博碩士論文 93343010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:34.229.24.100
姓名 鄭榮瑞(Rong-Ruey Jeng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 Ti-V-Cr與Mg-Co基BCC儲氫合金性質研究
(Study on hydrogen storage characteristics ofTi-V-Cr and Mg-Co based BCC alloys)
相關論文
★ 非破壞性探討安定化熱處理對Al-7Mg鍛造合金微結構、機械與腐蝕性質之影響★ 非破壞性探討安定化熱處理對Al-10Mg鍛造合金微結構、機械與腐蝕性質之影響
★ 熱力微照射製作絕緣層矽晶材料之研究★ 分流擠型和微量Sc對Al-5.6Mg-0.7Mn合金微結構及熱加工性之影響
★ 銀對於鎂鎳儲氫合金吸放氫及電化學性質之研究★ 氧化物催化劑對亞共晶Mg-Ni合金之儲放氫特性研究
★ 熱處理對7050鋁合金應力腐蝕與含鈧鋁薄膜特性之影響研究★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 銅、鎂含量與熱處理對Al-14.5Si-Cu-Mg合金拉伸、熱穩定與磨耗性質之影響★ 恆溫蒸發熔煉鑄造製程合成鎂基介金屬化合物及其氫化特性之研究
★ 無電鍍鎳多壁奈米碳管對Mg-23.5wt.%Ni共晶合金儲放氫特性之影響★ 微量Sc對A356鑄造鋁合金機械性質之影響
★ 熱處理對車用鋁合金材料熱穩定性與表面性質之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 退火溫度對AA5083-H15鋁鎂合金沿晶腐蝕與應力腐蝕性質之影響★ Mn對含鐵A356鑄造鋁合金機械性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文主要聚焦於Ti-V基與Mg-Co基儲氫合金進行研究,因為此兩合金系統極具潛力,可應用於燃料電池車輛及氫氣儲存,作為極佳潔淨氫氣供應源。本研究目的主要為探討微量元素添加對bcc Ti-V-Cr及Ti-V-Cr-Mn儲氫特性之影響;發展無Co殘留,以創新機械合金法製程來合成Mg2CoH5氫化物,並結合合金添加Ni及Mg2Ni及晶粒細化雙重效益,對儲氫特性影響進行儲放氫特性研究。
含有0-3 at% Pd 之Ti33V33Cr34合金塊材是以真空電弧熔解製備。X光繞射分析結果顯示所有配製合金系統為單一bcc相,僅些微影響其晶格常數,其變化介於3.0297~3.0726Å之間。添加 0.5 at % Pd之合金在80℃溫度下具有高達3.42 mass % 之吸氫量。含有0.05-3at% Pd 之Ti-V-Cr合金比不含 Pd合金有較高吸氫速率,且平台壓隨Pd含量(0.05-0.5 at%之間)之增加而微幅提升。尤其當(Ti33V33Cr34)99.5Pd0.5合金經過50次吸放氫循環測試後,放氫平台壓顯著增加。
Ti-V基儲氫合金在常溫、常壓下具有極低的放氫平台壓。因此於Ti-V-Cr合金中,藉由添加不同比率的Al、Cu 及Al-20wt%Sc母合金,研究合金添加對其晶體結構、吸放氫特性以及Ti-V-Cr-Mn合金吸放氫循環特性之影響。微量Al、Cu及Al-20wt%Sc添加於Ti-V-Cr合金中可改善其吸放氫特性。添加2at%以下Al-20wt%Sc於Ti-V-Cr合金中,在不降低其吸氫量下可顯著提升放氫平台壓。再者,以速凝法製作極細晶粒之(Ti33V33Cr24Mn10)99 (Al-20wt%Sc)1 合金,在循環吸放氫測試中,可有效抑制可逆放氫量衰退情形。
針對Mg-Co 儲氫合金之研究,作者提出ㄧ種創新方法,以3Mg-MgCo2 為基材,可於相對短之球磨時間內合成Mg2CoH5。本研究針對2Mg-Co及3Mg-MgCo2 兩種材料製備及其合金吸放氫特性測試。由X光繞射結果顯示,以3Mg-MgCo2為基材經由50小時球磨及於400℃ 50atm氫氣氛下氫化15小時,可合成Mg2CoH5。經球磨之3Mg-MgCo2混合物在115℃下具有1.5 mass% 吸氫量,且在300-350℃之溫度區間放氫,可於20分鐘內達到2.0 mass%之放氫量。此結果大幅超越過去文獻報導以結合球磨及燒結程序法所製備合金之放氫速率。
本研究亦使用Ni及Mg2Ni添加於3Mg-MgCo2 混合物中,藉以提升吸氫量及改善吸、放氫動力學。採用3Mg-MgCo2、3Mg-MgCo2-10wt%Ni、3Mg-MgCo2-10wt%Mg2Ni及3Mg-MgCo2-20wt%Mg2Ni為起始基材,以機械合金法製程來合成Mg-Co基合金。X光繞射分析結果顯示,在所有配製合金中,主要合成氫化相為Mg2CoH5。依據程式脫附反應(Temperature-programmed decomposition,TPD)測試結果,經球磨3Mg-MgCo2-10wt%Ni合金之放氫溫度較原來3Mg-MgCo2混合物低約35℃。此外,添加10wt% Mg2Ni於3Mg-MgCo2 混合料中,可顯著提高其吸氫量及吸氫速率,尤其改善115℃低溫下之吸氫速率。3Mg-MgCo2-10wt% Mg2Ni 合金在350℃下之吸氫量可達3.0wt%,其吸氫速率可於5分鐘內達到2.5 mass%。電子顯微鏡(TEM)分析證實,經球磨之3Mg-MgCo2-10wt%Mg2Ni 合金具有bcc結構。
摘要(英) The present study focuses on hydrogen storage alloys, with particular emphasis on Ti-V-based bcc and Mg-Co-based alloys, as they have the potential to be some of the most promising clean hydrogen sources for use in fuel cell vehicles or hydrogen storage applications.
