博碩士論文 93333008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.214.184.124
姓名 彭正球(Cheng-Chiou Peng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鎂合金之晶粒細化與超塑性研究
(Grain Refined and Superplasticity of Magnesium Alloys)
相關論文
★ 使用實驗計劃法求得印刷電路板微鑽針最佳鑽孔參數★ 滾針軸承保持架用材料之電鍍氫脆研究
★ 強制氧化及熱機處理對鎂合金AZ91D固相回收製程之研究★ 滾針軸承保持架圓角修正之有限元素分析
★ 透過乾式蝕刻製作新型鍺全包覆式閘極電晶體元件★ 窗型球柵陣列構裝翹曲及熱應力分析
★ 冷軋延對ZK60擠製材的拉伸與疲勞性質之影響★ 熱引伸輔助超塑成形製作機翼整流罩之設計及分析
★ 超塑性鋁合金5083用於機翼前緣整流罩之研究★ 輕合金輪圈疲勞測試與分析
★ 滾針軸承保持架之有限元分析★ 平板式固態氧化物燃料電池穩態熱應力分析
★ 固態氧化物燃料電池連接板電漿鍍膜特性研究★ 7XXX系鋁合金添加Sc之顯微組織與機械性質研究
★ 高延性鎂合金之特性及成形性研究★ PEMFC石墨複合雙極板之製程與成份研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 摘要
由於環保意識的抬頭及高油價時代的來臨,如何減少能源的損耗及保
護環境已成為一項重要的課題,而鎂合金具有比重輕,比鋼性大及可回收
等特性,應用於汽車等運輸工具之零件材料以減輕重量,進而節約能源及
減少溫室氣體之排放,最具效益性。另其具備吸收電磁波防電磁干擾、散
熱快及吸震耐摔等性能,更使其成為3C 產業未來發展不可或缺的主角。
鎂合金添加鋰元素,除可降低鎂合金之密度,符合輕量化之要求外,亦可
大幅改善鎂合金之加工性質。
近幾年來,利用等通道彎角擠製(ECAE)技術,以達到晶粒細化目的,
被廣泛的應用於研究許多鎂合金材料上,但是對於Mg-Li-Zn 合金的研究
卻未多見。本研究係針對添加不同合金元素的五種Mg-Li-Zn 合金,分別
施以ECAE 製程,分析其微結構及機械性質,以探討各種ECAE 製程參數對
其微結構及機械性質之影響。
經由實驗之結果觀察分析,可以歸納出如下的幾個主要結論:(1)透
過ECAE 製程,可強化五種Mg-Li-Zn 合金材料之硬度、抗拉強度及降伏強
度等機械性質,而材料之伸長率卻會減少。( 2)通過ECAE 擠製過程,可
以將五種材料之α相予以分割及細化,甚至球化,以阻止β相差排移動,
達到分散強化之目的。(3)第一道次對退火後之五種Mg-Li-Zn 合金材料有
最大的強化效果。(4) 五種Mg-Li-Zn 合金材料在經過四道次之ECAE 擠製
後,LZ91 有最強之降伏強度值。(5)相對於120o彎道夾角之ECAE 製程,
90o彎道夾角對五種Mg-Li-Zn 合金材料機械性質之強化有較顯著的效果。
(6)在超塑性方面:於高溫拉伸測試時,細化之α相可阻止β相晶粒之成
iii
長,可增進材料之超塑性。LZ91 合金於250℃及1×10-4s-1條件下,進行高
溫超塑性拉伸測試,可獲得350%之伸長率。(7)五種合金中之LZ111 合金
及LAZM9310 合金於較高應變速率(高於1×10¯3s¯1)下有較好的超塑性。
摘要(英) Abstract
Because of the emergence of environmental protection consciousness and the coming
of high oil price, the energy saving and the green have become the most important subjects
in recent years. Magnesium alloys not only have the characteristics of low specific weight,
high specific strength, and recycling, but also have great performance on anti-impact and
anti-EMI (electronmagnetic interference). Because of these inherent characteristics,
magnesium alloys have widely been used in transportation and 3C (computer,
communication, and consumer electronic) industries. Besides, doping some lithium in
magnesium alloys makes the new magnesium alloys have lower specific weight, higher
specific strength, and better machinability. It can be expected that the magnesium alloys
with lithium doping will have an important role in the future.
