博碩士論文 93342006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:18.219.112.111
姓名 王韡蒨(Wei-Chien Wang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 單維電化學傳輸陽離子技術抑制混凝土ASR之研究
(A Study of Using One Dimension Electrochemical Cation Migration Technique to Inhibit Concrete ASR)
相關論文
★ 水泥製程於資源再利用之研究★ 焚化底渣水洗前處理及應用之探討
★ 鈦鐵礦氯化爐碴應用於道路基底層及礦尾渣水洗前處理之研究★ 水洗礦尾渣造粒後之粒料特性探討
★ 水洗礦尾渣取代水泥製品中細粒料之可行性研究★ 陶瓷業無機性污泥資源化用於人工細粒料及自充填混凝土之研究
★ 磚製品中摻配鈦砂之較佳配比研究★ 不同醇類製備聚丙烯酸酯應用於水泥基材的行為研究
★ 人工粒料作為路基材料及CLSM對RC構件和金屬腐蝕之影響研究★ 經高溫製程產生含矽再生粒料之鹼質活性研究
★ 改質人工粒料的應用策略基礎研究★ 爐碴作為混凝土細粒料的膨脹安定化方法及檢測技術研究
★ 鎂鋁氧化物及類水滑石對氯離子吸附行為之研究★ 以CFB副產石灰作為水淬爐石粉激發劑之可行性探討
★ 加速鋰離子傳輸技術中不同電極間距對離子傳輸行為的影響研究★ 改質人工粒料取代天然細粒料對混凝土性質的影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 加速鋰離子傳輸技術(ALMT)抑制混凝土ASR問題的策略,是利用電場趨動力,在移除會誘發混凝土ASR問題的Na+及K+同時,送入可以抑制ASR問題的Li+。本研究先探討電場條件、試體材料配比及ASR劣化程度差異等,對ALMT試驗的陽離子傳輸行為影響,從中尋找評估陽離子傳輸參數的指標,並提出需要獲得的陽離子傳輸參數項目及分析方法,建立陽離子傳輸參數與傳輸指標之間的關係。結果顯示,陰極槽內的陽離子濃度-時間曲線,依ASR劣化程度區分為二種類型,而二者相同處,是均包含Na+及K+穩定移出及移出完成二個傳輸階段,而Li+均可區分為非穩態、過渡及穩態三個傳輸階段。二者相異處,是ASR劣化程度較高者,Li+達到穩態階段所需時間較短。藉分析陰極槽內的陽離子濃度-時間曲線,可以獲得Na+及K+移出完成時間、移出量及單位時間移出量、Li+穿過試體時間、非穩態傳輸係數、穩態流量及穩態傳輸係數等參數,縱使試驗條件改變,上述參數與適合作為傳輸指標的電流密度之間,都可以建立適當的趨勢關係。增加電場強度、縮短試體長度、增加粒料體積比例、減少水泥含鹼量、增加水灰比及增加試體ASR劣化程度,均可增加Na+及K+的單位時間移出量,縮短Na+及K+移出完成時間,縮短Li+穿過試體時間,增加Li+穩態流量及傳輸係數。
由傳輸進入陰極槽內的陽離子累積帶電量與施加電量曲線,發現可以Na+移出完成時的累積施加電量為界,區分為Na+及K+穩定移出及Li+穩態傳輸二個線性段,二者斜率(TA及TLi)分別代表施加電量用於陽離子傳輸的比例,可以發現TA均大於TLi。增加電場強度、縮短試體長度、增加粒料體積比例、增加試體水灰比、試體ASR劣化程度增加等,均會提高TA及TLi值。增加系統含鹼量則會提高TA值,但會降低TLi值。
最後,本研究以如何獲得欲抑制ASR問題混凝土在電場作用下的Li+、Na+及K+傳輸參數,所需要進行的試驗程序、觀察項目、可套用的理論分析式,及傳輸參數與電流密度關係式特性等,建構一個容易遵循的標準化分析程序,可以提供工程實務運用單維電場抑制混凝土ASR時,作為獲得設計參數的方法。
摘要(英) The Accelerated Migration Technique (ALMT) uses the driving force of electrical field to remove Na+ and K+ from concrete, and simultaneously drive Li+ into concrete to inhibit alkali-silica reaction (ASR). This study discusses the behavior of cations under ALMT influencing by the electrical field conditions, the proportion of concrete mixtures, and the ASR deterioration degree, firstly, to seek the evaluated index of the migration parameters of cations, propose the required items of the parameter and the analysis method, then establish the relationship between the migration parameters and the index. The result shows that the curves between the cation concentrations in catholyte and time, can be divided into two types according to the ASR deterioration degree of concrete. The two types both contain the Na+ and K+ stable migration and the completed migration stages, and the Li+ non-steady state, transition, and steady state. For concrete with higher ASR deterioration degree, the needed time to reach the Li+ steady state is shorter. From the curve between the cation concentrations in catholyte and time, the required migration parameters can be obtained, including the removal time, removal amount and unit time removal amount of the Na+ and K+, and the passing time, the non-steady state migration coefficient, the steady state flux and migration coefficient of the Li+. Though the test condition may change, the above parameters can still establish suitable relationship with the applied current density. Increasing the electrical field, a/c ratio, w/c ratio and the ASR deterioration degree, and reducing the length of sample and alkali amount of cement, can increase the unit time removal amount and reduce the removal time of the Na+ and K+, reduce passing time and increase the steady flux and migration coefficient of the Li+.
The relationship between the cations accumulated charge migrating into the catholyte and the applied charge shows that the curve include the alkalis removed and the Li+ impregnated linear regions (TA and TLi). The accumulated charge until Na+ is removed completely is found just in the boundary between the two regions. The linear slope of the alkalis removed region is greater. While increasing the applied voltage, a/c ratio, w/c ratio, and the ASR deterioration degree, and decreasing the length of sample, can increase the proportion of the applied charge being used for cation migration. But increasing the system alkali amount can increase TA and reduce TLi.