The main purpose of this research is to investigate the micro-alloying effects on the hydrogen storage properties of Ti-V-Cr and Ti-V-Cr-Mn bcc alloys; develop a novel route for synthesizing Mg2CoH5 hydride by mechanical alloying (MA) without leaving residual Co, and enhance the absorption-desorption properties of Mg-Co alloy by adding Ni and Mg2Ni, combining the effects of alloying and grain-refining on hydrogen storage properties.
Ti33V33Cr34 ingots with 0-3 at% Pd were prepared by argon arc melting. X-ray diffraction results reveal that all of these alloys are single bcc phases, and vary only slightly in their lattice parameters, which range from 3.0297 to 3.0726Å. Ti-V-Cr alloy that contains 0.5 at% Pd exhibits a high hydrogen absorption capacity of up to 3.42 mass% at 80℃. Pd-containing (0.05-3 at% Pd) alloys have a higher rate of absorption than alloy that does not contain Pd. The plateau pressure increased slightly with Pd content in the range 0.05 to 0.5 at%; in particular, the desorption plateau pressure of the (Ti33V33Cr34)99.5Pd0.5 alloy increased significantly after the 50th absorption-desorption cycling test.
Ti-V-based alloys typically exhibit a low desorption plateau pressure under ambient conditions. Therefore, various amounts of Al, Cu and Al-20wt%Sc master alloy are added to Ti-V-Cr based alloys, and the structural characteristics, hydrogen absorption-desorption properties and cycling properties of Ti-V-Cr-Mn alloy are investigated. The addition of trace Al, Cu and Al-20wt%Sc to Ti-V-Cr alloy improves its absorption and desorption properties. The addition of Al-20wt%Sc (< 2 at%) to Ti-V-Cr alloy apparently increases the desorption plateau pressure without reducing its hydrogen storage capacity. Furthermore, the fine-grain (Ti33V33Cr24Mn10)99 (Al-20wt%Sc)1 alloy produced by rapid solidification exhibits a low decline of reversible desorption capacity after cycling test.
The authors’ group proposed a novel method for producing Mg2CoH5 hydride by comparative short-term mechanical alloying (MA), using 3Mg-MgCo2 mixture as the starting material. 2Mg-Co and 3Mg-MgCo2 mixtures are prepared by MA, and their hydrogen storage properties are examined. X-ray diffraction (XRD) reveals that the main phase Mg2CoH5 can be synthesized from a 3Mg-MgCo2 mixture by 50h ball milling and hydrogenation under 5 MPa hydrogen atmosphere at 400℃ for 15h. An ball-milled 3Mg-MgCo2 mixture has an absorption capacity of up to 1.5 mass% at 115℃, and a desorption capacity of over 2.0 mass% hydrogen in 20 min at temperatures from 300 to 350℃, which represents a higher desorption rate than that achieved, according to the literature, by preparation using a combined milling and sintering procedure.
