博碩士論文 93342002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.81.29.226
姓名 劉德俞(Te-Yu Liu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 應用希爾伯特黃轉換方法改進結構系統識別方法於橋梁振動訊號之研究
(Using the Hilbert-Huang Transform to Improve Structural System Identification for Vibration Signal of Bridges)
相關論文
★ 國際巨災保險制度之研究★ 我國推動地方層級災害防救專責單位之問題探討-以桃園縣為例
★ 公共危險物品保安監督之探討-以新竹縣為例★ 長期照顧機構消防安全設計與防火避難設施之研究
★ 考慮土壤結構互制效應並裝設減振裝置的高層建築氣動力反應之研究★ 結合模糊控制與類神經網路探討非線性結構控制的穩定性
★ 觀光產業天然災害風險評估與管理★ 天然災害風險管理決策方法建立—以地震災害為例
★ 颱洪災害風險評估推測事件資料庫之建置及應用★ 火災現場指揮幕僚運作探討-以桃園市政府消防局為例
★ 科學園區地震緊急應變計畫之研擬★ 地震災害風險評估及地震保險之風險管理
★ 園區建築物耐震能力評估★ 整合性多目標地震風險評估系統之建立
★ 適應性模糊滑動模態控制在結構工程上應用之研究★ 高樓結構裝設調和液柱阻尼器減振效應之風洞實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 環境微振動試驗常被用來量測橋梁的反應,可將其應用在老舊橋梁檢測上。傳統上對於訊號處理的方法常使用傅立葉轉換來取得訊號在頻率域下的信息,近20年來小波分析被提出後大量被發展及應用。但小波基底同為傅立葉基底,本文應用希爾伯特黃轉換來分析橋梁微振動訊號並討論分析後的橋梁結構特性。
識別橋梁結構特性是重要的,得到自然頻率、阻尼比等結構動力參數是有意義的。在本文中,我們提出了一個新穎而有效的工具做為橋梁參數識別的前處理工具,使用數值模型輸出與橋樑現地微振動反應加以分析,可確定自然頻率和阻尼比。使用的方法有:總體經驗模態分解(EEMD)方法、隨機減量技術(RDT)、亞伯罕時間域(ITD)方法和頻率響應函數(FRF)方法。可僅利用一個加速度計即可得到多個模態參數,首先、將含白噪雜訊加速度訊號使用EEMD方法來確定各模態反應。然後,應用RDT方法得到自由振動模態反應。最後,應用ITD與FRF方法識別出自然頻率和阻尼比。根據模擬與現地訊號識別結果,該方法的準確性在確定固有頻率和阻尼比顯著成效。
本文最後對車橋互制行為做研究,應用車橋互制數值模型(微分方程模型與ANSYS有限元模型)來分析。確定ANSYS模型與微分方程模型輸出反應相同後,將損傷元素帶入ANSYS有限元模型模擬不同程度的橋梁損傷;輸出位移影線反應利用EEMD分解後,將固有模態函數(IMF)進行影響線曲率偵測法可偵測出撓度曲率變化定出損傷位置。
摘要(英) Most of the bridges in Taiwan are aging and may require repair or replacement. Ambient vibration tests are utilized to measure the response of old bridges, which are difficult to equip with accelerometers. The Fourier transform method is traditionally used to gain important information about ambient vibration records. However, the development of information technology over the last 20 years has meant that there are more kinds of signal management technologies, including the Hilbert–Huang transform (HHT) methods. In this paper we investigate the characteristics of aging bridges by comparison with their structural properties. We analyze their ambient vibration, and discuss the possible influence of the frequency function.
For accurate prediction of the bridge response under external excitationon, information on the dynamic characteristics of the bridge, including the natural frequency and damping ratio is needed. In this paper, we propose a novel and effective tool for the parametric identification of bridges, which uses the output response of the numerical model and ambient vibration of the bridge to identify the natural frequencies and damping ratios. Our approach is based on the empirical mode decomposition (EEMD) method, the random decrement technique (RDT), the Ibrahim Time Domain (ITD) method and frequency response function (FRF) method. Only one acceleration sensor is required. First, the noise of the bridge acceleration is measured using the EEMD method to determine the response of each mode. Second, the free vibration modal response is obtained by RDT. Finally, the natural frequencies and damping ratios for the 3DOF model and the bridge can be identified using the ITD method and the frequency response function approach for each free vibration modal response. According to the simulation results, the accuracy of the proposed method in identifying natural frequencies and damping ratios is remarkable.
