博碩士論文 93342011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:97 、訪客IP:3.142.252.100
姓名 謝吉修(Chi-Hsiu Hsieh)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 從最近過去的時間序列相位殘差分析 估計非模式化GPS誤差與改正
(The estimation and mitigation of unmodeled GPS biases from the recent time-series phase residuals analysis)
相關論文
★ 利用數個參考站模式化電離層影響量以進行GPS衛星測量★ 白化濾波應用於GPS動態衛星測量之研究
★ 應用數值地型於立體空載SAR影像之分析★ 消去GPS相位模稜OTF相對定位之研究
★ 應用地形物元於衛載SAR影像匹配之研究★ 參數解關聯應用於GPS雙主站相位模稜求解
★ 衛載SAR地塊影像匹配之參數最佳化★ 最小二乘過濾法應用於動態GPS衛星定位平穩性之研究
★ GPS即時動態定位最佳化演算法比較研究★ Radarsat-1 SAR影像最小二乘匹配之研究
★ 方差與協方差分量於Radarsat-1地塊影像匹配之研究★ 率定GPS接收器時間偏差對高程定位精度提升之研究
★ 分塊輻射參數調整應用於不同來源影像之匹配與套合★ 利用多參考站模式化相對對流層天頂向延遲以進行GPS動態定位
★ 應用時間序列分析於GPS多路徑效應之研究★ 研究不同資源衛星影像之匹配與套合
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (全文檔遺失)
請聯絡國立中央大學圖書館資訊系統組 TEL:(03)422-7151轉57422,或E-mail聯絡
摘要(中) 眾所周知,GPS電碼和載波相位測量在差分模式下的偏差,諸如多路徑效應是一個主要的誤差來源,它抑制了實現最高精度層級的定位成果。類多路徑特徵的信號是在動態衛星量測中,一個小區域內與空間相關且緩慢變化的訊號誤差,且無法平均此偏差。在不同的衛星、位置及時間這些偏移量誤差皆不同特徵,就如臉譜是獨一無二。唯有依據最近每天時間序列殘差估值重複的相關性,這種關係可以經濟地降低此多路徑誤差。
本研究開發一種創新技術,包括希爾伯特-黃變換(Hilbert-Huang Transform, HHT)的經驗模態分解(Empirical Mode Decomposition, EMD),以分析時間序列的載波相位殘差。分解後由統計顯著性檢測門檻值百分95的邊界線,進行檢測識別幾個短週期分量成份為白噪聲,以此消除高頻分量。本研究展示如何選擇最佳的門檻值。同時,增加了一個源於灰色關聯分析(Grey Relational Analysis, GRA)的外推技術,以預測偏差並糾正這種非系統性偏差的定位。實用上可通過上述模式的功能和灰色建模,再由傳統最小二乘平差與參數加權獲得產生更精確的三維定位坐標。
研究結果顯示,此改正技術是必要的程序。由此程序可更可靠地解相位模稜(Ambiguity),且糾正後可以顯著地改善GPS的動態定位與大地監測的精度。
摘要(英) It is well-known that unmodeled biases, such as the multipath effect, are a major source of errors in GPS code and carrier phase measurements in the differential mode, which can hinder the achievement of the highest levels of accuracy. An alike multipath-characterized signal is spatially correlated within a small area that introduces slow varying errors in the measurements due to satellite dynamics, whose biases cannot be averaged out. These offset biases are unique, much like a portrait. According to the correlation between day-to-day time series residual estimates in the recent past, this relationship can be widespread and economically exploited to mitigate multipath errors.
In this study an innovative method, which involves empirical mode decomposition (EMD) in the Hilbert-Huang transform (HHT), is employed to analyze time-series phase residuals. After decomposition, statistical significance testing using a 95 percentile boundary line can identify a few short period components, whiles the white noise is determined using a threshold to eliminate the high frequency component. In this study show how to choose the best threshold. An extrapolation technique, which is rooted in grey relational analysis (GRA), is simultaneously utilized to predict the biases for the current positioning task and thus to correct for such systematic biases. When technically supported by the above-mentioned mode functions and grey modeling, classical least-squares adjustment with parametric weighting can yield more accurate three-dimensional coordinates.
The results also show that this mitigation technique is a necessary procedure, which allows the ambiguity solutions to become more reliable so that after correction there is a over 50% improvement in GPS kinematic OTF positioning and geodetic monitoring accuracy.