Finally, this research proposes the standardized procedure to obtained the migration parameters of the Li+, Na+, and K+, including the needed testing steps, the observing items, may applied theory, and the relationship between the migration parameters and the current density.
關鍵字(中) ★ 混凝土
★ 砂漿
★ 傳輸
★ 鹼-矽反應
★ 電化學
關鍵字(英) ★ Mortar
★ Concrete
★ Migration
★ Electrochemical
★ Alkali-silica reaction
論文目次 中文摘要 i
Abstract iii
誌謝 v
符號對照表 ix
目錄 xiii
圖目錄 xx
表目錄 xxxv
第一章 緒論 1
1.1  研究起源與動機 1
1.2  研究目的 2
1.3  研究內容 3
第二章 文獻回顧 5
2.1  鹼質與粒料反應 5
2.2  ASR的影響因素 8
2.3  預防及抑制ASR的方法 16
2.4  Li化合物用於抑制ASR的研究 17
2.5  電化學技術評估混凝土耐久性研究現況 24
2.6  ALMT抑制ASR的策略及通電模組 30
2.7  ALMT運用時與ASR有關陽離子的傳輸模式 30
2.8  ALMT通電過程Li+非穩態及穩態階段的傳輸係數計算方法 31
2.9  影響ALMT試驗離子傳輸行為的因素 34
2.10 ALMT實務應用可能面臨的問題分析 36
2.11 ALMT對鋼筋混凝土性質影響 37
2.12 以防水策略抑制混凝土ASR的案例介紹 38
2.13 含Li溶液以浸泡或加壓方式抑制混凝土ASR的案例介紹 38
2.14 電化學技術抑制混凝土ASR的案例介紹 39
第三章 研究方法 41
3.1  研究流程 41
3.2  試驗編號 47
3.3  試驗材料 51
3.3.1 粒料 51
3.3.2 水 51
3.3.3 水泥 52
3.3.4 化學藥劑 53
3.4  試驗方法及步驟 54
3.4.1 加速鋰離子傳輸技術(ALMT) 54
3.4.1.1 通電模組 54
3.4.1.2 配合設計及含鹼量調整 56
3.4.1.3 ALMT試體製作及養護 57
3.4.1.4 ALMT試體之選取 58
3.4.1.5 ALMT試體通電前處理 58
3.4.1.6 電解槽溶液配置 60
3.4.1.7 通電處理後試體內部離子含量分析 60
3.4.1.8 離子層析儀試驗步驟 63
3.4.2 試體經通電處理後的成效驗證 64
3.4.2.1 膨脹量量測 64
3.4.2.2 抗壓強度試驗 64
3.4.2.3 X光繞射試驗(XRD) 64
3.5  試驗主要設備及器材 65
3.5.1 粒料處理及試體製作設備 65
3.5.2 ALMT通電模組 66
3.5.3 超純水機 67
3.5.4 離子層析儀(IC) 69
3.5.5 ALMT試驗的試體前處理系統 70
3.5.6 研磨機及切割機 70
3.5.7 膨脹量量測模組 71
3.5.8 水溶法試驗相關設備組 73
3.5.9 其它 74
第四章 ALMT通電技術的陽離子傳輸行為及抑制ASR成效分析 75
4.1  試驗目的 75
4.2  試驗作法 75
4.3  陰極槽內電解液溫度與電壓的歷時變化 76
4.4  陰極槽內的陽離子濃度與電壓歷時變化 77
4.5  試體內游離態Li+、Na+及K+分佈的歷時變化 85
4.6  ALMT抑制砂漿ASR問題所需的鹼質移出量與Li+送入量分析 89
4.7  利用試體內Li+含量分佈計算Li+的非穩態傳輸係數 91
4.8  累積施加電量與離子累積帶電量關係 100
4.9  小結 104
第五章 施加定電壓的ALMT對陽離子在砂漿內傳輸行為的影響 107
5.1  試驗目的 107
5.2  試驗作法 107
5.3  溫度、電流及系統阻抗的歷時變化 108
5.4  陰極槽內的陽離子濃度與電流的歷時變化 111
5.5  通電後試體內游離態Li+、Na+及K+分佈 120
5.6  累積施加電量與離子累積帶電量關係 122
5.7  小結 126
第六章 施加定電流密度的ALMT對陽離子在砂漿內傳輸行為的影響 127
6.1  試驗目的 127
6.2  試驗作法 127
6.3  溫度、電壓及系統阻抗的歷時變化 128
6.4  陰極槽內的陽離子濃度與電壓歷時變化 134
6.5  通電後試體內游離態Li+、Na+及K+分佈 141
6.6  累積施加電量與離子累積帶電量關係 142
6.7  小結 148
第七章 以施加電流密度作為ALMT評估陽離子傳輸行為指標的可行性 151
7.1  試驗目的 151
7.2  試驗作法 151
7.3  陰極槽內的陽離子濃度與電流的歷時變化 151
7.4  初始電壓與電流關係 153
7.5  系統阻抗的歷時變化 154
7.6  試驗全程平均溫度與電流密度關係 155
7.7  Na+及K+的移出 156
7.8  Li+的送入 164
7.9  陽離子的遷移數 169
7.10 小結 172
第八章 試體長度對不同施加定電流密度的ALMT陽離子傳輸行為影響 173
8.1  試驗目的 173
8.2  試驗作法 173
8.3  試驗溫度、電壓及系統阻抗比較 174
8.4  陰極槽內的陽離子濃度與電壓的歷時變化 179
8.5  累積施加電量與離子累積帶電量關係 193
8.6  小結 197
第九章 粒料水泥比例對ALMT的陽離子傳輸行為影響 199
9.1  試驗目的 199
9.2  試驗作法 199
9.3  溫度、電壓及系統阻抗 200
9.4  陰極槽內的陽離子濃度與電壓的歷時變化 204
9.5  累積施加電量與離子累積帶電量關係 224
9.6  粒料對Li+傳輸係數的影響 230
9.7  小結 233
第十章 水泥含鹼量對ALMT的陽離子傳輸行為影響 235
10.1 試驗目的 235
10.2 試驗作法 235
10.3 溫度、電壓及系統阻抗 237
10.4 陰極槽內的陽離子濃度與電壓的歷時變化 245
10.5 累積施加電量與離子累積帶電量關係 266
10.6 小結 272
第十一章 水灰比對ALMT的陽離子傳輸行為影響 275
11.1 試驗目的 275
11.2 試驗作法 275
11.3 溫度、電壓及系統阻抗 277
11.4 陰極槽內的陽離子濃度與電壓的歷時變化 283
11.5 累積施加電量與離子累積帶電量關係 299
11.6 小結 305
第十二章 ALMT運用於已產生ASR劣化試體時的陽離子傳輸行為影響 307
12.1 試驗目的 307
12.2 試驗作法 307
12.3 溫度、電壓及系統阻抗的歷時變化 308
12.4 陰極槽內的陽離子濃度與電壓的歷時變化 315
12.5 通電後試體內游離態Li+、Na+及K+分佈 328
12.6 累積施加電量與離子累積帶電量關係 332
12.7 小結 336
第十三章 ALMT應用時的有效電極間距分析 339
13.1 試驗目的 339
13.2 試驗作法 339
13.3 溫度、電壓及系統阻抗的歷時變化 340
13.4 陰極槽內的陽離子濃度與電壓的歷時變化 344
13.5 通電後試體內游離態Li+、Na+及K+分佈 357
13.6 通電對混凝土抗壓強度影響 364
13.7 小結 366
第十四章 獲得單維ALMT實務應用所需參數的分析程序建議 369
14.1 現有電化學技術在進行抑制混凝土ASR問題時所面臨的問題 369
14.2 「加速鋰離子傳輸技術」抑制混凝土ASR問題的想法 369
14.3 獲得單維ALMT實務應用所需參數的分析程序建議 371
14.4 「獲得單維ALMT實務應用所需參數的分析程序」在實務上之應用建議 379
第十五章 結論與建議 381
15.1 結論 381
15.2 建議 385
參考文獻 387
圖目錄
圖2.1  含鹼量對於混凝土角柱膨脹量影響(環境溫度控制在38 °C) 11
圖2.2  ASR活性粒料在高OH-濃度環境的溶解量 12
圖2.3  儲存環境的相對濕度對混凝土角柱膨脹量影響 13
圖2.4  ALMT試驗配置示意圖 30
圖2.5  典型的ALMT試驗陰極槽內陽離子濃度與電壓-時間曲線 31
圖2.6  陰極槽內Li+濃度變化 33
圖3.1  主研究流程圖 43
圖3.2  研究流程圖A-D 44
圖3.3  研究流程圖E 45
圖3.4  研究流程圖F 46
圖3.5  ALMT模組示意圖 55
圖3.6  數據擷取器監測電流與電壓之配線圖 55
圖3.7  ALMT試體選取示意圖 58
圖3.8  試體加封步驟及使用器材(以高度5cm為例) 59
圖3.9  進行試體內部離子含量分析前試體切割方式 61
圖3.10 水溶法試驗流程 62
圖3.11 粒料處理及試體製作設備 65
圖3.12 壓克力槽與電極材料 66
圖3.13 溫度量測儀器 66
圖3.14 ALMT通電模組及資料擷取設備 67
圖3.15 超純水機配置示意圖 67
圖3.16 離子層析儀、自動進樣器及電腦軟體設備 69
圖3.17 ALMT試驗的試體前處理設備 70
圖3.18 研磨機及內部構造 71
圖3.19 切割機 71
圖3.20 膨脹量量測試驗模組及測點黏貼儀示意圖 72
圖3.21 膨脹量量測設備 73
圖3.22 水溶法試驗所需相關儀器 74
圖4.1  通電1440小時的ALMT試驗陰極槽電解液溫度與電壓歷時曲線 76
圖4.2  ALMT試驗過程中陰極槽內的陽離子濃度與電壓歷時曲線 77
圖4.3  ALMT試驗求取Na+及K+完成移出試體所需時間的作法 79
圖4.4  Na+及K+移出百分比的歷時變化 80
圖4.5  陽極槽電解液內的Li+濃度-時間曲線 81
圖4.6  陽極槽電解液內的Li+送入試體量-時間曲線 82
圖4.7  陰極槽電解液內的Li+濃度-時間曲線迴歸分析 83
圖4.8  陰極槽內Li+濃度-時間曲線的穩態傳輸階段線性迴歸分析 85