In the last part of this thesis, the bridge- vehicle interaction (VBI) problem is studied by numerical methods (ODE method and ANSYS numerical software). These data together with the ODE method were used to calibrate the numerical simulation model of ANSYS software. Change the value of element parameters to simulate different damages of bridge. The output displacement of the damage bridge is decomposed by EEMD method. Through the second derivative of the displacement component (IMF) with respect to the axial variable along the beam, the damage position can be identified. By simulative damage detection to the ANSYS model, it proves the feasibility of the method of damage detection based on the flexibility difference curvature.
關鍵字(中) ★ 亞伯罕時間域法
★ 隨機遞減技術
★ 環境微振
★ 頻率域函數方法
★ 車橋互制
★ 損傷偵測
★ 撓度曲率變化
★ 總體經驗模態分解法
關鍵字(英) ★ flexibility difference curvature
★ damage detection
★ Frequency response function
★ ambient vibration
★ Random Decrement technique
★ Ibrahim Time Domain
★ Ensemble EMD
論文目次 摘要 i
Abstract ii
誌謝 iv
第一章 緒論 1
1.1 研究動機與背景 1
1.2 研究目的 6
1.3 研究內容 7
第二章 文獻回顧 9
2.1 時間域模態識別方法 9
2.2 傅立葉為基底之訊號轉換方法 12
2.3 橋梁現地試驗與系統識別相關文獻回顧 16
2.4 希爾伯特黃轉換方法 19
2.5 經驗模態分解法與希爾伯特轉換 20
2.6 希爾伯特轉換的定義 23
2.7 瞬時振幅、瞬時相位與瞬時頻率 24
2.8 內建模態函數 25
2.9 經驗模態分解法 28
2.10 經驗模態分解的完整性和正交性 30
2.11 希爾伯特譜分析 31
2.12 總體經驗模態分解法 33
第三章 橋梁現地數據希爾伯特黃時頻分析 39
3.1 興南大橋現地微振資料分析 40
3.1.1 興南大橋簡介 40
3.1.2 興南大橋分析結果 42
3.2 隔震橋梁地震歷時分析 43
3.2.1 隔震與消能的概念 43
3.2.2 常用隔震器與消能裝置及其主要特性 44
3.2.3 國道獅子頭溪河川橋簡介 46
3.2.4 獅子頭溪河川橋強震資料分析結果 47
3.3 小結 47
第四章 橋梁結構系統識別 69
4.1 時間域識別方法介紹 69
4.2 隨機遞減法 71
4.3 Ibrahim 時間域識別法 73
4.4 應用EEMD自適應帶寬特性改進ITD識別方法 75
4.5 改進ITD方法識別結果 76
4.6 應用FRF方法改進加速度RD曲線識別 77
4.6.1 頻率反應函數法(FRF Approach) 78
4.6.2 識別流程與結果 81
4.7 各方法的精度比較 81
4.8 小結 81
第五章 車橋互制耦合模型局部損傷位置偵測 123
5.1 簡支梁車—橋互制耦合運動方程 123
5.2 車—橋互制耦合運動方程求解 125
5.3 ANSYS在車—橋互制耦合模擬之應用 126
5.4 影響線偵測法 127
5.5 車—橋互制耦合模擬分析之結果 127
5.6 局部損傷位置偵測 128
第六章 結論與建議 136
6.1 結論 136
6.2 建議 137
參考文獻 139
附表 145
參考文獻 [1]Alampalli S., Fu G. K. and Dillon E. W., 1997, “Signal Versus Noise in Damage Detection by Experimental Modal Analysis”, Journal of Structure Engineering, February.
[2]Broclcwell, P. J., and Davis R. A.. 1991, “Time Series: Theory and Methods,” Springer-Verlag. New York.
[3]Carne T. G., Lauffer J. P., Gomez A. J. and Benjannet, H., Oct. 1988, “Modal Testing an Immense Flexible Structure Using Natural and Artificial Excitation”, The International Journal of Analytical and Experimental Modal Analysis, The Society of Experimental Mechanics, pp. 117-122.
[4]Cohen L. 1995, Time-frequency analysis. Englewood Clips, NJ: Prentice-Hall.
[5]Cole H. A., 1973, “On-line Failure Detection and Damping Measurement of Aerospace Structures by Random Decrement Signatures”, NASA CR-2205.
[6]Fanning, P. J., Boothby T. E., 2001, “Three-dimensional modelling and full-scale testing of stone arch bridges” Computers and Structures Volume: 79, Issue: 29-30, November, pp. 2645-2662.