Pure Ni and Mg2Ni catalysts are added to 3Mg-MgCo2 mixture to enhance its hydrogen storage capacity and improve its kinetics of hydrogen absorption and desorption. A novel route was utilized to synthesize Mg-Co-based alloys by mechanical alloying, using 3Mg-MgCo2, 3Mg-MgCo2-10wt%Ni, 3Mg-MgCo2-10wt%Mg2Ni and 3Mg-MgCo2-20wt%Mg2Ni mixtures as the starting materials. X-ray diffraction of the hydride products reveals that Mg2CoH5 was the dominant hydride phase in all of these alloys. The results of temperature-programmed decomposition (TPD) reveal that the de-hydriding temperature of 10wt%Ni-containing 3Mg-MgCo2 mixture was around 35℃ lower than that of the ball-milled 3Mg-MgCo2 mixture. Additionally, adding 10wt% Mg2Ni to the 3Mg-MgCo2 mixture significantly improved both the hydrogen absorption capacity and the hydrogen absorption rate; the latter was especially improved at low temperature (115 ℃). The absorption capacity and absorption rate of the alloy 3Mg-MgCo2-10wt% Mg2Ni at 350℃ were 3.0 mass% and over 2.5 mass% in 5min, respectively. TEM analysis indicates that the ball-milled 3Mg-MgCo2-10wt%Mg2Ni mixture had a body centered cubic (BCC) structure.
關鍵字(中) ★ 儲氫材料
★ Ti-V-Cr合金
★ 金屬氫化物
★ 機械合金
★ Mg2CoH5
★ bcc
關鍵字(英) ★ Hydrogen storage materials
★ Ti-V-Cr alloy
★ bcc
論文目次 Content
中文摘要....................................................................................................................... Ⅰ
Abstract............................................................ ............................................................. Ⅲ
Acknowledgement......................................................................................................... Ⅵ
Content.......................................................................................................................... Ⅶ
Figure list...................................................................................................................... Ⅹ
Table list........................................................................................................................ XⅧ
CHAPTER 1 Introduction............................................................................................. 1
CHAPTER 2 Literature review of hydrogen storage alloys........................................ 5
2.1 Introduction on hydrogen storage alloys……………………………………... 5
2.2 Ti-V based bcc hydrogen storage alloys……………………………………… 9
2.2.1 Ti-Mn/Ti-Mn-Zr/Ti- Mn-V/Ti-V-Cr /Ti-V-Cr-Mn hydrogen storage alloys……………………………………………………………………...
14
2.2.2 Effect of alloying on hydrogen storage properties……………………….. 23
2.2.3 Effect of heat-treatment on the hydrogen storage properties…………….. 27
2.3 Mg-Co based hydrogen storage alloys……………………………………….. 30
2.3.1 Formation of Mg2CoH5 by a combined milling and sintering procedure... 32
2.3.2 Formation of Mg2CoH5 by reactive mechanical alloying……………..…. 35
2.3.3 Formation of Mg2CoH5 from nano-powder by sintering………………… 37
2.3.4 Formation of Mg2-xCo by the decomposition of Mg2CoH5 hydride……… 40
2.3.5 Effect of alloying elements on hydrogen storage properties of Mg and Mg-Co based alloys…………………………………………………….…
42
CHAPTER 3 Effects of the addition of Pd on the hydrogen absorption-desorption properties of Ti33V33Cr34 alloys............................................................... 53
3.1 Motivation.......................................................................................................... 53
3.2 Introduction....................................................................................................... 54
3.3 Experimental procedures……………………………………………………... 55
3.4 Results and discussion………………………………………………………... 57
3.4.1 Hydrogen absorption-desorption propertues of (Ti33V33Cr34)100-xPdx alloys……………………………………………………………….……..
57
3.4.2 SEM analysis……………………………………………………………... 62
3.4.3 Thermal behavior analysis……………………………………………….. 64
3.4.4 XRD and TEM analysis………………………………………………….. 66
3.4.5 XPS analysis……………………………………………………………… 68
3.5 Conclusions........................................................................................................ 78
CHAPTER 4 Effects of the addition of Al, Cu and Al-20 wt% Sc on the hydrogen absorption-desorption characteristics of Ti-V-Cr-based alloys…………
79
4.1 Motivation……………………………………………………………….……. 79
4.2 Introduction…………………………………………………………………… 80
4.2.1 Ti-V based bcc alloys.................................................................................. 80
4.2.2 Ti-V-Cr-Mn alloys ...................................................................................... 81