關鍵字(中) ★ 全球衛星定位系統
★ 經驗模態分解
★ 灰色關聯分析
★ 希爾伯特-黃變換
★ 相位殘差分析
關鍵字(英) ★ GPS
★ Empirical Mode Decomposition
★ Grey Relational Analysis
★ Hilbert-Huang Transform
★ Phase Residuals Analysis
論文目次 中 文 摘 要 I
ABSTRACT II
ACKNOWLEDGEMENTS IV
CONTENTS V
LIST OF FIGURES VII
LIST OF TABLES XI
LIST OF ABBREVIATIONS XII
CHAPTER 1. INTRODUCTION 1
1.1 Motivation 3
1.2 Research objectives and scope 4
1.3 Contribution 5
1.4 Structure of the dissertation 5
CHAPTER 2. LITERATURE REVIEW 7
2.1 Functional description of a GNSS receiver 7
2.2 GPS observables and error sources 10
2.2.1 Satellite-based errors 13
2.2.2 Signal propagation errors 13
2.2.3 Receiver-based errors 16
2.3 Unmodeled GPS biases such as the multipath phenomenon 16
2.4 Phase residual analysis 19
2.4.1 Fourier transform 20
2.4.2 Wavelet transform 22
2.4.3 Hilbert-Huang transform 23
CHAPTER 3. ALGORITHM METHOD 26
3.1 Time-series SD phase residuals 28
3.2 Resolution of the GPS constellation orbit periods 38
3.3 Phase residual analysis 39
3.4 Bias forecasting using the GM(1,1) approach of GRA 50
3.5 Reduction algorithm with forecast bias parameters 56
CHAPTER 4. EXPERIMENTS AND RESULTS 59
4.1 Case 1: Baseline SPP0−SP3A 60
4.2 Case 2: Baseline CSRF−NTPU 73
CHAPTER 5. CONCLUSIONS AND FUTURE WORK 82
5.1 Conclusions 82
5.2 Limitations 83
5.3 Future Work 84
BIBLIOGRAPHY 85
APPENDIX 95
A. Least-squares parameter estimation of , and 95
B. Tactics for estimation of the variance component 97
CURRICULUM VITAE 98
參考文獻 Agnew, D.C. and Larson, K.M. (2007). Finding the repeat times of the GPS constellation. GPS Solutions, 11(1):71–76. DOI: 10.1007/s10291-006- 0038-4.
Amiri-Simkooei, A.R. and Tiberius, C.C.J.M. (2007). Assessing receiver noise using GPS short baseline time series. GPS Solutions, 11(1):21–35. DOI: 10.1007/ s10291-006 -0026-8.
Beran, T., Langley, R.B., Bisnath, S.B. and Serrano, L. (2007). High-accuracy point positioning with low-cost GPS receivers. Navigation 54(1):53–63.
Bevis, M., Businger, S., Herring, T.A., Rocken, C., Anthes, R.A. and Ware, R.H. (1992). GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system. Journal of Geophysical Research, 97(D14):15787–15801.
Bischoff, R., Hb-Umbach, R., Schulz, W. and Heinrichs, G. (2002). Employment of a multipath receiver structure in a combined Galileo/UMTS receiver. Proceedings of IEEE VTC Spring, 4(1):1844–1848. DOI: 10.1109/VTC.2002.1002940.
Braasch, M.S. (1996). Multipath effects. In: Parkinson BW, Spilker JJ Jr (eds) Global positioning system: theory and applications, progress in astronautics and aeronautics, Vol 163. American Institute of Aeronautics and Astronautics, Washington DC, pp 547–568.
Braasch, M.S. and Van Dierendonck, A.J. (1999). GPS receiver architectures and measurements. Proceedings of the IEEE, 87(1):48–64. DOI: 10.1109/ 5.736341.
Choi, K., Bilich, A., Larson, K.M. and Axelrad, P. (2004). Modified sidereal filtering: implications for high-rate GPS positioning. Geophysical Research Letters, 31:L22608. DOI: 10.1029/2004GL021621.
Comp, C.J. and Axelrad, P. (1998). Adaptive SNR-based carrier phase multipath mitigation technique. IEEE Transactions on Aerospace and Electronic Systems, 34(1):264–276. DOI: 10.1109/7.640284.