圖4.9  試體內游離態Na+含量的歷時變化 86
圖4.10 試體內游離態K+含量的歷時變化 87
圖4.11 試體內游離態Na2Oeq的歷時變化 87
圖4.12 試體內游離態Li+含量的歷時變化 88
圖4.13 試體內游離態Li/(Na+K)莫耳比的歷時變化 89
圖4.14 經不同通電歷時處理試體置於38 °C 100 % R.H加速劣化環境的膨脹量 90
圖4.15 理論的濃度輪廓 93
圖4.16 ALMT通電4、8、32、60及120小時試體內Li+含量 94
圖4.17 ALMT通電180、240、360、420及480小時試體內Li+含量 94
圖4.18 ALMT通電540、720、960、1200及1440小時試體內Li+含量 95
圖4.19 ALMT試驗0-180小時的陰極槽Li+濃度曲線 95
圖4.20 通電0 – 180小時的Dnf與時間關係曲線 97
圖4.21 ALMT試驗過程累積施加電量與離子累積帶電量關係 100
圖4.22 累積施加電量與Na+及K+穩定移出及Li+穩態傳輸階段的累積帶電量關係 102
圖4.23 累積施加電量與陽離子累積帶電量關係 103
圖5.1  ALMT試驗陰極槽電解液的平均溫度與施加電壓關係 108
圖5.2  ALMT試驗陰極槽電解液的平均溫度(T)與通電全程的平均電流密度(i)關係 109
圖5.3  ALMT通電歷時的電流變化 110
圖5.4  典型試驗的溫度與電流歷時曲線(以V30為例) 110
圖5.5  ALMT通電歷時的系統阻抗變化 111
圖5.6  典型的定電壓ALMT試驗過程陰極槽電解液內陽離子濃度與施加電流的歷時曲線(以V30為例) 112
圖5.7  Na+及K+單位時間平均移出量與施加電壓關係 114
圖5.8  Na+及K+單位時間平均移出量與Na+及K+移出完成前的平均施加電流密度關係 115
圖5.9  Li+穿過試體時間t0.1與(a)施加電壓及(b)非穩態階段平均施加電流密度關係 117
圖5.10 Li+穩態流量及傳輸係數與(a)施加定電壓(b)及平均電流密度的關係 119
圖5.11 Li+的穩態流量(Js)與穩態傳輸係數(Ds)關係 120
圖5.12 通電後試體內游離態陽離子含量 121
圖5.13 傳輸進入陰極槽內的陽離子帶電量與累積施加電量的關係 122
圖5.14 典型的陰極槽內陽離子帶電量與累積施加電量的關係(以V40為例) 124
圖5.15 施加電量用於陽離子傳輸比例與施加電壓的關係 124
圖5.16 施加電量用於陽離子傳輸比例與平均施加電流密度的關係 125
圖6.1  ALMT試驗陰極槽電解液的平均溫度(T)與施加電流密度(i)關係 129
圖6.2  定電流密度ALMT通電歷時的電壓變化 130
圖6.3  定電流密度ALMT試驗的溫度與電壓歷時曲線(以C21為例) 130
圖6.4  定電流密度ALMT通電歷時的系統阻抗變化 131
圖6.5  電壓未大幅上升前的平均電壓(Va)與電流(I)關係 131
圖6.6  通電結束後靠近陰極槽試體表面的白色析晶物 132
圖6.7  通電結束後靠近陰極槽試體表面白色析晶物的XRD檢測結果 133
圖6.8  通電結束後靠近陰極槽試體(取樣厚度1cm)的XRD檢測結果 133
圖6.9  典型的定電流密度ALMT過程中陰極槽內陽離子濃度與電壓的歷時曲線(以C12為例) 134
圖6.10 定電流密度ALMT試驗Na+及K+移出完成時間(tNa及tK)與施加電流密度(i)之關係 136
圖6.11 Na+及K+單位時間平均移出量(vNa及vK)與施加定電流密度(i)關係 137
圖6.12 Li+穿過試體時間(t0.1)與電流密度(i)的關係 138
圖6.13 Li+穩態流量(Js)及傳輸係數(Ds)與施加定電流密度(i)的關係 139
圖6.14 Li+的穩態流量(Js)與穩態傳輸係數(Ds)關係 140
圖6.15 Ds/Dn百分比值與電流密度關係 140
圖6.16 通電後試體內游離態陽離子含量 142
圖6.17 典型的陽離子累積帶電量與時間關係(以C15為例) 144
圖6.18 傳輸至陰極槽的陽離子累積帶電量與累積施加電量關係(以C15為例) 144
圖6.19 傳輸進入陰極槽內的陽離子帶電量與累積施加電量的關係 145
圖6.20  Na+及K+穩定移出階段及LI+穩態傳輸階段的陽離子遷移數總和(TA及TLI)與電流密度(I)的關係 146
圖7.1  典型的定電壓ALMT試驗陰極槽內陽離子濃度與電流的歷時曲線(以V30為例) 152
圖7.2  典型的定電流密度ALMT試驗陰極槽內陽離子濃度與電壓的歷時曲線(以C18為例) 153
圖7.3  定電壓(V系列)與定電流密度(C系列)試驗的初始電壓(Vi)與電流(Ii)關係 154
圖7.4  定電壓(V系列)與定電流密度(C系列)試驗中系統阻抗的歷時變化 155
圖7.5  ALMT試驗陰極槽試驗過程的平均溫度(T)與平均電流密度(i)關係 156
圖7.6  ALMT試驗(a) Na+與(b) K+移出完成時間(tNa及tK)與平均電流密度(i)關係 159
圖7.7  ALMT試驗(a) Na+與(b) K+移出量與平均電流密度關係 160
圖7.8  ALMT試驗Na+與K+移出百分比與平均電流密度關係 161
圖7.9  ALMT試驗Na+與K+單位時間移出量(vNa與vK)與平均電流密度(i)關係 163
圖7.10 Li+穿過試體時間(t0.1)與施加平均電流密度(i)的關係 165
圖7.11 Li+非穩態傳輸係數(Dn)與施加平均電流密度(i)的關係 166
圖7.12 Li+穩態流量(Js)與施加平均電流密度(i)的關係 167
圖7.13 Li+穩態傳輸係數(Ds)與施加平均電流密度(i)的關係 168
圖7.14 Li+穩態傳輸係數(Ds)與穩態流量(Js)的關係 168
圖7.15 Li+的Dn/Ds(%)與施加平均電流密度(i)的關係 169
圖7.16 Na+移出階段的陽離子遷移數總和與電流密度的關係 170
圖7.17 Li+穩態傳輸階段的陽離子遷移數總和與電流密度的關係 171
圖8.1  ALMT試驗陰極槽平均溫度(T3C及TC)與施加電流密度(i)關係 174
圖8.2  ALMT試驗陰極槽平均溫度比值(Tn,3C及Tn,C)與施加電流密度(i)關係 175
圖8.3  定電流密度ALMT通電歷時的電壓變化(a) 3C系列(b) C系列 176
圖8.4  3C系列及C系列的初始電壓(Vi,3C及Vi,C)與施加電流(I)關係 177
圖8.5  定電流密度ALMT通電歷時的系統阻抗變化 178
圖8.6  3C系列及C系列在施加電壓未大幅上升前的平均電壓(VA,3C及VA,C)與施加電流(I)關係 179
圖8.7  典型的定電流密度ALMT過程陰極槽陽離子濃度與電壓的歷時曲線(以(a) 3C12和(b) C12為例) 180
圖8.8  試驗3C系列及C系列的(a)Na+及(b)K+移出完成時間與電流密度關係 183
圖8.9  試驗3C系列及C系列的(a)Na+及(b)K+移出百分比與電流密度關係184
圖8.10 試驗3C系列及C系列的鹼質移出量百分比與電流密度關係 185
圖8.11 試驗3C系列及C系列的(a)Na+及(b)K+單位時間平均移出量(vNa及vK)與施加定電流密度(i)關係 186
圖8.12 試驗3C系列及C系列的Li+穿過試體時間t0.1與電流密度的關係 188
圖8.13 試驗3C系列及C系列的Li+非穩態傳輸係數(Ds)與電流密度的關係188
圖8.14 試驗3C系列及C系列的Li+穩態流量(Js)與電流密度(i)的關係 190
圖8.15 試驗3C系列及C系列的Li+穩態傳輸係數(Ds)與電流密度(i)的關係190
圖8.16 試驗3C系列及C系列的Li+穩態傳輸係數(Ds,3C及Ds,C)與穩態流量 (Js,3C及Js,C)的關係 191
圖8.17 試驗3C系列及C系列的Ds/Dn比值與電流密度關係 192
圖8.18 典型的陽離子累積帶電量與時間關係(以3C15為例) 194
圖8.19 試驗3C系列及C系列的(a) Na+及K+移出階段及(b) Li+穩態傳輸階段的陽離子遷移數總和與電流密度的關係 196
圖9.1  ALMT試驗陰極槽平均溫度(T)與施加電流密度(i)關係 201
圖9.2  ALMT試驗陰極槽平均溫度(T)與粒料體積比例(Vf)關係 202
圖9.3  ALMT試驗(a) 初始電壓(Vi)及(b) 平均電壓(Va)與施加電流密度(i)關係 203
圖9.4  初始及平均系統阻抗(RI及RA)與粒料體積比例(VF)關係 204
圖9.5  典型的試驗過程陰極槽陽離子濃度與電壓的歷時曲線(以LA9為例) 205
圖9.6  典型的試驗過程陰極槽陽離子濃度與電壓的歷時曲線(以MA9為例)
206
圖9.7  典型的試驗過程陰極槽陽離子濃度與電壓的歷時曲線(以HA9為例) 206
圖9.8  LA、MA及HA系列試驗(A) NA+及(B) K+移出完成時間(TNA及TK)與電流密度(I)關係 208
圖9.9  LA、MA及HA系列試驗(A) NA+及(B) K+移出完成時間(TNA及TK)與粒料體積比例(VF)關係 210
圖9.10 LA、MA及HA系列試驗(A) NA+及(B) K+單位時間移出量(VNA及VK)與施加定電流密度(I)關係 212
圖9.11 LA、MA及HA系列試驗(A) NA+及(B) K+單位時間移出量(VNA及VK)與粒料體積比例(VF)關係 214
圖9.12 LA、MA及HA系列試驗LI+穿過試體時間(T0.1)與電流密度(I)關係 216
圖9.13 LA、MA及HA系列試驗LI+穿過試體時間(T0.1)與粒料體積比例(VF)關係 217
圖9.14 LA、MA及HA系列試驗LI+的DN值與電流密度關係 217
圖9.15 LA、MA及HA系列試驗LI+的DN值與粒料體積比例關係 218