ECAE (equal channel angular extrusion) can fine the grain size of materials and widely
be used in magnesium alloys researches. However, there are just few literatures discussed
the applications of ECAE on Mg-Li-Zn alloys. In this research, it studied the effects of the
control parameters of ECAE on the microstructures and mechanical properties of five
different Mg-Li-Zn alloys.
After collecting, observing, and studying the experiment results, some conclusions had
been gotten, and they are stated as below. (1) ECAE can improve the hardness, tension
strength, yield strength of these five Mg-Li-Zn alloys but lower their ductility. (2)ECAE can
make theα-phase of these five Mg-Li-Zn alloys finer, divided, and even spheralized to
prevent the dislocation move of the β-phase and get better strength. (3)The first ECAE
process has the greatest strength improvement in the five annealed Mg-Li-Zn alloys. (4)After
four times ECAE process, LZ91 has the greatest yield strength. (5)The 90° ECAE process has
greater strength improvement in these five Mg-Li-Zn alloys than the 120° one. (6)Because the
finer α-phase can stop the growth of theβ-phase to get better superplasticity during high
temperature tension test, LZ91 has 350% ductility in the 250℃ and 1x10-3s-1test conditions
of the high temperature tension test. (7)In higher stain rate condition ( > 1x10-3s-1), LZ111 and
LAZM9310 have better superplasticity among these five Mg-Li-Zn alloys.
關鍵字(中) ★ 通道彎角擠製
★ 超塑性
關鍵字(英) ★ superplasticity
★ equal channel angular extrusion
論文目次 目錄
摘要...................................................... ii
誌謝...................................................... iv
目錄..................................................... iii
表目錄.................................................... v
圖目錄................................................... vi
第一章前言................................................... 1
1.1 研究背景......................................................... 1
1.2 鎂合金之主要優缺點............................................... 2
1.3 合金元素對鎂合金之影響........................................... 2
1.3.1 鋰元素對鎂合金之影響........................................ 3
1.3.2 鋅元素對鎂合金之影響........................................ 4
1.3.3 鋁元素對鎂合金之影響........................................ 4
1.3.4 錳元素對鎂合金之影響........................................ 5
1.4 ECAE 簡介........................................................ 5
1.4.1 ECAE 塑性變形原理........................................... 6
1.4.2 擠製方位與剪應變幾何特性................................... 8
1.5 研究動機及方向.................................................... 9
第二章研究方法及其步驟...................................... 16
2.1 實驗材料........................................................ 16
2.2 實驗設備......................................................... 16
2.2.1 ECAE 製程設備.............................................. 16
2.2.2 機械性質測試............................................... 17
2.2.2.1 常溫拉伸測試............................................. 17
2.2.2.2 高溫拉伸測試............................................. 18
2.2.3 微結構觀察................................................. 18
2.2.3.1 金相觀察(OM)及晶粒大小量測............................... 18
2.2.3.2 SEM 之表面觀察及成份分析................................. 18
第三章研究結果與討論........................................ 28
3.1 經退火處理後原材之常溫機械性質及微結構觀察....................... 28
3.2 ECAE 製程實驗.................................................... 29
3.2.1 ECAE 製程參數對五種Mg-Li-Zn 合金材料在拉伸機械性質方面的影
響。............................................................ 29
3.2.2 ECAE 微結構觀察............................................ 34
3.2.2.1 金相(OM)觀察實驗材料α相固溶體及β相晶粒之尺寸........... 34
3.2.2.2 SEM 之表面觀察及成份分析................................. 36
3.3 高溫超塑性拉伸測試.............................................. 37
第四章結論.................................................. 76
參考文獻..................................................... 77
參考文獻 參考文獻
【1】國家實驗研究院,科技政策研究與資訊中心網站2006,“鎂合金壓鑄
產業市場--台灣及中國產業現況”, http://cdnet.stic.gov.tw/techroom/market/mechmet/mechmet01
1.htm
【2】蔡幸甫, “鎂合金之市場概況”, 工業材料144 期,87 年12 月, page
70~72.