4.3 Experimental procedures………………………………………………........... 86
4.4 Results and discussion……………………………………………………….. 87
4.4.1 Hydrogen absorption-desorption properties of Ti33V33Cr34-x(x=Al, Cu, Al-20wt% Sc) alloys………………………………………………………
87
4.4.2 Effect of cycling on the hydrogen storage properties of Ti-V-Cr-Mn alloys………………………………………………………………………
96
4.5 Conclusions…………………………………………………………………… 110
CHAPTER 5 Synthesis and hydrogen storage properties of Mg-Co alloy prepared from 3Mg-MgCo2 mixture by mechanical alloying……………………………………………..………….………
111
5.1 Motivation……………………………………………………………………. 111
5.2 Introduction…………………………………………………………………… 112
5.3 Experimental procedures……………………………………………….…….. 113
5.3.1 Synthesis of MgCo2……………………………………………….……… 113
5.3.2 Mechanical alloying………………………………………………………. 116
5.3.3 Hydrogenation of ball-milled 3Mg-MgCo2 and 2Mg-Co mixtures……… 117
5.3.4 XRD/EPMA/TPD/TEM……………………………………………….…. 119
5.4 Results and discussion…………………………………………………….….. 119
5.4.1 Synthesis of MgCo2 compound……………………………………….….. 119
5.4.2 Hydriding of Mg-Co mixtures………………………………………….… 122
5.4.3 Absorption-desorption test for ball-milled 3Mg-MgCo2 and 2Mg-Co mixtures……………………………………………………………………
125
5.5 Conclusions…………………………………………………………………… 137
CHAPTER 6 Effect of Ni / Mg2Ni on hydrogen storage properties of Mg-Co alloy… 139
6.1 Motivation……………………………………………………………………. 139
6.2 Introduction…………………………………………………………………… 140
6.3 Experimental procedures………………………………………………….….. 142
6.3.1 Synthesis of Mg2Ni and MgCo2 by IECP………………………………………………… 142
6.3.2 BCC phase identification………………………………………………… 146
6.4 Results and discussion………………………………………………………... 148
6.5 Conclusions…………………………………………………………………… 163
CHAPTER 7 General conclusions……………………………………………………. 164
CHAPTER 8 Future works…………………………………………………………… 167
REFERENCES ………………………………………………………………………. 168
Figure list
Fig. 2.1 Pressure-Composition-Isotherms of hydrogen storage alloys ……………... 6
Fig. 2.2 Schematic representation of pressure-composition-isotherms (left) of a typical hydrogen absorption or desorption process and corresponding Van’t Hoff plot (right)……………………………………………………………..
7
Fig. 2.3 Schematic representation of pressure-composition-isotherms……………… 9
Fig. 2.4 Change in the plateau pressure of V–1 mol% M and V–1mol% Ti–1 mol% M alloys with the alloying element, M…………………………..………….
11
Fig. 2.5 Change in the plateau pressures with the amount of alloying elements, M, in dilute binary V–M alloys…………………………………………………
11
Fig.2.6 New approach of the alloy design related to multiphase alloy……………... 12
Fig.2.7 TEM microstructure of TiMnV…………………………………………….. 13
Fig.2.8 The PCT diagram of Ti-V-Cr-Mn………………………………... 13
Fig.2.9 Schematic drawing of crack-forming in activation………………………… 13
Fig.2.10 PCT curve of the Ti0.5V0.5Mn alloy at 260 K………………………………. 16
Fig.2.11 Composition dependence of hydrogen equilibrium pressure of Ti-Cr-V alloys………………………………………………………………………...
17
Fig.2.12 Hydrogen storage capacity of the Ti–Cr–V alloy system at 303 K………… 18
Fig.2.13 PCT curves (desorption process) at 313 K for the pure V metal and Ti–Cr–xV (Ti/Cr=2:3; x=80 to 5) alloys…………………………………….
19
Fig.2.14 PCT curves for the Ti–xCr–20V (x=32, 48 and 52 ) alloys………………… 19
Fig.2.15 PCT curves of Ti–xV–Cr–Mn (x=35, 45, 55) heat-treated alloys………….. 21
Fig.2.16 P–C isotherms of the Ti0.32Cr0.43-xV0.25Alx (0≦x ≦0.08) alloys at 293 K…. 24
Fig.2.17 Dehydrogenation p–c isotherms of heat-treated Ti32Cr46V22Ce0.4 alloy at 298, 318 and 343K, respectively……………………………………………
26
Fig.2.18 P-C-Isotherms for the (Ti0.267Cr0.333V0.40)93Fe7–Cex alloys measured at 298K………………………………………………………………………..
27
Fig.2.19 XRD patterns of the Ti–xV–Cr (x=0–7.5) alloys after a heat treatment at 1673 K for 1 h……………………………………………………………….
28
Fig.2.20 (a)P–C–T curves at desorption process of Ti–xV–Cr(Cr/Ti= 40/25) (x=0, 5, 10, 15, 25, 35) alloys in as-cast state (b) Corresponding P–C–T curves of the Ti-xV-(62.5-x)Cr alloys…………………………………………………
29
Fig.2.21 DSC curve of the Mg2CoH5 hydride……………………………………….. 33
Fig.2.22 P–C isotherm at 400℃ of 2Mg–Co milled after sintering procedure……... 33
Fig.2.23 Hydrogen (A) absorption and (B) desorption curves at 250 and 300 ◦C, of the 2Mg–Co milled after several cycles………………………………….….
33
Fig.2.24 Van’t Hoff diagrams of formation of the three hydrides of Mg–Co–H system and routes followed in synthesis procedures…………………….….
34
Fig.2.25 Evolution of hydrogen absorption during the (A) first (B) second (C) third route. Stages are separated by vertical lines while sintering parameters are indicated on the top of each graph……………………………………….….