圖9.16 LA、MA及HA系列試驗LI+穩態流量(JS)與施加定電流密度(I) 關係 219
圖9.17 LA、MA及HA系列試驗LI+穩態傳輸係數(DS)與施加定電流密度(I)關係 220
圖9.18 LA、MA及HA系列試驗LI+穩態流量(JS)與粒料體積比例(VF)關係 221
圖9.19 LA、MA及HA系列試驗LI+穩態傳輸係數(DS)與粒料體積比例(VF)關係 222
圖9.20 LA、MA及HA系列試驗LI+的穩態流量(JS)與穩態傳輸係數(DS)關係 222
圖9.21 LA、MA及HA系列試驗DS/DN百分比值與電流密度關係 223
圖9.22 LA、MA及HA系列試驗DS/DN百分比值與粒料體積比例關係 224
圖9.23典型的陰極槽內陽離子累積帶電量與累積施加電量關係(以LA9為例) 225
圖9.24 LA、MA及HA系列試驗NA+及K+穩定移出階段的陽離子遷移數總和(TA)與電流密度的關係 227
圖9.25 LA、MA及HA系列試驗LI+穩態傳輸階段的陽離子遷移數總和(TLI)與電流密度的關係 228
圖9.26 LA、MA及HA系列試驗NA+及K+穩定移出階段的陽離子遷移數總和(TA)與粒料體積比例(VF)關係 229
圖9.27 LA、MA及HA系列試驗LI+穩態傳輸階段的陽離子遷移數總和(TLI)與粒料體積比例(VF)關係 230
圖9.28 以(Vf=0.46的Ds)為基準正規化的Li+傳輸係數與粒料體積比例理論及試驗結果關係 232
圖10.1 5N、10N及20N試驗陰極槽平均溫度(T)與施加電流密度(I)關係 237
圖10.2 5N、10N及20N試驗陰極槽平均溫度與水泥含鹼量關係 238
圖10.3 5N、10N及20N試驗(A) 初始電壓(VI)及(B) 平均電壓(VA)與施加電流密度(I)關係 239
圖10.4 5N、10N及20N系列試驗(A) 初始電壓(VI)及(B) 平均電壓(VA)與水泥含鹼量(CA)關係 241
圖10.5 5N、10N及20N系列試驗(A) 初始系統阻抗及(B) 平均系統阻抗與水泥含鹼量關係 243
圖10.6 5N、10N及20N系列試驗(A)初始系統阻抗及(B)平均系統阻抗與電流密度關係 244
圖10.7 低含鹼量試體典型的試驗過程陰極槽內陽離子濃度與電壓的歷時曲線(以5N9為例) 246
圖10.8 中等含鹼量試體典型的試驗過程陰極槽陽離子濃度與電壓的歷時曲線(以10N9為例) 246
圖10.9 高含鹼量試體典型的試驗過程陰極槽陽離子濃度與電壓的歷時曲線(以20N9為例) 247
圖10.10 5N、10N及20N系列試驗(a)Na+及(b)K+移出完成時間與電流密度關係 249
圖10.11 5N、10N及20N系列試驗(a)Na+及(b)K+移出完成時間(tNa及tK)與水泥含鹼量關係 251
圖10.12 5N、10N及20N系列試驗(a) Na+及(b) K+移出速率(vNa及vK)與施加定電流密度(i)關係 253
圖10.13 5N、10N及20N系列試驗(a)Na+及(b)K+單位時間移出量(vNa及vK)與水泥含鹼量關係 256
圖10.14 5N、10N及20N系列試驗Li+穿過試體時間(t0.1)與電流密度(i)關係 258
圖10.15 5N、10N及20N系列試驗Li+穿過試體時間(t0.1)與水泥含鹼量 (CA) 關係 259
圖10.16 10N及20N系列試驗Li+的Dn值與電流密度關係 259
圖10.17 5N、10N及20N系列試驗Li+的Dn值與水泥含鹼量關係 260
圖10.18 5N、10N及20N系列試驗Li+穩態流量(Js)與施加定電流密度(i)的關係 261
圖10.19 5N、10N及20N系列試驗Li+穩態傳輸係數(Ds)與施加定電流密度(i)關係 262
圖10.20 5N、10N及20N系列試驗Li+穩態流量與水泥含鹼量關係 263
圖10.21 5N、10N及20N系列試驗Li+穩態傳輸係數(Ds)與水泥含鹼量關係 263
圖10.22 5N、10N及20N系列試驗Li+的穩態流量(Js)與穩態傳輸係數(Ds)關係 264
圖10.23 5N、10N及20N系列試驗砂漿圓柱試體(Ψ10 cm高20 cm)抗壓強度與水泥含鹼量關係 264
圖10.24 5N、10N及20N系列試驗Ds/Dn比值與電流密度關係 265
圖10.25 5N、10N及20N系列試驗Ds/Dn比值與水泥含鹼量關係 266
圖10.26 5N、10N及20N系列試驗典型的陰極槽內陽離子累積帶電量與累積施加電量關係(以10N9為例) 267
圖10.27 5N、10N及20N系列試驗Na+及K+移出階段的陽離子遷移數總和(TA)與電流密度(i)關係 269
圖10.28 5N、10N及20N系列試驗Li+穩態傳輸階段的陽離子遷移數總和(TLi)與電流密度(i)關係 270
圖10.29 5N、10N及20N系列試驗Na+及K+移出階段的陽離子遷移數總和(TA)與水泥含鹼量的關係 271
圖10.30 5N、10N及20N系列試驗Li+穩態傳輸階段的陽離子遷移數總和(TLi)與水泥含鹼量的關係 271
圖11.1 抗壓強度與水灰比關係 276
圖11.2 ALMT試驗陰極槽平均溫度(T)與施加電流密度(i)關係 277
圖11.3 ALMT試驗陰極槽平均溫度(T)與水灰比關係 277
圖11.4 ALMT試驗(a)初始電壓(Vi)及(b)平均電壓(Va)與施加電流密度(i)關係278
圖11.5 ALMT試驗(a)初始電壓(Vi)及(b) 平均電壓(Va)與水灰比關係 280
圖11.6 ALMT試驗(a)初始系統阻抗(Ri)及(b)平均系統阻抗(Ra)與水灰比關係 281
圖11.7 ALMT試驗(a)初始系統阻抗(Ri)及(b)平均系統阻抗(Ra)與電流密度(i)關係 282
圖11.8 典型的試驗過程陰極槽陽離子濃度與電壓的歷時曲線(以4W9為例) 283
圖11.9 典型的試驗過程陰極槽陽離子濃度與電壓的歷時曲線(以5W9為例) 284
圖11.10 典型的試驗過程陰極槽陽離子濃度與電壓的歷時曲線(以6W9為例) 284
圖11.11 ALMT試驗(a) Na+及(b) K+移出完成時間(tNa及tK)與電流密度(i)關係286
圖11.12 ALMT試驗(a) Na+及(b) K+移出完成時間(tNa及tK)與水灰比關係 288
圖11.13 ALMT試驗(a) Na+及(b) K+單位時間移出量(vNa及vK)與施加定電流密度(i)關係 289
圖11.14 ALMT試驗(a)Na+及(b)K+單位時間移出量(vNa及vK)與水灰比關係 291
圖11.15 ALMT試驗Li+穿過試體時間(t0.1)與電流密度關係 293
圖11.16 ALMT試驗Li+穿過試體時間(t0.1)與水灰比關係 293
圖11.17 ALMT試驗Li+的Dn值與電流密度關係 294
圖11.18 ALMT試驗Li+的Dn值與水灰比關係 294
圖11.19 Li+穩態流量(Js)與施加定電流密度(i)的關係 295
圖11.20 Li+穩態傳輸係數(Ds)與施加定電流密度(i)的關係 295
圖11.21 Li+穩態流量(Js)與水灰比的關係 296
圖11.22 Li+穩態傳輸係數(Ds)與水灰比的關係 297
圖11.23 Li+的穩態流量(Js)與穩態傳輸係數(Ds)關係 297
圖11.24 Ds/Dn比值與電流密度關係 298
圖11.25 Ds/Dn比值與水灰比關係 299
圖11.26 典型的陰極槽內陽離子累積帶電量與累積施加電量關係(以6W9為例) 300
圖11.27 Na+及K+移出階段的陽離子遷移數總和(TA)與電流密度的關係 302
圖11.28 Li+穩態傳輸階段的陽離子遷移數總和(TLi)與電流密度的關係 302
圖11.29 Na+及K+移出階段的陽離子遷移數總和(TA)與水灰比的關係 304
圖11.30 Li+穩態傳輸階段的陽離子遷移數總和(TLi)與水灰比的關係 304
圖12. 1 AE及NC系列試驗陰極槽平均溫度(T)與施加電流密度(i)關係 309
圖12. 2 NC系列通電歷時的電壓變化 310
圖12. 3 AE系列通電歷時的電壓變化 310
圖12. 4 AE及NC系列(a)初始電壓(Vi)及(b)平均電壓(Va)與施加電流密度(i)關係 310
圖12. 5 溫度與電壓的歷時曲線(以NC9為例) 313
圖12. 6 溫度與電壓的歷時曲線(以AE9為例) 314
圖12. 7 AE及NC系列(a) 初始系統阻抗(Ri)及(b) 平均系統阻抗(Ra)與電流密度(i)關係 315
圖12. 8 典型的定電流密度ALMT過程陰極槽陽離子濃度與電壓的歷時曲線(以(a) NC15及(b) AE15為例) 316
圖12. 9 小型砂漿圓柱試體(Ψ1 cm ? 5 cm)在38 °C、100 %環境一年的膨脹量318
圖12.10 AE及NC系列(a) Na+及(b) K+移出完成時間(tNa及tK)與電流密度(i)關係 320
圖12.11 AE及NC系列(a)Na+及(b)K+單位時間平均移出量(vNa及vK)與施加定電流密度(i)關係 322
圖12.12 AE及NC系列試驗Li+穿過試體時間t0.1與電流密度的關係 324
圖12.13 AE及NC系列試驗Li+(a) 穩態流量(Js)及(b) 傳輸係數(Ds)與施加定電流密度(i)的關係 326
圖12.14 AE及NC系列試驗Li+的穩態傳輸係數(Ds)與穩態流量(Js)關係 327
圖12.15 AE及NC系試驗列的Ds/Dn比值與電流密度關係 328
圖12.16 NC系列通電試驗後試體內游離態陽離子含量 329
圖12.17 AE系列通電試驗後試體內游離態陽離子含量 330
圖12.18 AE及NC系列通電試驗後試體內游離態Li+含量 331
圖12.19 AE及NC系列通電試驗後試體內游離態Li/(Na+K)莫耳比與累積施加電量(QA)關係 332