【3】黃聖杰, “3C 產業未來發展不可或缺的主角—鎂合金”, 工業材料
144 期,87 年12 月, page 73~75.
【4】Wikipedia, the free encyclopedia ,
(http://en.wikipedia.org/wiki/
Magnesium)
【5】楊榮川,”鎂及其合金”,機械工程手冊3-金屬材料篇,2002 年1
月,pp. 6-33~42.
【6】ASM Handbook, 10 Edition, Volume 2, 1990, pp. 455.
【7】W. Hume-Rothery, “The structure of metals and alloys”, 1944,
London.
【8】L. A. Carapella, Met. Prog., 1945, 48, pp.297.
【9】W. Hume-Rothery, “The structure of metals and alloys”, 1944,
London.
【10】陳勇宏,“AZ31 及AZ61 鎂合金之晶粒細化與鈑片成形研究”,中央
大學博士論文,中華民國93年5月。
【11】黃振賢,“機械材料”,文京圖書有限公司,中華民國93年5月,page
63~94。
【12】T. B. Massalski, Binary Alloy Phase Diagrams, 2nd ed., ASM
INTERNATIONAL, Materials Park, OH, 1990, pp. 1487.
【13】張永耀,”金屬熔銲學”,徐氏基金會,台北,1976,第134~170
頁。
【14】蔡幸甫,”鎂合金產業技術及市場發展趨勢專題調查”,工研院產
業經濟與資訊服務中心科技專案成果,2001。
【15】C. H. Caceres, C. J. Davidson, J. R. Griffiths and C. L. Newton,
“Effects of solidification rate and ageing on the
microstructure and mechanical properties of AZ91 alloy”,
Materials Science and Engineering A325(2002), pp. 344~355.
【16】C. Shaw and H. Jones, “The contributions of different alloying
additions to hardening in rapidly solidified magnesium
alloys”, Materials Science and Engineering A226-228(1997),
pp. 856~860.
【17】ASM, “Magnesium Alloys”, Metals Handbook 9th Edition, Vol.
6, 1985, pp. 425~434.
【18】賴耿陽,”非鐵金屬材料”,復漢出版社,新竹,1998,第174~191
頁。
【19】C. H. Caceres, C. J. Davidson, J. R. Griffiths and C. L. Newton,
“Effects of solidification rate and ageing on the
microstructure and mechanical properties of AZ91 alloy”,
Materials Science and Engineering A325(2002), pp. 344~355.
【20】C. Shaw and H. Jones, “The contributions of different alloying
additions to hardening in rapidly solidified magnesium
alloys”, Materials Science and Engineering A226-228(1997),
pp. 856~860.
【21】ASM, “Magnesium Alloys”, Metals Handbook 8th Edition, Vol.
8, 1976, pp. 314~319.
【22】黃志青,“輕金屬細化技術近況”,工業材料,198 期,2003,pp. 114.
【23】V. M. Segal, V.I. Reznikov, A.E. Drobyshevskiy and V.I. Kopylov,
“Russian Metallurgy”, (Engl. Transl.), Vol.1 (1981),
pp.115.
【24】J. Richert, M. Richert, Aluminum 62 (1986), pp.604.
【25】W. H. Haung﹐L. Chang﹐P. W. Kao and C. P. Chang﹐Materials
Science and Engineering A307 (2001), pp.113~118.