Crocetto, N., Gatti, M. and Russo, P. (2000). Simplified formulae for the BIQUE estimation of variance components in disjunctive observation groups. Journal of Geodesy, 74(6):447–457. DOI: 10.1007/s001900000109
Dach, R., Beutler, G., Hugentobler, U., Schaer, S., Schildknecht, T., Springer, T., Dudle, G. and Prost, L. (2003). Time transfer using GPS carrier phase: error propagation and results. Journal of Geodesy, 77(1–2):1–14. DOI: 10.1007/s00190-002- 0296-z.
Deng, J. (1989). Introduction to grey system theory. Journal of Grey System, 1(1):1-24.
Dow, J.M., Neilan, R.E. and Rizos, C. (2009). The International GNSS Service in a changing landscape of global navigation satellite systems. Journal of Geodesy, 83(3–4):191–198. DOI: 10.1007/s00190-008-0300-3.

Easton, R.L. (1980). The navigation technology program. Navigation, 1(1):15−20.
El-Mowafy, A. (2012). Precise real-time positioning using network RTK. In: Jin, S., Global navigation satellite systems: signal, theory and applications. 7:161−188. Publisher: InTech, 438 pages, ISBN-13:978-9-53307-843-4, DOI: 10.5772/1134.
Flandrin, P., Rilling, G. and Gonçalvès, P. (2004). Empirical mode decom- position as a filter bank. IEEE Signal Processing Letters, 11(2):112−114. DOI: 10.1109/ LSP.2003.821662.
Fourier, J. B. (1822). Théorie Analytique de la Chaleur, Paris: Chez Firmin Didot, père et fils.
Genrich, J.F. and Bock, Y. (1992). Rapid resolution of crustal motion at short ranges with the global positioning system. Journal of Geophysical Research, 97(B3):3261–3269. DOI: 10.1029/91JB02997.
Georgiadou, Y. and Kleusberg, A. (1988). On carrier signal multipath effects in relative GPS positioning. Manuscripta Geodaetica, 13(3):172–179.
Goad, C.C. and Yang, M. (1997). A new approach to precision airborne GPS positioning for photogrammetry. Photogrammetric Engineering and Remote Sensing, 63(9):1067–1077.
Grossman, A. and Morlet, J. (1984). Decomposition of hardy functions into square integrable wavelets of constant shape, SIAM J. Appl. Math., vol. 15, pp. 723-736. DOI: 10.1137/0515056.
Hassibi, A. and Boyd, S. (1998). Integer parameter estimation in linear models with applications to GPS. IEEE Trans Signal Process, 46(11):2938–2952
Hofmann-Wellenhof, B., Lichtenegger, H. and Collins, J. (1997). Global positioning system theory and practice, 4th edition. Springer, Wien New York.
Hopfield, H.S. (1963). The effect of tropospheric refraction on the Doppler shift of satellite data. Journal of Geophysical Research, 68(18):5157–5168.
Horemuž, M. and Sjöberg, L.E. (2002). Rapid GPS ambiguity resolution for short and long baselines. Journal of Geodesy, 76(6–7):381–391. DOI: 10.1007/s00190-002-0259-4.
Hsieh, C.H. (2003). A comparative study of optimal algorithms for real-time kinematic GPS positioning. Master’s thesis, National Central University, Taiwan, ROC.
Hsieh, C.H. and Wu, J. (2008). Multipath reduction on repetition in time series from the permanent GPS phase residuals. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B4. 3-11 July 2008 Beijing, pp. 911-916.
Hu, G., Abbey, D.A., Castleden, N., Featherstone, W.E., Earls, C., Ovstedal, O. and Weihing, D. (2005). An approach for instantaneous ambiguity resolution for medium- to long-range multiple reference station networks. GPS Solutions, 9(1):1–11. DOI: 10.1007/s10291-004-0120-8.
Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C. and Liu, H.H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings Royal Society London, 454A:903−995. DOI: 10.1098/rspa. 1998.0193.
Irsigler, M. (2010). Characterization of multipath phase rates in different multipath environments. GPS Solutions, 14(4):305−317. DOI: 10.1007/ s10291-009-0155-y.
James, J.F. (2011). A student′s guide to Fourier transforms. New York: Cambridge University Press, 3rd edition, ISBN-13: 978-0-521-17683-5.