35
Fig.2.26 X-ray diffraction patterns of pre-milled 2Mg–Co mixture as a function of milling time during RMA…………………………………………………...
36
Fig.2.27 Hydrogen absorption kinetics of Mg2CoH5 produced by (A) RMA and (B) sintering. Initial pressure: (A) 4.3MPa and (B) 4.8MPa…………………….
37
Fig.2.28 Schematic illustration of hydrogen plasma metal reaction equipment for the production of metal nanoparticles…………………………………………..
38
Fig.2.29 Bright-field electron micrographs of the obtained metal nanoparticles: Mg and Co……………………………………………………………………….
38
Fig.2.30 XRD curves of the Mg–Co system samples: (a) Mg–Co-1 (vacuum, 623 K, 48 h), (b) Mg–Co-2 (4MPa hydrogen, 623 K, 48 h), (c) Mg–Co-3 (4MPa hydrogen, 673 K, 24 h) and (d) Mg–Co-4 (after evacuation of Mg–Co-3 for
30 min)………………………………………………………………………
39
Fig.2.31 Activation curves for each alloy under conditions of 350 ℃ and 2 MPa, between the unmodified and trace element doped alloys……………………
45
Fig.2.32 Cyclic testing results. The plot shows the maximum hydrogen stored in each cycle versus cycle number. Cycles were 48 min at 350℃, consisting 24 min absorption at 1 MPa and 24 min desorption at 0.2 MPa……………
45
Fig.2.33 Absorption kinetics curves of milled MgH2 with and without 2 mol% BCC alloy at various milling times. Applied pressure: 10 bar, temperature:573 K
49
Fig.2.34 The P–C–T curves of Mg50Co45Fe5 ternary alloy after 200 h ball milling, at 373 K, the first absorption and desorption cycle……………………………
51
Fig.2.35 The P–C–T curves of Mg50Co45Pd5 ternary alloy after 200 h ball milling at 373 K, the first cycle………………………………………………………..
52
Fig.3.1 The 1st activation curves of (Ti33V33Cr34)100-xPdx (X=0, 0.05, 0.5, 3) alloys under 55atm H2 at 80℃……………………………………………………..
58
Fig.3.2 (a) Desorption curves of (Ti33V33Cr34)100-xPdx (X=0-3) alloys in first cycle and (b) PCT curves of (Ti33V33Cr34)100-xPdx (X=0-3) alloys in second cycle
59
Fig.3.3 Hydrogen absorption capacity against cycles for Ti33V33Cr34 and (Ti33V33Cr34)99.5Pd0.5 alloys at 80℃………………………………………...
60
Fig.3.4 PCT curves of Ti33V33Cr34 and (Ti33V33Cr34)99.5Pd0.5 alloys at the first, 25th and 50th cycling test at 80℃………………………………………………...
61
Fig.3.5 SEM image of various powders for (a) Ti33V33Cr34 alloy (b) (Ti33V33Cr34)99.5Pd0.5 alloy and (c) (Ti33V33Cr34)97Pd3 alloy after first absorption-desorption test …………………………………………………..
63
Fig.3.6 SEM image of various powders for (a) Ti33V33Cr34 alloy after 50th cycling test; (b) (Ti33V33Cr34)99.5Pd0.5 alloy after 50th cycling test; (c) Ti33V33Cr34 alloy after 50th cycling test (1200X) and (d) (Ti33V33Cr34)99.5Pd0.5 alloy after 50th cycling test (1200X)…………………………………………………….
64
Fig.3.7 Thermal behavior curves of (Ti33V33Cr34)100-xPdx (X=0, 0.05, 0.5, 3) alloys after 1st cycling test………………………………………………………….
65
Fig.3.8 Thermal behavior curves of Ti33V33Cr34 and (Ti33V33Cr34)99.5Pd0.5 alloys after 50th cycling test………………………………………………………...
66
Fig.3.9 X-ray diffraction patterns of as-cast (Ti33V33Cr34)100-xPdx (X=0, 0.05, 0.5, 3) alloys and Ti-V-Cr / Ti-V-Cr-Pd0.5 alloys after 50 cycles………………...
67
Fig.3.10 (a) and (b) TEM observations images of (Ti33V33Cr34)99.5Pd0.5 alloy which is activated at 400℃ for 1 hr in a 10 bar H2 atmosphere before PCI test..…
68
Fig.3.11 Oxygen atom content (%) of Ti33V33Cr34, (Ti33V33Cr34)99.5Pd0.5 and (Ti33V33Cr34)97Pd3 alloy at various depths from 0 to 1200Å………………...