【26】M. Furukawa, Z. Horita, M. Nemoto, and T. G. Langdon, in
Ultrafine Grained Materials﹐ed. R. S. Mishra et al., The
Minerals﹐Metals & Materials Society, Warrendale, PA (2000),
pp. 125.
【27】V. M. Segal﹐USSR Patent No. 575892 (1977).
【28】Y. Iwahashi﹐J. Wang﹐Z. Horita﹐M. Nemoto﹐T. G. Langdon﹐
Scripta Materialia, Vol.35 (1996), pp.143~146.
【29】K. Oh-ishi﹐Z. Horita﹐M. Furukawa﹐M. Nemoto and T. G. Langdon﹐
Metall.Trans. A29 (1998), pp. 2245.
【30】W. J. Kim, S. W. Chung, C. S. Chung and D. Kum, “ Superplasticity
in thin magnesium alloy sheets and deformation mechanism maps
for magnesium alloys at elevated temperatures”, Acta Mater.
49(2001), pp. 3337~3345.
【31】陳立文,等通道彎角擠製之有限元素分析,中央大學碩士論文
(2002)。
【32】S. Kamado, T. Ashie, Y. Ohshima and Y. Kojima, Materials Science
Forum Vols. 350-351 (2000), pp. 55~62.
【33】Y. Yoshida, L. Cisar, S. Kamado and Y. Kojima,“Low Temperature
Superplasticity of ECAE Processed Mg-10﹪Li-1﹪Zn Alloy”,
Materials Transaction, Vol.43, No. 10(2002), pp.2419~2423.
【34】M. Furui, C. Xu, T. Aida, M. Inoue, H. Anada, T. G. Langdon,
“Improving the superplastic properties of a two-phase
Mg-8%Li alloy through processing by ECAP”, Materials Science
and Engineering A 410-411(2005), pp. 439~442.
【35】L. Jin, D. Lin, D. Mao, X. Zeng, W. Ding, “Mechanical properties
and microstructure of AZ31 Mg alloy processed by two-step
equal channel angular extrusion”, Materials Letters 59(2005),
pp. 2267~2270.
【36】H. K. Lin, J. C. Huang, T. G. Langdon, “Relationship between
texture and low temperature superplasticity in an extruded
AZ31 Mg alloy processed by ECAP”, Materials Science and
Engineering A 402(2005), pp. 250~257.
【37】楊仁豪,“AZ31 鎂合金經ECAE 後晶粒細化與超塑性之研究”, 交
通大學材料科學與工程研究所-碩士論文-89 年度。
【38】W. J. Kim, C. W. An, Y. S. Kim, S. I. Hong,“Mechanical
properties and microstructures of an AZ61 Mg alloy produced
by equal channel angular pressing ”, Scripta Materialia
47(2002), pp. 39~44.
【39】M. Mabuchi, H. Iwasaki, K. Yanase and K. Higashi, “Low
temperature superplasticity in an AZ91 magnesium alloy
processed by ECAE”, Scipta Materialia, Vol. 36, No. 6(1997),
pp. 681~686.
【40】H. Zhong, L. Feng, P. Liu and T. Zhou, “Design of a Mg-Li-Al-Zn
alloy by means of CALPHAD approach”, Journal of
Computer-Aided Materials Design, 10(2003), pp. 191~199.
【41】A. Bussiba, A. B. Artzy, A. Shtechman, S. Ifergan, M. Kupiec,
“Grain refinement of AZ31 and ZK60 Mg alloy - towards
superplasticity studies”, Materials Science and Engineering
A302(2001), pp. 56~62.
【42】M. Eddahbi, J. A. del Valle, M. T. Perez-Prado, O. A. Ruano,
“Comparison of the microstructure and thermal stability of
an AZ31 alloy processed by ECAP and large strain hot rolling”,
Materials Science and Engineering A410-411(2005), pp.
308~311.
【43】J. A. del Valle, M. T. Perez-Prado, O. A. Ruano, Materials
Science and Engineering 355(2003),pp.68~78
【44】S. E. Ion, F. J. Humphreys, S. H. white, Acta Metall. 30(1982),
pp. 1909.