[7]Flandrin P., Rilling G. and Goncalves P., 2004, “Empirical mode decomposition as a filterbank,” IEEE Signal Processing Letters, Vol. 11, pp. 112–114.
[8]Gabor D. 1946, Theory of communication. Proc. IEE 93, 429-457.
[9]Ho B. L. and Kalman R. E., 1965, “Effective Construction of Linear State-Variable Models from Input/Output Data”, Proceedings of the 3rd Annual Allerton Conference on Circuit and System Theory, pp. 449-459.
[10]Huang N. E and Shen S. P. 2005, “Hilbert-Huang Transform and Its Applications”, World Scientific Publishing Co., Ch. 12, pp. 305-334.
[11]Huang N. E, 1998, “The Empirical Mode Decomposition and The Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis”, The Royal Society TEX Paper, 454, pp.903-995.
[12]Huang, N. E, 2008, Class note of “Introduction to HHT”, Research enter for Adaptive Data Analysis, RCADA, National Central University.
[13]Ibrahim S. R., and Mikulcik E. C., Aug. 1976, “A Method for the Direct Identification of Vibration Parameters from the Free Responses”, Shock and Vibration Bulletin, Vol. 47, Pt. 4, pp. 183-198.
[14]Ibrahim S. R., Nov. 1977, “Random Decrement Technique for Modal Identification of Structures”, Journal of Spacecraft and Rockets, Vol. 14, pp. 696-700.
[15]Ibrahim S. R., Sept-Oct. 1978, “Modal Confidence Factor in Vibration Testing”, Journal of Spacecraft and Rockets, Vol. 15, pp. 313-316.
[16]Ibrahim, S. R. and Ibrahim, E. C., Aug. 1976, “The Experimental Determination of Vibration Parameters from Time Responses”, Shock and Vibration Bulletin, Vol. 46, Pt. 5, pp. 183-198.
[17]Ito Y. and Uomoto T., 1997, “Nondestructive testing method of concrete using impact acoustics”, NDT&E International, Vol. 30, No. 4, pp217-222.
[18]James G. H., Carne T. G. and Lauffer J. P., 1993, “The Natural Excitation Technique for Modal Parameter Extraction from Operating Wind Yurbines.” SAND92-1666. UC-261, Sandia National Laboratories.
[19]Juang J. N. and Pappa R. S., Sept.-Oct. 1985, “An Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction”, Journal of Guidance, Control and Dynamics, Vol. 8, No. 5, pp. 620-627.
[20]Juang J. N., Cooper J. E. and Wright J. R., Mar. 1988, “An Eigensystem Realization Algorithm using Data Correlations(ERA/DC) for Modal Parameter Identification”, Control-Theory and Advanced Technology, Vol. 4, No. 1, pp. 5-14.
[21]Ku C. J., Cermak J. E. and Chou L. S., 2007, “Random Decrement Based Method for Modal Parameter Identification of a Dynamic System Using Acceleration Responses,” Journal of Wind Engineering and Industrial Aerodynamics, Vol. 95, pp. 389-410.
[22]Lee Z. K., Wu T. H. and Loh C. H., 2003 “ System identification on the seismic behavior of an isolated bridge”, Earthquake Engineering And Structural Dynamics; 32:1797–1812.
[23]Loh C. H., Wu T. C. and Huang N. E., “Application of the Empirical Mode Decomposition-Hilbert Spectrum Method to Identify Near-Fault Ground-Motion Characteristics and Structural Responses”, Bulletin of the Seismological Society of America, 91.5. pp. 1339-1357. October, 2001.
[24]Newland D. E. 1993, “An introduction to Random Vibrations, Spectral and Wavelet Analysis,” John Wiley & Sons, Inc., New York.
[25]Nowak A. S. and Szerszen M. M., 1998, “Bridge load and resistance Models” Engineering Structures Volume: 20, Issue: 11, pp. 985-990.
[26]Pandit S. M. and Mehta N. P., 1985, “Data Dependent Systems Approach to Modal Analysis Via State Space,” Transactions ASME, Journal of Dynamic Systems, Measurement and Control, Vol. 107, pp.132-137.
[27]Pandit S. M. and Mehta N. P., No. 3, 1988, “Data Dependent Systems Approach to Modal Analysis, Part I: Theory”, Journal of Sound and Vibration, Vol. 122, pp. 413-422.
[28]Pandit S. M. and Wu S. M., 1983, “Time Series and System Analysis with Applications, ” John Wiley & Sons, Inc., New York.
[29]Prisetley M. B. 1965, “Evolutionary spectra and non-stationary processes,”J. Roy. Statist. Soc. Ser. B 27, pp. 204-237.
