures of 1,1-dimethylethoxy-butane, methanol, ethanol and water at 298.15K,” Therm. Acta. (2005) ,Vol. 435 , 197-201.
[36] M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward , “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. (1983), Vol.22 ,1099-1120.
指導教授 李朱育(Ju-Yi Lee) 審核日期 2006-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明