69
Fig.3.12 XPS spectra of (a) Ti 2p of Ti33V33Cr34 alloy (b) V2p of Ti33V33Cr34 alloy at various sputtering depths from 0 Å to 1200 Å………………………………
71
Fig.3.13 XPS spectra of (a) Cr 2p of Ti33V33Cr34 alloy (b) Ti2p of (Ti33V33Cr34)97Pd3 alloy at various sputtering depths from 0 Å to 1200 Å……………………...
72
Fig.3.14 XPS spectra of (a) V2p of (Ti33V33Cr34)97Pd3 alloy (b) Cr2p of (Ti33V33Cr34)97Pd3 alloy at various sputtering depths from 0 Å to 1200 Å….
73
Fig.3.15 XPS spectra of (a) Pd 3d of (Ti33V33Cr34)97Pd3 alloy and (b) Pd 3d of (Ti33V33Cr34)99.5Pd0.5 alloy at various sputtering depths…………………..…
74
Fig.3.16 Schematic diagrams of the activation mechanism for the BCC phase hydrogen storage alloys: (a) as cast state (b) during activation stage (c) at the state where activation failed (d) with Pd addition.……………………...
77
Fig.4.1 DSC curves of the Ti33V33Cr(34-x)Mnx (x=0, 5, 10, 15, 20) alloys after the PCI test………………………………………………………………………
84
Fig.4.2 Variation of XRD patterns of Ti33V33Cr19Mn15 alloy under various conditions……………………………………………………………………
85
Fig.4.3 (a) Vacuum arc melting (VAM) furnace for melting elemental metals in a Ti-gettered argon atmosphere (b) sketch of suction casting by VAM………
86
Fig.4.4 XRD curves of Ti33V33Cr34-xAl x (x=0, 1, 1.5) alloys…………….………… 88
Fig.4.5 Desorption curves of (Ti33V33Cr24Mn10)100-xCux (x=0,1,2, 3) alloys at 80℃. 88
Fig.4.6 X-ray diffraction patterns of as-cast (Ti33V33Cr24Mn10)100-xCux (x=0, 1, 2, 3) alloys…………………………………………………………….………..
89
Fig.4.7 XRD curves of (Ti33V33Cr34)¬100-x(Al-20wt.%Sc)x (=0, 0.2, 0.6, 2, 10) alloys……………………………………………………………………..….
91
Fig.4.8 Desorption curves of (Ti33V33Cr34)100-x(Al-20wt.%Sc)x (x=0, 0.2, 0.6, 2, 10) alloys at 80℃.................................................................................................
92
Fig.4.9 Grain morphology and distribution of (a) as-cast Ti-V-Cr and (b) as-cast Ti-V-Cr-(Al-20wt%Sc)2.……………………………………………….……
93
Fig.4.10 BEI image of precipitates of the as-cast Ti33V33Cr34 alloy…………….……. 94
Fig.4.11 Images of (a) scandium oxide (BEI) (b) oxygen mapping (c) scandium mapping for as-cast (Ti33V33Cr34)98(Al-20wt%Sc)2 alloy…………….……..
95
Fig.4.12 X-ray diffraction patterns of as-cast (Ti33V33Cr24Mn10)100-x(Al-20wt.%Sc)x (x=0, 1, 2) alloys………..…………………………………………………...
97
Fig.4.13 Desorption curves of as-cast (Ti33V33Cr24Mn10)100-x(Al-20wt.%Sc)x (x=0, 1, 2) alloys at the first desorption at 80℃ under high pure H2 (purity > 99.999%).........................................................................................................
98
Fig.4.14 PCT curves of as-cast Ti33V33Cr24Mn10 alloy at the first, 12th, 22th and 32th cycling at 80℃...............................................................................................
101
Fig.4.15 PCT curves of as-cast (Ti33V33Cr24Mn10)99(Al-20wt.%Sc)1 alloy at the first, 12th, 22th and 32th cycling at 80℃...................................................................
102
Fig.4.16 PCT curves of rapidly solidified Ti33V33Cr24Mn10 alloy at the first, 12th, 22th and 32th cycling at 80℃..................................................................................
103
Fig.4.17 PCT curves of rapidly solidified (Ti33V33Cr24Mn10)99(Al-20wt.%Sc)1 alloy at the first, 12th, 22th and 32th cycling at 80℃................................................
104
Fig.4.18 Particle condition of rapidly solidified (suction rod) (Ti33V33Cr24Mn10)99(Al-20wt%Sc)1, as cast (Ti33V33Cr24Mn10)99(Al-20wt%Sc)1 and as cast Ti33V33Cr24Mn10 alloys after 32 cycles.……………………………………………………………………
104
Fig.4.19 X-ray diffraction patterns of as-cast (Ti33V33Cr24Mn10)99(Al-20wt.%Sc)1, rapidly solidified (Ti33V33Cr24Mn10)99(Al-20wt.%Sc)1 and as-cast Ti33V33Cr24Mn10 powders after 32th cycling test at 80℃……………………
105
Fig.4.20 Illustration of effects of scandium addition on oxide formation and the initial activation behavior for Ti-V-Cr-Mn alloy: (a) high oxygen concentration condition (before Sc addition) (b) low oxygen concentration level (after Sc addition)………………………..…………………………....