圖12.20 典型的陰極槽內陽離子累積帶電量與累積施加電量關係(以AE15為例) 333
圖12.21 AE及NC系列試驗Na+及K+移出階段的陽離子遷移數總和(TA)與電流密度的關係 335
圖12.22 AE及NC系列試驗Li+穩態傳輸階段的陽離子遷移數總和(TLi)與電流密度的關係 335
圖13.1 通電過程的溫度與室溫歷時變化(以L5C為例) 341
圖13.2 試驗L5C、L7C及L9C通電歷時的電壓變化 342
圖13.3 試驗L11V、L14V、L17V、L20V及L23V通電歷時的電流變化 342
圖13.4 通電歷時的系統阻抗變化 344
圖13.5 典型的定電流密度ALMT試驗過程陰極槽陽離子濃度與電壓的歷時曲線(以L9C為例) 346
圖13.6 典型的定電壓ALMT試驗過程陰極槽陽離子濃度與電流的歷時曲線(以L17V為例) 347
圖13.7 典型的定電流密度ALMT試驗過程陰極槽陽離子濃度與電壓的累積施加電量曲線(以L9C為例) 348
圖13.8 典型的定電壓ALMT試驗過程陰極槽陽離子濃度與電流的累積施加電量曲線(以L17V為例) 348
圖13.9 電極間距(L)與NA+及K+穩定移出階段的單位施加電量移出量 (RMNa及RMK)的關係 350
圖13.10 NA+及K+穩定移出階段的平均電流(I)與單位施加電量移出鹼量(RMNa及RMK)關係 351
圖13.11 電極間距與鹼質移出量百分比關係 352
圖13.12 鹼質移出階段的鹼質移出量與平均施加電流關係 352
圖13.13 Li+非穩態階段平均電流與電極間距關係 354
圖13.14 達t0.1時所需要的累積施加電量(Q0.1)與電極間距(L)關係 355
圖13.15 達t0.1時的所需時間與電極間距(L)關係 355
圖13.16 Li+的非穩態傳輸係數Dn與電極間距(L)關係 356
圖13.17 Li+穩態傳輸係數(Ds)與電極間距(L)關係 357
圖13.18 不同電極間距試驗通電後試體內游離態Li+含量 358
圖13.19 不同電極間距試驗通電後試體內游離態Na+含量 358
圖13.20 不同電極間距試驗通電後試體內游離態K+含量 359
圖13.21 不同電極間距試驗通電後試體內游離態Li/(Na+K)含量莫耳比分佈圖 363
圖13.22 不同電極間距試驗通電後試體內游離態Li/(Na+K)含量莫耳比取1.0以下區域觀察 363
圖13.23 通電試體抗壓強度增加百分比(ΔFC,%)與試體長度(L)關係 365
圖13.24 通電組及未通電控制組的抗壓強度(FC,E及FC,C)與試體長度(L)關係 365
圖14.1 二維的電場作用的電場線分佈示意圖 370
圖14.2 修正的ALMT試驗模組 372
圖14.3 典型劣化程度尚低混凝土的ALMT試驗離子濃度–時間曲線(以C12為例) 373
圖14.4 典型劣化程度較高混凝土的ALMT試驗離子濃度–時間曲線(以AE15為例) 374
圖14.5 陰極槽電解液內的LI+濃度-時間曲線過渡階段的迴歸分析 376
圖14.6 陰極槽內LI+濃度-時間曲線的穩態傳輸階段線性迴歸分析 377
表目錄
表2.1  易產生ASR的岩石種類及所含的相關礦物 9
表2.2  主要的含鋰礦物化學組成及產地 17
表2.3  相關研究所發現有效的Li化合物劑量 22
表2.4  總電流量與氯離子滲透性關係 25
表2.5  電滲方法之發展 29
表3.1  試驗試體編號一覽表 47
表3.2  東河馬武窟溪變質砂岩的ASR粒料活性檢測結果 51
表3.3  東河變質砂岩的岩相分析結果 51
表3.4  水泥化學成分 52
表3.5  水泥物理性質 53
表3.6  試驗藥品資訊 53
表3.7  流洗液及標準液藥品資訊 54
表3.8  ASTM C227細粒料級配分佈 56
表3.9  超純水機設備規格 68
表4.1  依式(4.6)計算Li+的傳輸係數Dnf 96
表4.2  依式(4.12)計算Li+的傳輸係數Deff 99
表5.1  施加定電壓的ALMT試驗編號及通電條件 108
表5.2  由陰極槽電解液內的Na+及K+濃度-時間曲線所獲得的分析結果 113
表5.3  施加定電壓的ALMT試驗過程不同離子傳輸階段的平均電流密度 115
表5.4  Li+非穩態及穩態傳輸係數 116
表5.5  ALMT試驗後試體內的游離態Li/(Na+K)莫耳比 122
表5.6  Na+移出完成時的累積施加電量 123
表6.1  施加電流密度的ALMT試驗編號及通電條件 128
表6.2  由陰極槽電解液內的Na+及K+濃度-時間曲線所獲得的結果 135
表6.3  Li+非穩態及穩態傳輸係數 137
表6.4  定電流密度ALMT試驗後試體內的游離態Li/(Na+K)莫耳比 142
表6.5  Na+移出完成時的累積施加電量 145
表7.1  由陰極槽電解液內的Na+及K+濃度-時間曲線所獲得的分析結果 157
表7.2  Li+非穩態及穩態傳輸係數 164
表8.1  3C及C系列試驗由陰極槽內的NA+及K+濃度-時間曲線所獲得的結果 187
表8.2  試驗3C系列及C系列Li+非穩態及穩態傳輸係數 187
表8.3  試驗3C系列及C系列的Na+移出完成時的累積施加電量 194
表9.1  試驗配比及施加電場條件 200
表9.2   LA、MA及HA系列試驗陰極槽內的Na+及K+濃度-時間曲線所獲得的結果 207
表9.3  Li+非穩態及穩態傳輸係數 215
表9.4  LA、MA及HA系列試驗陽離子累積帶電量與累積施加電量曲線的
TA及TLI試驗值 226
表9.5  理論的Ds/D0與試驗的Ds/(Vf=0.46的DS,LA))結果 232
表10.1 試驗配比及施加電場條件 236
表10.2 5N、10N及20N系列試驗由陰極槽內的Na+及K+濃度-時間曲線所獲得的結果 248
表10.3 ALMT通電過程Na及K在試體孔隙溶液中的平均解離度比值 257
表10.4 Li+非穩態及穩態傳輸係數 257
表10.5 5N、10N及20N系列陽離子累積帶電量與累積施加電量曲線的TA及TLi試驗值 268
表11.1 試驗配比及施加電場條件 276
表11.2 由陰極槽內的Na+及K+濃度-時間曲線所獲得的結果 285
表11.3 Li+非穩態及穩態傳輸係數 292
表11.4 陽離子累積帶電量與累積施加電量曲線的TA及TLi試驗值 301
表12.1 AE及NC系列試驗陰極槽內的Na+及K+濃度-時間曲線所獲得的結果 219
表12.2 Li+非穩態及穩態傳輸係數 323
表12.3 NC系列試驗後試體內的游離態Li/(Na+K)莫耳比 329
表12.4 AE系列試驗後試體內的游離態Li/(Na+K)莫耳比 330
表12.5 陽離子累積帶電量與累積施加電量曲線的TA及TLi試驗值 334
表13.1 混凝土配比設計各材料所需用量 339
表13.2 試驗編號及通電條件 340
表13.3 通電過程的平均電解液溫度及室溫一覽表 341
表13.4 試驗編號及通電條件 343
表13.5 由陰極槽內的Na+及K+濃度-累積施加電量曲線所獲得的結果 349
表13.6 Li+非穩態及穩態傳輸係數 353
表13.7 通電後試體內的游離態Na2Oeq分佈 361
表13.8 通電組與未通電控制組混凝土的抗壓強度一覽表 364
參考文獻 1.Page, C.L., and Yu, S.W., “Potential effects of electrochemical desalination of concrete on alkali-silica reaction,” Magazine of concrete research, Vol. 47, No, 170, pp. 23-31, 1995.
2.Stokes, D.B., “Use of lithium to combat alkali silica reactivity,” Proceeding of the 10th International Conference on Alkali-Aggregate Reaction, Melbourne, Australia, pp. 862-867, 1996.
3.Whitmore, D., and Abbott, S., “Use of an applied electric field to drive lithium ions into alkali-silica reactive structures,” Proceeding of the 11th International Conference on Alkali-Aggregate Reaction, Quebec, Canada, pp.1089-1098, 2000.
4.陳登義,「以電化學技術抑制鹼質與粒料反應之基礎研究」,碩士論文,國立中央大學土木工程研究所,中壢,1999年。
5.劉志堅,「台灣地區粒料活性探討暨鹼質與粒料反應電化學維修策略研究」,博士論文,國立中央大學土木工程研究所,中壢,2003年。
6.蘇銘鴻,「電滲法運用於抑制鹼質與粒料反應之基礎研究」,碩士論文,國立中央大學土木工程研究所,中壢,2002年。
7.林明峰,「利用電化學方法抑制AAR對鋼筋混凝土材料特性影響之研究」,碩士論文,國立中央大學土木工程研究所,中壢,2003年。
8.Gillott, J.E., “Alkali-aggregate reaction in concrete,” Engineering Geology, Vol.9, pp.303-326, 1975.
9.Stanton, T.E., “Influence of Cement and Aggregate on Concrete Expansion,” Engineering News-Record, pp. 59-61, 124 Feb., 1940.