[30]Tang J. P. and Leu K. M. 1991, “Vibration Test and Damage Detection of P/C Bridge “, Journal of Chinese Institude of Engineers. Vol. 14, No. 5, pp. 531-536.
[31]Titchmarsh E. C. 1948 Introduction to the theory of Fourier integrals. Oxford University Press.
[32]Vandiver J. K., Dunwoody A. B., Campbell R. B., and Cook M. F., April. 1982, “A Mathematical Basis for the Random Decrement Decrement Vibration Signature Analysis Technique”, Journal of Mechanical Design, Vol. 104, pp. 307-313.
[33]Vautard R., and Ghil M., 1989,"Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series", Physica D, 35, 395–424,
[34]Wu T. C., Loh C. H. , Hunag N. E. 2000, “Application of EMD+HHT Method to Seismic Response Data of Bridge Structure", Second international workshop on mitigation of seismic effects on transportation structures, Sep 13-15.
[35]Wu Z. H. and Huang N. E., 2004, “A study of the characteristics of white noise using the Empirical Mode Decomposition method,” Proceedings of the Royal Society A, Vol. 460, pp. 1597–1611.
[36]Wu Z. H. and Huang N. E., 2005, “Ensemble empirical mode decomposition: A noise-assisted data analysis method,” Center for Ocean-Land-Atmosphere Studies, Technical Report series, Vol. 193, No.173.
[37]Wu Z. H. and Huang N. E., 2009, “Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method,” Advances in Adaptive Data Analysis, Vol. 1, No. 1, pp. 1–41.
[38]Yang J. N., Lei Y., Pan S. W. and Huang N. E., 2003, “System identification of linear structures based on Hilbert–Huang spectral analysis. Part 1: normal modes”, Earthquake Engineering And Structural Dynamics; 32:1443–1467.
[39]Yang J. N., Lei Y., Pan S. W. and Huang N. E., 2003, “System identification of linear structures based on Hilbert–Huang spectral analysis. Part 2: Complex modes”, Earthquake Engineering And Structural Dynamics, 32:1533–1554.
[40]Yule G. U., 1927, “On a Method of Investigating Periodicities in Disturbed Series with Special Reference to Wolfer’s Sunspot Numbers,” Phil. Trans., A226, 267.
[41]Zeiger H. P. and McEwen A. J., April 1974, “Approximate Linear Realizations of Given Dimension Via Ho’s Algorithm”, IEEE Transactions on Automatic Control, Vol. AC-19, No. 2, pp. 153-153.
[42]卜君平、李秉乾,「國道新建工程局第二高速公路竹崎連絡道獅子頭溪河川橋現地動力試驗報告」,逢甲大學土木系,2000。
[43]王新敏,「ANSYS工程結構數值分析」,人民交通出版社,中國,2007。
[44]王濟、胡曉,「MATLAB在振動信號處理中的應用」,中國水利水電出版社;知識產權出版社,中國北京,2006。
[45]吳政憲,「希爾伯特阻尼頻譜於高樓損傷評估之應用」,國立中央大學土木工程研究所,碩士論文,中壢市,2001。
[46]杜日泉,「偵測結構參數改變之系統別」,國立台灣大學土木工程究所碩士論文,台北市,1993。
[47]郭昌宏,「多自由度結構系統的參數識別」,國立台灣大學土木工程究所,碩士論文,台北市,1987。
[48]陳宏南,「希爾伯特頻譜於橋梁非破壞檢測之應用」,國立中央大學土木工程研究所,碩士論文,中壢市,2001。
[49]陳彥樺,「移動質量與荷載作用下之剛架結構動力行為分析」,國立中央大學土木工程學系,碩士論文,中壢市,2007。
[50]黃進國,「結構損傷偵測」,國立中央大學土木工程學系,博士論文,中壢市,2009。
[51]黃鍔,「HHT於結構物損傷偵測之使用」,交通部、國立中央大學,生命週期導向之橋梁資訊管理系統建立及維護管理作業自動化技術開發成果研討會會議資料,中壢市,2004。
[52]劉德俞,「隔震橋梁系統識別與類神經網路之應用」,逢甲大學土木工程學系,碩士論文,台中市,2004。
[53]賴明皇,「台灣地區公路橋梁特性統計分析之研究」,國立中央大學土木工程學系,碩士論文,中壢市,2004。
指導教授 蔣偉寧、許文科
(Wei-Ling Chiang、Wen-Ko Hsu)
審核日期 2011-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明