【45】汪曉芸,“利用往復式擠型法開發高性能Mg-Al-Zn 鎂合金之研究”,
清華大學材料科學工程研究所,碩士論文,92 年度。
【46】G. E. Dieter, Mechanical Metallurgy, McGraw-Hill Book Co., 1988,
pp. 633.
【47】J. Y. Wang, W. P. Hong, P. C. Hsu, C. C. Hsu and S. Lee,
“Microstructures and mechanical behavior of processed
Mg-Li-Zn alloy”, Materials Science Forum Vols. 419-422(2003),
pp.165~170.
【48】V.M. Segal,” Materials processing by simple shear”, Materials
science & engineering A197 (1995), pp. 157~164.
【49】王郁雲,變形溫度對等徑轉角擠製純鋁微組織之影響,中山大學碩
士論文(2002)。
【50】A. Yamashita, D. Yamaguchi, Z. Horita and T. G.
Langdon,“ Influence of pressing temperature on
microstructural development in equal-channel angular
pressing”, Materials Science and Engineering A287 (2000), pp.
100~106.
【51】A.K. Vasudevan and R.D. Doherty, Aluminum Alloys –
Contemporary Research and Application, Vol. 31 (1989), pp.
145.
【52】M. T. Perez-Prado and O. A. Ruano, “Texture evolution during
grain growth in annealed MG AZ61 alloy”, Scripta Materialia
48(2003), pp. 59~64.
【53】J. A. del Valle, M. T. Perez-Prado and O. A. Ruano, “Texture
evolution during large-strain hot rolling of the Mg AZ61
alloy”, Materials Science and Engineering A355(2003),
pp.68~78.
【54】W. J. Kim, S. I. Hong, Y. S. Kim, S. H. Min, H. T. Jeong, J.
D. Lee, “Texture development and its effect on mechanical
properties of an AZ61 Mg alloy fabricated by equal channel
angular pressing”, Acta Materialia 51(2003), pp.3293~3307.
【55】S. Ferrasse, V.M. Segal, S.R. Kalidindi, F. Alford, Materials
Science & Engineering, A368 (2004) 28-40.
【56】A. Yamamoto, T. Ashida, Y. Kouta, K. B. Kim, S. Fukumoto and
H. Tsubakino, Materials Transactions Vol. 44 No. 4 (2003), p.
619-624.
【57】S. H. Slade, W. E. Mercer, “Economical Recycling of Magnesium
Alloys through Improved Chemistry Control”, Proceeding of
North American Die Casting Association, Cleveland Ohio, Oct.
18-21, 1993, pp. 143~151.
【58】A. Bussib, A. Ben Artzy, A. Shtechman, S. Ifergan and M. Kupiec,
“Grain refinement of AZ31 and ZK60 Mg alloy-towards
superplasticity studies”, Materials Science and Engineering
A, 302A(2001), pp.56.
【59】G. Neite, K. Kubota, K. Higashi, and F. Hemann, Materials
Science and Technology, Vol. 8 VCH (1996), pp.113.
【60】K. Nakashima, Z. Horita, M. Nemoto and T.G. Langdon,” Influence
of channel angle on the development of ultrafine grains in
equal-channel angular extrusion”, Acta Materialia, Vol. 46,
No. 5 (1998), pp. 1589~1599.
【61】H. S. Kim﹐Materials Science and Engineering, A315 (2001),
pp.122~128.
【62】蕭一清,”5083 鋁合金低溫超塑性研發與變形機構分析” ,國立中
山大學材料科學與工程研究所,博士論文,2001。
【63】T. G. Nich, J. Wadsworth and O. D. Sherby, “Superplasticity
in metals and Ceremics”, Printed in the United Kingdom at
University Press, Cambridge, USA, 1997.
指導教授 李雄(Shyong Lee) 審核日期 2006-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明