10.Hichard, H., Stark, D, and Diamond, S., “Alkali-silica reactivity: an overview of research,” SHRP-C-343, Strategic Highway Research Program, National Research Council, Washington, D.C., 1993.
11.Fournier, B., and Bérubé, M.A., “Alkali-Aggregate Reaction in Concrete: a Review of Basic Concepts and Engineering Implications,” Canadian Journal of Civil Engineering, Vol.27, Number 2, pp.167-191, April 2000.
12.Hadley, D.W., “Alkali reactivity of carbonate rocks-expansion and dedolomitization,” Proceeding Highway Research Board, Vol. 40, pp. 462-474, 1961.
13.Cole, W.F., Lancuk, C.J. and Sandy, M.J., “Products formed in an aged concrete,” Cement and Concrete Research, Vol.11, pp.443-454, 1981.
14.蔣元駒、韓素方,『混凝土工程病害與修補加固』,海洋出版社,北京,中國,pp. 365-406,1996年7月。
15.Cole, W.F., Lancuk, C.J. and Sandy, M.J., “Products formed in an aged concrete,” Cement and Concrete Research, Vol. 11, pp. 443-454, 1981.
16.許書王,「台灣地區鹼質與粒料反應抑制策略之研究」,博士論文,國立中央大學土木工程研究所,中壢,1999年。
17.王韡蒨,「「台灣地區活性粒料之檢測方法研究」,碩士論文,國立中央大學土木工程研究所,中壢,2003年。
18.Canadian Standards Association (CSA), “Guide to the evaluation and management of concrete structures affected by alkali-aggregate reactions,” CSA A864-00, 2000b, Ontario, Canada, 2000.
19.Fournier, B., and Bérubé, M.A., “Alkali-Aggregate Reaction in Concrete: a Review of Basic Concepts and Engineering Implications,” Canadian Journal of Civil Engineering, Vol.27, Number 2, pp.167-191, April 2000.
20.Metha, P.K., “Concrete structure, properties, and materials,” pp. 145-150, 1986.
21.Diamond, S., “A review of the alkali-aggregate reaction and expansion mechanism, alkali in cement and in concrete pore solutions,” Cement and Concrete Research, Vol. 5, pp. 329-346, 1975.
22.Hobbs, D.W., “Expansion of concrete due to alkali-silica reaction,” The Structural Engineer, Cement, Concrete, and Aggregate, England, 1984.
23.Hill, E.D., “Alkali limits for prevention of alkali-silica reaction: a brief review of their development,” Cement, Concrete, and Aggregate, Vol. 18, No. 1, pp. 3-7, 1996.
24.Thomas, M.D.A., Hootn, R.D., and Rogers, C.A., “Prevention of damage due to alkali-aggregate reaction in concrete construction – Canadian approach,” Cement, Concrete, and Aggregates, Vol. 19, No. 1, pp. 26-30, 1997.
25.Folliard, K.J., Thomas, M.D.A., Fournier, B., Kurtis, K.E., and Ideker, J.H., “Interim recommendations for the use of lithium to mitigate or prevent alkali-silica reaction (ASR),” Federal Highway Administration, Report no. FHWA-HRT-06-073.
26.Gillott, J.E., and Rogers, C.A., “Alkali-aggregate reaction and internal release of alkalis,” Magazine of Concrete Research, pp. 99-112, 1994.
27.Bérubé, M.A., Duchesne, J., and Rivest, M., “Alkali contribution by aggregates to concrete,” Proceedings of the 10th International Conference on Alkali-Aggregate Reaction in Concrete, Australia, pp. 899-906, August 1996.
28.Duchesne, J., and Bérubé, M.A., “The effectiveness of supplementary cementing materials in suppressing expansion due to ASR: Another look at the reaction mechanisms: Part 2: Pore solution chemistry,” Cement Concrete and Research, Vol. 24, pp. 221-231, 1994.
29.Diamond, S., “ASR-Another look at mechanisms,” Proceedings of the 8th International Conference on Alkali-Aggregate Reaction in Concrete, Kyoto, Japan, pp. 83-94, August 1989.
30.Moore, A.E., “Effect of electric current on alkali-silica reaction,” Proceedings of the 4th International Conference on Effects of Alkalis in cement and concrete, Purdue University, pp. 69-71, August 1978.
31.Ozol, M.A., “Alkali-silica reaction of concrete electrical substation piers accelerated by electrical currents,” Petrography applied to concrete aggregates, ASTM STP 1061, pp. 106-120, 1990.
32.Shayan, A., “Combined Effects of AAR and Cathodic Protection Currents in Reinforced concrete,” Proceedings of the 11th International Conference on Alkali-Aggregate Reaction in Concrete, Quebec, Canada, pp. 229-238, June 2000.
33.Sibbick, R.G., and Page, C.L., “Mechanisms affecting the development of alkali-silica reaction in hardened concrete exposed to saline environments,” Magazine of Concrete Research, Vol. 50, No. 2, pp. 147-159, June 1998.
34.Lee, C., “Available alkalis in fly ash and their effects on alkali-aggregate reaction,” Ph.D., Dissertation, Iowa State University, 1986.
35.Nakano, K.I., Kibayashi, S., and Arimoto, Y., “Influence of reactive aggregate and alkali compounds on expansion of alkali-silica reaction,” Review of the 38th General Meeting, Japan, pp. 96-99, 1984.
36.Tang, M.S., Su-Fen, H., “Effect of Ca(OH)2 on alkali-silica reaction,” Proceedings of the 8th International Congress of Cement Chemistry, Paris, France, Vol. 2, pp. 94-99, 1980.
37.British Cement Association, “The diagnosis of alkali-silica reaction-report of a working party,” pp. 36, 1992.
38.Pedneault, A., “Development of testing and analytical procedures for the evaluation of the residual potential of reaction, expansion, and deterioration of concrete affected by ASR,” Material Science Memoir, Laval University, Quebec, Canada, p. 133, 1996.
39.Poole, A.B., “Introduction to alkali-aggregate reaction in the concrete,” Blackie, Glasgow and London, pp. 1-29, 1992.
40.Lenzner, D., and Ludwig, V., “The alkali aggregate reaction with opaline sand stone from Schleswig-Holstein,” Proceedings of the 4th International Conference on Effects of Alkalis in cement and concrete, Purdue University, pp. 11-34, 1978.
41.Stark, D., and Depuy, G., “Alkali-silica reaction in five dams in southwestern United States,” In Proceedings of the Katharine and Bryant Mather International Conference on Concrete Durability, pp. 1759-1786, April/May 1997.
42.Bérubé, M.A., Chouinard, D., Frenette, J., Boisvert, L., Pigeon, M., and Rivest, M., “Effectiveness of sealers in counteracting ASR in plain and air-entrained laboratory concretes exposed to wetting and drying, freezing and thawing, and salt water,” In supplementary Papers, 4th CANMET/ACI/JCI International Conference on Recent Advances in Concrete Technology, pp. 375-396, June 1998.
43.Bérubé, M.A., Chouinard, D., Boisvert, L., Frenette, J., and Rivest, M., “Influence of wetting –drying and freezing-thawing cycles and effectiveness of sealers on ASR,” Proceedings of the 10th International Conference on Alkali-Aggregate Reaction in Concrete, Australia, pp. 1056-1063, August 1996.
44.Swamy, R.N., “The Alkali-Silica Reaction in Concrete,” Van Nostrand Reinhold, New York, 1992.
45.Hobbs, D.W., “Alkali-Silica Reaction in Concrete,” Thomas Telford, London, U.K., , 1988.
46.Bérubé, M.A., and Fournier, B., “Alkali-aggregate reaction in concrete,” Gordon & Breach Publisher, 2000.
47.Duncan, M.A.G., “Alkali-aggregate reaction in Nova Scotia Ⅰ summary of a five-year study,” Cement Concrete Research, Vol. 3, No. 1, pp. 55-69, 1973.
48.Stark, D., “The moisture condition of field concrete exhibiting alkali-silica reactivity,” In Proceedings of the CANMET International Workshop on Alkali-Aggregate Reaction in Concrete, May 1990.
49.Swamy, R.N.S, “Effects of alkali-aggregate reactivity on material stability and structural integrity,” Proceedings of the CANMET/ACI International Workshop on Alkali-Aggregate Reaction in Concrete, pp. 233-241, October 1995.
50.Touma, W.E., Fowler, D.W., and Carrasquillo, R.L., “Alkali-silica reaction in portland cement concrete: testing methods and mitigation alternatives,” Research Report ICAAR 301-1F, 2001.
51.Sakaguchi, Y., Takakura, M., and Kitagawa, A., “The inhibiting effect of lithium compounds on alkali-silica reaction,” Proceeding of the 8th International Conference on Alkali-Aggregate Reaction, Kyoto, pp. 229-234, 1989.
52.Thomas, M.D.A, Hooper, R., and Stokes, D, “Use of lithium-containing compounds to control expansion in concrete due to alkali-silica reaction,” Proceeding of the 11th International Conference on Alkali-Aggregate Reaction, Quebec, Canada, pp. 783-792, 2000.
53.Diamond, S., “Unique response of LiNO3 as an alkali silica reaction-preventive admixture,” Cement and Concrete Research, Vol. 29, pp. 1271-1275, 1999.
54.Durand, B., “More results about the use of lithium salts and mineral admixtures to inhibit ASR in concrete,” Proceeding of the 11th International Conference on Alkali-Aggregate Reaction, Quebec, Canada, pp. 623-632, 2000.