Kay, S.M. (1993). Fundamentals of statistical signal processing: Detection theory, vol. 2. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.
Kaplan, E.D. and Hegarty, C.J. (2006). Understanding GPS: principles and applications. Artech House, 2nd edition.
Klobuchar, J.A. (1996). Ionospheric effects on GPS. In: Parkinson BW, Spilker JJ Jr (eds) Global positioning system: theory and applications, progress in astronautics and aeronautics, Vol 163. American Institute of Aeronautics and Astronautics, Washington DC, pp 485–515.
Koch, K.R. (1999). Parameter estimation and hypothesis testing in linear models, 2nd edition. Springer, Berlin Heidelberg New York.
Kuang, D., Schutz, B.E. and Watkins, M.M. (1996). On the structure of geometric positioning information in GPS measurements. Journal of Geodesy, 71(1):35–43. DOI: 10.1007/s001900050073.
Lachapelle, G., Cannon, M.E. and Lu, G. (1992). High-precision GPS navigation with emphasis on carrier-phase ambiguity resolution. Marine Geodesy, 15(4):253–269.
Lachapelle, G. (1997). Lecture notes of GPS Theory and applications. The University of Calgary, Calgary, Alberta, Canada, Fall, 444 pp.
Lau, L. and Cross, P. (2007). Development and testing of a new ray-tracing approach to GNSS carrier-phase multipath modelling. Journal of Geodesy, 81(11): 713–732. DOI 10.1007/s00190-007-0139-z.
Leick, A. (2004). GPS satellite surveying, 3rd edition. Wiley, Hoboken. ISBN-13: 978-0-471-05930-1
Marshall, J., Schenewerk, M. and Snay, R. (2001). The effect of the MAPS weather model on GPS-determined ellipsoidal heights. GPS Solutions, 5(1):1–14. DOI: 10.1007/PL00012871.
Mikhail, E.M. (1976). Observations and least squares, University Press of America, Lanham, ISBN-13: 978-0819123978.
Milbert, D. (2005). Influence of pseudorange accuracy on phase ambiguity resolution in various GPS modernization scenarios. Navigation, 52(1): 29–38.
Misra, P. and Enge, P. (2010). Global positioning system: signals, measurements and performance. Ganga-Jamuna Press, 2nd edition, ISBN-13: 978-0-97095-442-8.
Mohamed, A.H. and Schwarz, K.P. (1998). A simple and economical algorithm for GPS ambiguity resolution on the fly using a whitening filter. Navigation, 45(3):221–231.
Park, K.D., Nerem, R.S., Schenewerk, M.S. and Davis, J.L. (2004). Site-specific multipath characteristics of global IGS and CORS GPS sites. Journal of Geodesy, 77(12):799–803. DOI 10.1007/s00190-003-0359-9.
Parkinson, B.W., Stansell, T., Beard, R. and Gromov, K. (1995). A history of satellite navigation. Navigation, 42(1):109–164.
Ragheb, A.E., Clarke, P.J. and Edwards, S.J. (2007). GPS sidereal filtering: coordinate- and carrier-phase-level strategies. Journal of Geodesy, 81(5): 325–335. DOI: 10.1007/ s00190-006-0113-1.
Rahman, M. (2011). Applications of Fourier Transforms to Generalized Functions. WIT Press, USA, ISBN-13: 978-1-84564-564-9.
Ray, J.K., Cannon, M.E. and Fenton, P. (2001). Code and carrier multipath mitigation using a multi-antenna system. IEEE Transactions on Aerospace and Electronic Systems, 37(1):183–195.
Reichert, A.K. and Axelrad, P. (2001). Carrier-phase multipath corrections for GPS -based satellite attitude determination. Navigation, 48(2):77–88.
Saastamoinen, J. (2013). Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging Satellites. in: The Use of Artificial Satellites for Geodesy (eds S. W. Henriksen, A. Mancini and B. H. Chovitz), American Geophysical Union, Washington, D. C.. DOI: 10.1029/GM015p0247
Schwarz, C.R. and Kok, J.J. (1993). Blunder detection and data snooping in LS and robust adjustments. Journal of Surveying Engineering, 119(4):127−136. DOI: 10.1061/(ASCE)0733-9453 (1993)119:4(127)
Simon, M.K., Omura, J.K., Scholtz, R.A. and Levitt, B.K. (1994). Spread spectrum communication handbook, revised edition, McGraw-Hill Inc, New York.