108
Fig.5.1 Composition of Mg80Co20 and Mg70Co30 as the starting composition for the formation of MgCo2 compound in the Mg-Co binary phase diagram…………………….
114
Fig.5.2 Isothermal evaporation casting furnace for synthesizing MgCo2 compound 115
Fig.5.3 Various melting procedures (melting temperature against melting time) for synthesizing MgCo2 compound by isothermal evaporation casting process (IECP)……………………………………………………………………….
115
Fig.5.4 Ball mill apparatus and milling steps (15 min for each step) for producing 3Mg-MgCo2 and 2Mg-Co mixtures…………………………………………
116
Fig.5.5 Hydriding system for Mg-Co based alloys…………………………………. 117
Fig.5.6 (a) PCI apparatus used for determining the hydrogen absorption-desorption capacities of metal hydrides at various temperatures (b) front panel.……….
118
Fig.5.7 Microstructure of MgCo2 produced from Mg80Co20. Light regions are MgCo2, while dark regions are eutectic Mg-rich Mg-MgCo2………………………
120
Fig.5.8 Microstructure of MgCo2 produced from Mg80Co20. The light regions are MgCo2, while the deep holes are caused by loss of Mg during the evaporation procedure………………………………………………………
121
Fig.5.9 Microstructure of MgCo2 produced from Mg70Co30. The light regions are MgCo2, while the dark regions represent deep holes caused by the loss of Mg during the evaporation procedure………………………………………
121
Fig.5.10 X-ray diffraction patterns of MgCo2 powder produced by IECP with Mg-evaporation at 750℃ for 6h.....................................................................
122
Fig.5.11 X-ray diffraction patterns of 3Mg-MgCo2 and 2Mg-Co mixtures for the following conditions: (a) 3Mg-MgCo2 mixture before MA (b) 3Mg-MgCo2 mixture after 50h of ball milling (c) as-milled 3Mg-MgCo2 mixture after hydriding (d) 2Mg-Co mixture after 50h of ball milling (e) as-milled 2Mg-Co mixture after hydriding……………………………………………
124
Fig.5.12 Mechanism of easy formation of Mg2CoH5 by hydriding in 50 atm H2 at 400℃ for 15h.................................................................................................
125
Fig.5.13 Rate of hydrogen absorption of the ball-milled 3Mg-MgCo2 and 2Mg-Co mixture in a temperature range of 115-350℃................................................
126
Fig.5.14 Rate of hydrogen desorption of ball-milled 3Mg-MgCo2 mixture in temperature range 115-350℃.........................................................................
127
Fig.5.15 Rate of hydrogen absorption of ball-milled 3Mg-MgCo2 mixture in temperature range 115-350℃.........................................................................
128
Fig.5.16 Rate of hydrogen desorption of ball-milled 3Mg-MgCo2 mixture in temperature range 115-350℃.........................................................................
129
Fig.5.17 Desorption curves of 3Mg-MgCo2 mixture after 50h of ball milling at 115-350℃……………………………………………………………….…..
130
Fig.5.18 Desorption curves of 3Mg-MgCo2 mixture after 100h of ball milling at 115-350℃…………………………………………………………………...
130
Fig.5.19 PCT curves of 3Mg-MgCo2 mixture after 50h of ball milling at 300-350℃ 133
Fig.5.20 Absorption curve of ball-milled 3Mg-MgCo2 mixture as pressure is increased from 0 to 8atm at 350℃.................................................................
134
Fig.5.21 X-ray diffraction pattern of ball-milled 3Mg-MgCo2 mixture which was first evacuated at 400℃ for 1h then followed by PCI test at 350℃ and up to 8 atm hydrogen atmosphere………………………………………………
134
Fig.5.22 XRD curves of the ball milled 3Mg-MgCo2 mixture under the condition of (A) sintering at 400℃ in vacuum (B) hydriding at 400℃ under 50 atm H2 for 15h, then evacuation for 1h………………………………………….…..
135
Fig.5.23 TPD profile of the hydrogenated 3Mg-MgCo2 mixture at a heating rate of 5 ℃ /min………………………………………………………………………
135
Fig.5.24 PCI curves of ball-milled 2Mg-Co and 3Mg-MgCo2 mixtures at 115℃…… 136
Fig.5.25 absorption curves of ball-milled 2Mg-Co and 3Mg-MgCo2 mixtures at 22℃……………………………………………………………………….…
136
Fig.5.26 Decomposition Van?t Hoff diagrams of the hydrides formed by hydriding under 5 MPa hydrogen atmosphere at 400℃ for 15h……………………….