55.SHRP-C-343, “Eliminating or minimizing alkali-silica reactivity,” Strategic Highway Research Program, 1993.
56.Stark, D.C., “Lithium salt admixtures – an alternative method to prevent expansive alkali-silica reactivity,” Proceeding of the 9th International Conference on Alkali-Aggregate Reaction, London, pp. 269-278, 1992.
57.Baxter, S.Z., Stokes, D.B., and Manissero, C.E., “A lithium-based pozzolan for ASR control,” Proceeding of the 11th International Conference on Alkali-Aggregate Reaction, Quebec, Canada, pp. 573-582, 2000.
58.Lane, D.S., “Preventive measures for alkali-silica reactions used in Virginia, USA,” Proceeding of the 11th International Conference on Alkali-Aggregate Reaction, Quebec, Canada, pp. 693-702, 2000.
59.Stokes, D.B., Manissero, C.E., Roy, D.M., and Malek, R.I., “Portland cement manufacture containing lithium for ASR control,” Proceeding of the 11th International Conference on Alkali-Aggregate Reaction, Quebec, Canada, pp. 773-781, 2000.
60.Bakker, J.D., “Control of ASR related risks in the Netherlands,” Proceedings of the 13th International Conference on Alkali-Aggregate Reaction in Concrete, Trondheim, Norway, pp. 22-31, June 2008.
61.Shrimer, F., Briggs, A, and Hudson, B., “Alkali-aggregate reaction in western Canda: review of current trends,” Proceedings of the 13th International Conference on Alkali-Aggregate Reaction in Concrete, Trondheim, Norway, pp. 32-41, June 2008.
62.Folliard, K.J., Thomas, M.D.A., Ideker, J.H., East, B., and Fournier, B., “Case studies of treating ASR-affected structures with lithium nitrate,” Proceeding of the 13th International Conference on Alkali-Aggregate Reaction, Trondheim, Norway, pp. 90-99, 2008.
63.Era, K, Mihara, T., Kaneyoshi, A., and Miyagawa, T., “Controlling effect of lithium nitrite on alkali-aggregate reaction,” Proceeding of the 13th International Conference on Alkali-Aggregate Reaction, Trondheim, Norway, pp. 70-79, 2008.
64.Lumley, J.S., “ASR suppression by lithium compounds,” Cement and Concrete Research, Vol. 27, No. 2, pp. 235-244, 1997.
65.McCoy, W.J., and Caldwell, A.G., “New approach to inhibiting alkali-aggregate expansion,” Journal of the American Concrete Institute, Vol. 22, No. 9, pp. 693-706, 1951.
66.Chatterji, S., Thalow, N., Jensen, A.D., “Studies of the alkali-silica reaction, part4: effect of different alkali salt solutions on expansion,” Cement and Concrete Research, Vol. 17, pp. 777-783, 1987.
67.Sakaguchi, Y., Takakura, M., Kitagawa, Hori, T., Tomosawa, F., and Abe, M., “The inhibiting effect of lithium compounds on alkali-silica reaction,” Proceedings of the 8th International Conference on Alkali-Aggregate Reaction, Kyoto, Japan, pp. 229-234, 1989.
68.Ramachandran, V.S., “Alkali-aggregate expansion inhibiting admixtures,” Cement and Concrete Research, Vol. 20, No. 2-3, pp. 149-161, 1998.
69.Thomas, M.D.A., and Bleszynski, R.F., “The use of silica fume to control expansion due to alkali-aggregate reactivity in concrete – a review,” Materials Science of Concrete, Eds. J. Shalny and S. Mindess, American Ceramic Society, Vol. 6, 2000.
70.Collins, C.L., Ideker, J.H., Willis, G.S., Kurtis, K.E., “Examination of the effects of LiOH, LiCl, and LiNO3 on alkali-silica reaction,” Cement and Concrete Research, Vol. 34, No. 8, pp. 1403-1425, 2004.
71.Temblay, C., Bérubé, M.A., Fournier, B., Thomas, M.D.A., “Performance of lithium-based products against ASR: effect of aggregate type and reactivity, and reaction mechanisms,” Proceedings of the 7th CANMET/ACI International Conference on Recent Advances in Concrete Technology (Suppl. Papers), Las Vegas, NV, pp. 247-267, May 2004.
72.Bérubé, M.A., Frenette, J., Rivest, M., and Vézina, D., “Measurement of the alkali content of concrete using hot-water extraction,” Proceeding of the 11th International Conference on Alkali-Aggregate Reaction, Quebec, Canada, pp. 159-168, 2000.
73.Diamond, S., and Ong, S., “The mechanisms of lithium effects on ASR,” Proceeding of the 9th International Conference on Alkali-Aggregate Reaction, London, pp. 269-278, 1992.
74.Stade, H., “On the reaction of C-S-H (Di, Poly) with alkali hydroxides,” Cement and Concrete Research, Vol. 19, pp. 802-810, 1989.
75.Ramyar, K., Copuroglu, O., Andic, O., and Fraaij, A.L.A., “Comparison of alkali-silica reaction products of fly ash or lithium-salt-bearing mortar under long-term accelerated curing,” Cement and Concrete Research, Vol. 34, No. 7, pp. 1179-1183, 2004.
76.Mei, L.B., Lu, D., Deng, M., Tang, M.S., “Expansion of siliceous aggregate in LiOH solution,” Proceedings of the 12th International Conference on Alkali-Aggregate Reaction in Concrete, Beijing, China, pp. 399-406, October 2004.
77.Kawamura, M., and Fuwa, H., “Effects of lithium salts on ASR gel composition and expansion of mortars,” Cement and Concrete Research, Vol. 33, No. 6, pp. 913-919, June 2003.
78.Lawrence, M., and Vivian, H.E., “The reactions of various alkalis with silica,” Australian Journal of applied science, Vol.12, pp.96-103, 1961.
79.Wijnen, P.W.J.G., Beelen, T.P.M., de Haan, J.W., Rummens, C.P.J., van de Ven, L.J.M., and van Santen, R.A., “Silica gel dissolution in aqueous alkali metal hydroxides studies by 29Si NMR,” Journal of Non-Crystalline Solid, Vol. 109, pp. 85-94, 1989.
80.Collins, C.L., “Examination of the mechanism by which lithium additives inhibit alkal-silica reaction gel expansion,” M.S. Environmental Engineering Thesis, Georgia Institute of Technology, Atlanta, GA, 2002.
81.Qi, Z, and Wen, Z.Y., “Effects of lithium hydroxide on alkali silica reaction gels,” Proceedings of the 12th International Conference on Alkali-Aggregate Reaction in Concrete, Beijing, China, pp. 801-804, October 2004..
82.Kutis, K.E., Monteiro, P.J.M., “Chemical additives to control expansion of alkali-silica reaction gel: proposed mechanisms of control,” Journal of Materials Science, Vol. 27, No. 2, pp. 2027-2036, 2003.
83.Prezzi, M., Monteiro, P.J.M., Sposito, G., “The alkali-silica reaction, Part 1: Use of the double-layer theory to explain the behavior of the reaction-product gels,” ACI Materials Journal, Vol. 94, No. 1, pp. 10-17, 1997.
84.Qinghan, B., Nishibayashi, S., Xuequan, W., Yoshino, A., Hong, Z., Tiecheng, W, and Mingshu, T., “Preliminary study of effect of LiNO2 on expansion of mortars subjected to alkali-silica reaction,” Cement and Concrete Research, Vol. 25, No. 8, pp. 1647-1654, 1995.
85.Blackwell, B.Q., Thomas, M.D.A., and Sutherland, A., “Use of lithium to control expansion due to alkali-silica reaction in concrete containing U.K. aggregates,” Durability of concrete proceedings Fourth CANMET/ACI International Conference, ACI SP 170-34, pp. 649-663, 1997.
86.http://leadstates.tamu.edu/asr/library/gspec.stm, AASHTO Guide Specification, Section 56X, 1998.
87.Ohama, Y., Demura, K., Kakegawa, M., “Inhibiting alkali-aggregate reaction with chemical admixtures,” Proceeding of the 8th International Conference on Alkali-Aggregate Reaction, Kyoto, pp. 253-258, 1989.
88.Fournier, B., Stokes, D., Ferro, A., “Comparative field and laboratory investigations on the use of supplementary cementing materials (SCMs) and lithium-based admixtures to control expansion due to alkali-silica reaction (ASR) in concrete,” Proceedings of the 6th CANMET/ACI International Conference on Durability of Concrete, Thessaloniki, Greece, pp. 823-851, 2003.
89.Tremblay, C., Bérubé, M.A., Fournier, B., and Thomas, M.D.A., “Performance of lithium-based products against ASR: effect of aggregate type and reactivity, and reaction mechanisms,” Proceedings of the 7th CANMET/ACI International Conference on Recent Advances in Concrete Technology, Las Vegas, NV, pp. 247-267, May 2004.
90.Tremblay, C. Bérubé, M.A., Fournier, B., Thomas, M.D.A., and Stokes, D.B., “Performance of lithium-based products against ASR: application to Canadian reactive aggregates, reaction mechanisms and testing,” Proceedings of the 12th International Conference on Alkali-Aggregate Reaction in Concrete, Beijing, China, pp. 668-677, October 2004.
91.鄭竹君,「鋰鈉鉀離子在鹼質與粒料反應中的競逐行為研究」,碩士論文,國立中央大學土木工程研究所,中壢,2009年。
92.Folliard, K.J., Thomas, M.D.A., Fournier, B., Krutis, K.E., and Ideker, J.H., “Interim recommendations for the use of lithium to mitigate or prevent alkali-silica reaction,” Federal Highway Administration, U.S. Department Transportation, FHWA-HRT-06-073, pp. 64-65, 2006.