Sourour, E.A. and Gupta, S.C. (1990). Direct-sequence spread-spectrum parallel acquisition in a fading mobile channel. IEEE Transactions on Communications, 38(7):992–998. DOI: 10.1109/26.57497.
Stoew, B., Nilsson, T., Elgered, G. and Jarlemark, P.O.J. (2007). Temporal correlations of atmospheric mapping function errors in GPS estimation. Journal of Geodesy, 81(5):311–323. DOI: 10.1007/s00190-006-0114-0.
Strang, G. and Borre, k. (1997). Linear algebra, geodesy, and GPS. Wellesley- Cambridge Press, USA, ISBN-10: 0-9614088-6-3.
Taneja, H.C. (2010). Advanced Engineering Mathematics, Volume II, Second Edition. New Delhi, India: I. K. International Pvt Ltd, ISBN-13: 978-81-80026-85-5.
Teunissen, P.J.G. (1995). The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. Journal of Geodesy, 70(1−2):65−82.
Teunissen, P.J.G., De Jonge, P.J. and Tiberius, C.C.J.M. (1997). Performance of the LAMBDA method for fast GPS ambiguity resolution. Navigation, 44(3):373–383.
Thipparthi, S.N. (2004). Improving positional accuracy using carrier smoothing techniques in inexpensive GPS receivers. Master’s thesis, New Mexico State University.
Tiberius, C. and Kenselaar, F. (2003). Variance component estimation and precise GPS positioning: case study. Journal of Surveying Engineering, 129(1): 11–18. DOI: 10.1061/ (ASCE) 0733-9453(2003)129:1(11).
U.S. Department of Defense (2008). Global positioning system standard positioning service performance standard. 4th edition.
Van Dierendonck, A.J., Fenton, P.C. and Ford, T. (1992). Theory and performance of narrow correlator spacing in a GPS receiver. Navigation, 39(3):265–284.
Wang, J., Stewart, M.P. and Tsakiri, M. (1998). Stochastic modeling for static GPS baseline data processing. Journal of Surveying Engineering, 124(4): 171–181. DOI: 10.1061/ (ASCE) 0733-9453(1998)124:4(171).
Wielgosz, P., Kashani, I. and Grejner-Brzezinska, D. (2005). Analysis of long-range network RTK during a severe ionospheric storm. Journal of Geodesy, 79(9):524–531. DOI: 10.1007/s00190-005-0003-y.
Wu, J. and Hsieh, C.H. (2008). GPS on-the-fly medium-length positioning by an estimation of the measurement variance. Journal of the Chinese Institute of Engineers, 31(3):459−468. DOI: 10.1080/02533839.2008.9671400.
Wu, J. and Hsieh, C.H. (2010). Statistical modeling for the mitigation of GPS multipath delays from day-to-day range measurements. Journal of Geodesy, 84(4):223−232. DOI: 10.1007/s00190-009-0358-6.
Wu, J. and Yeh, T.F. (2005). Single-epoch weighting adjustment of GPS phase observables. Navigation, 52(1):39–47.
Wu, Z. and Huang, N.E. (2005). Statistical significance test of intrinsic mode functions. In: Huang NE, Shen SSP (eds) Hilbert-Huang transform and its applications, World Scientific, Singapore, pp 107−127.
Xu, P.L. (2001). Random simulation and GPS decorrelation. Journal of Geodesy, 75(7–8):408–423. DOI: 10.1007/s001900100192.
Xu, P.L., Shi, C. and Liu, J. (2012). Integer estimation methods for GPS ambiguity resolution: an applications-oriented review and improvement. Survey Review, 44(59−71):1−22. DOI: 10.1179/1752270611Y.000000000 4
Zheng, Y. and Feng, Y.M. (2005). Interpolating residual zenith tropospheric delays for improved regional area differential GPS positioning. Navigation, 52(3):179–187.
Zhong, P., Ding, X., Yuan, L., Xu, Y., Kwok, K. and Chen, Y. (2010). Sidereal filtering based on single differences for mitigating GPS multipath effects on short baselines. Journal of Geodesy, 84(2):145–158. DOI: 10.1007/ s00190-009-0352-z
指導教授 吳究(Joz Wu) 審核日期 2014-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明