93.ASTM C 1202-97, “Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration,” Annual Book of ASTM Standards, Section 4, Vol.04.02, 1999.
94.Dhir, R.K., ”Rapid Estimation of Chloride Diffusion Coefficient in Concrete,” Magazine of Concrete Research, Vol. 42, No. 152, pp. 177-185, 1990.
95.Luping, T., and Nilsson, L., “Rapid Determination of the Chloride Diffusivity in Concrete by Applying an Electrical Field,” ACI Materials Journal, Vol. 89, No. 1, pp. 49-53, 1992.
96.Andrade, C., “Calculation fo chloride diffusion coefficients in concrete from ionic migration measurements,” Cement and Concret Research, Vol. 23, No. 3, pp.724-742, 1993.
97.Halamickova, P., ”Water Permeability and Chloride Ion Diffusion in Portland Cement Mortars: Relationship to Sand Content and Critical Pore Diameter,” Cement and Concrete Research,” Vol. 25, No. 4, pp. 790-802, 1995.
98.McGrath, P.F., and Hooton, R.D., “Influence of voltage chloride diffusion coefficient from chloride migration tests,” Cement and Concrete Research, Vol. 26, No. 8, pp. 1239-1244, 1996.
99.Yang, C.C., Cho, S.W. and Huang, R., “The relationship between charge passed and the chloride-ion concentration in concrete using steady-state chloride migration test,” Cement and Concrete Research, Vol. 32, pp.217-222, 2002.
100.Yang, C.C., Cho, S.W., Chi, J.M., and Huang, R., “An electrochemical method for accelerated chloride migration test in cement-based materials,” Materials Chemistry and Physics, Vol. 77, pp.461-469, 2002.
101.Yang, C.C., and Su, J.K., “Approximate migration coefficient of interfacial transition zone and the effect of aggregate content on the migration coefficient of mortar,” Cement and Concrete Research, Vol. 32, pp.1559-1565, 2002.
102.Yang, C.C., and Cho, S.W., “An electrochemical method for accelerated chloride migration test of diffusion coefficient in cement-based materials,” Materials Chemistry and Physics, Vol. 81, pp.116-125, 2003.
103.Yang, C.C., and Weng, T.L., “Using charge passed to determine the chloride diffusion coefficient in mortar from accelerated chloride migration test,” Construction and Building Materials, Vol. 17, pp.231-238, 2003.
104.Yang, C.C., “Effect of the interfacial transition zone on the transport and the elastic properties of mortar,” Magazine of Concrete Research, Vol. 54, No. 4, pp.305-312, 2003.
105.Yang, C.C., and Cho S.W., “Influence of aggregate content on the migration coefficient of concrete materials using electrochemical method,” Materials Chemistry and Physics, Vol. 80, No. 3, pp. 752-757, 2003.
106.Yang, C.C., and Cho, S.W., “Approximate migration coefficient of percolated interfacial transition zone by using the accelerated chloride migration test,” Cement and Concrete Research, Vol.35, pp.344-350, 2005.
107.Yang, C.C., “Effect of the percolated interfacial transition zone on the chloride migration coefficient of cement-based materials,” Materials Chemistry and Physics, Vol. 91, pp.538-544, 2005.
108.Yang, C.C., and Chiang, C.T., “On the relationship between pore structure and charge passed from RCPT in mineral-free cement-based materials,” Materials Chemistry and Physics, Vol. 93, Issue 1, pp.202-207, 2005.
109.Yang, C.C., “On the relationship between pore structure and chloride diffusivity from accelerated chloride migration test in cement –based materials,” Cement and Concrete Research, Vol. 36, pp. 1304-1311, 2006.
110.李釗、劉志堅、王韡蒨,「電化學技術維修受AAR影響混凝土之理論模型與實務應用研究」,工程科技通訊推展電子刊106期,國科會,民國99年6月。
111.Tang, L., “Electrically accelerated methods for determining chloride diffusivity in concrete-current development,” Magazine of Concrete Research, Vol. 48, No. 176, pp. 173-179, 1996.
112.Kropp, J, and Hilsdorf, H.K., “Performance Criteria for Concrete Durability,” E & FN SPON, London, 1995.
113.Lee, C, Liu. C.C., and Wang, W.C., “Behavior of cations in mortar under accelerated lithium migration technique controlled by a constant voltage,” Journal of Marine Science and Technology, 2009 (JMST-2009-126, Accepted).
114.Lee, C, Liu. C.C., and Wang, W.C., “Behavior of cations in mortar under accelerated lithium migration technique controlled by a constant current density,” 2009 (in preparation).
115.李釗,「電化學技術維修受AAR影響混凝土之理論模型與實務應用研究」,96-98年度國科會計畫。
116.Lee, C, Liu, C.C., and Wang, W.C., “Effect of the distance between electrodes on the performance of using electrochemical technique to repair the concrete damaged by AAR,” Proceeding of the 13th International Conference on Alkali-Aggregate Reaction, Trondheim, Norway, pp. 234-2459, 2008.
117.廖偉榕,「具AAR活性砂漿試體在不同單維電場強度作用下之離子傳輸行為研究」,碩士論文,國立中央大學土木工程研究所,中壢,2008年。
118.劉慧茹,「活性砂漿試體受單維電場作用下陽離子傳輸行為之研究」,碩士論文,國立中央大學土木工程研究所,中壢,2009年。
119.陳桂清,「電化學技術應用於鹽害R.C.結構物之去鹽成效與鋼筋腐蝕行為研究」,博士論文,國立中央大學土木工程研究所,中壢,1999年。
120.Daidai, T., Torii, K., “A proposal for rehabilitation of ASR-affected bridge piers with fractured steel bars,” Proceedings of the 13th International Conference on Alkali-Aggregate Reaction in Concrete, Trondheim, Norway, pp. 42-49, June 2008.
121.Era, K, Mihara, T., Kaneyoshi, A, and Miyagawa, T., “Controlling effect of lithium nitrite on alkali-aggregate reaction,” Proceedings of the 13th International Conference on Alkali-Aggregate Reaction in Concrete, Trondheim, Norway, pp. 70-78, June 2008.
122.Folliard, K.J, Thomas, M.D.A., Ideker, J.H., East, B., and Fournier, B.., “Case studies of treating ASR-affected structures with lithium nitrate,” Proceedings of the 13th International Conference on Alkali-Aggregate Reaction in Concrete, Trondheim, Norway, pp. 90-99, June 2008.
123.Shayan, A., “Where is AAR Heading after the 10th International Conference,” Cement and Concrete Composites, pp. 441–449, 1997.
124.Michael, D.A., Thomas, B.F., Kevin, J.F., Jason, H.I, and Yadhira, R., “The use of lithium to prevent or mitigate alkali-silica reaction in concrete pavements and structures,” Federal Highway Administration, U.S. Department Transportation, FHWA-HRT-06-133, pp. 29-31, 2007.
125.劉志堅、李釗、王韡蒨,「台灣地區粒料活性之檢測方法研究」,中國土木水利學刊,第十七卷,第三期,第437-450頁,民國九十四年九月。
126.Way, S.J., and Shayan, A., “Early Hydration of a Portland Cement in Water and Sodium Hydroxide Solutions: Composition of Solutions and Nature of Solid Phases,” Cement and Concrete Research, Vol. 19, pp. 759-769, 1989.
127.ASTM C289-94, “Standard Test Method for Potential Alkali-Silica Reactivity of Aggregates (Chemical Method),” Annual Book of ASTM Standards, Section 4, Vol.04.02, 1999.
128.ASTM C1260-94, ”Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method),” Annual Book of ASTM Standards, Section 4, Vol.04.02, 1999.
129.ASTM C227-97, ”Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations (Mortar-Bar Method),” Annual Book of ASTM Standards, Section 4, Vol.04.02, 1999.
130.ASTM C1293-95, “Standard Test Method for Concrete Aggregates by Determination of Length Change of Concrete Due to Alkali-Silica Reaction,” Annual Book of ASTM Standards, Section 4, Vol.04.02, 1999.
131.AASHTO T260-94, “Sampling and testing for total chloride ion in concrete raw materials,” Standard specification for transportation materials and methods of sampling and testing, 1994.
132.田福助,「電化學基本原理與應用」,五洲出版社,p.23,1999年。
133.Luping, T, and Nission, L.O., “Rapid determination of the chloride diffusivity in concrete by applying an electrical field, ACI Materials journal, No. 89-M6, pp. 49-53, January-February, 1992.
134.Yang, C.C., Wang, L.C., and T.L. Weng, “Using charge passed and total chloride content to assess the effect of penetration silane sealer on the transport properties of concrete,” Materials Chemistry and Physics, Vol. 85, pp.238-244, 2004.
135.Climent, M.A., Vera, G.d., López, J.F., Viqueira, E., and Andrade, C., “A test method for measuring chloride diffusion coefficients through nonsaturated concrete. Part Ⅰ. The instantaneous plane source diffusion case,” Cement and Concrete Research, Vol. 32, pp. 1113-1123, 2002.
136.Liu, C.C., and Wang, W.C., “Effect of the interfacial transition zone on the migration behavior of cations under the Accelerated Lithium Migration Technique,” Materials Chemistry and Physics, 2010 (submitted).
指導教授 李釗(Chau Lee) 審核日期 2010-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明