137
Fig.6.1 Available compositions of forming Mg2Ni compound by IECP in the Mg-Ni binary phase diagram…………………………………………….….
142
Fig.6.2 Resistance melting furnace for synthesizing Mg2Ni powder by IECP……... 143
Fig.6.3 (a)-(d) Isothermal evaporation casting process (IECP) for the mass production of Mg2Ni powder………………………………………………..
144
Fig.6.4 (a) TEM diffraction camera (b) diffraction ring pattern 147
Fig.6.5 X-ray diffraction patterns of Mg2Ni powder produced by IECP…………… 150
Fig.6.6 X-ray diffraction patterns of (a) 3Mg-MgCo2 mixture (b) 3Mg-MgCo2-10wt%Ni mixture (c) 3Mg-MgCo2-10wt%Mg2Ni (d) 3Mg-MgCo2-20wt%Mg2Ni mixture after 50h of milling…………………...
151
Fig.6.7 X-ray diffraction patterns of hydrides formed from (a) 3Mg-MgCo2 mixture (b) 3Mg-MgCo2-10wt%Ni mixture (c) 3Mg-MgCo2-10wt%Mg2Ni mixture (d) 3Mg-MgCo2-20wt%Mg2Ni mixture after 50h of ball milling and hydriding in 5 MPa hydrogen atmosphere at 400℃ for 15h………...…
152
Fig.6.8 X-ray diffraction pattern of 3Mg-MgCo2-10wt%Ng2Ni hydride which was first evacuated at 350℃ for 1h then followed by hydriding at 25℃ under 5 MPa H2 for 1h…………………………………………………………….…
153
Fig.6.9 TPD profile of hydrides of (a) 3Mg-MgCo2 mixture (b) 3Mg-MgCo2-10wt%Ni mixture (c) 3Mg-MgCo2-10wt%Mg2Ni mixture (d) 3Mg-MgCo2-20wt%Mg2Ni mixture after 50h of ball milling, following heating at a rate of 5℃ min-1…………………………………………….….
154
Fig.6.10 Rate of hydrogen absorption of (a) 3Mg-MgCo2 (b) 3Mg-MgCo2-10wt%Ni (c) 3Mg-MgCo2-10wt%Mg2Ni mixture (d) 3Mg-MgCo2-20wt%Mg2Ni mixture in temperature range 115-350℃ after 50h of ball milling and hydrogenation under 5 MPa hydrogen atmosphere at 400℃ for 15h………
156
Fig.6.11 Spillover mechanism in formation of Mg-Co-based hydrides, including dissociation of H2 into 2H; migration of H atom from catalyst to substrate, and diffusion of H atom into crystal………………………………………...
156
Fig.6.12 Rate of hydrogen desorption of (a) 3Mg-MgCo2 (b) 3Mg-MgCo2-10wt%Ni (c) 3Mg-MgCo2-10wt%Mg2Ni mixture (d) 3Mg-MgCo2-20wt%Mg2Ni mixture in temperature range 115-350℃ after 50h of ball milling and hydrogenation under 5 MPa hydrogen atmosphere at 400℃ for 15h………
158
Fig.6.13 PCI curves of ball-milled (a) 3Mg-MgCo2 (b) 3Mg-MgCo2-10wt%Ni mixture (c) 3Mg-MgCo2-10wt%Mg2Ni mixture (d) 3Mg-MgCo2-20wt% Mg2Ni mixture at 350℃…………………………………………..………..
159
Fig.6.14 Hydrogen absorption-desorption curves of as-milled (a) 3Mg-MgCo2 (b) 3Mg-MgCo2-10wt%Mg2Ni mixture (c) 3Mg-MgCo2-20wt%Mg2Ni mixture (d) 3Mg-MgCo2-10wt%Ni mixture at 115℃ , produced by 50h of ball milling and hydrogenation in a 5 MPa hydrogen atmosphere at 400℃ for 15h………………………………………………………………………….
159
Fig.6.15 X-ray diffraction pattern of 3Mg-MgCo2-20wt%Ng2Ni hydride which was first evacuated at 400℃ for 1h then followed by hydriding at 115℃ under 5 MPa H2 for 1h………………………………………………………….….
160
Fig.6.16 X-ray diffraction pattern of 3Mg-MgCo2-10wt%Ng2Ni hydride which was first evacuated at 400℃ for 1h then followed by hydriding at 25℃ under 5 MPa H2 for 1h…………………………………………………………….…
160
Fig.6.17 (a)TEM bright field image (b) BCC indexed selected-area electron diffraction pattern of mixture of 10wt% Mg2Ni-containing 3Mg-MgCo2 alloy after 50h of milling.………….…………………………………….…
162
Fig.6.18 Chemical analysis, by EDX coupled with TEM, of 3Mg-MgCo2-10wt%Mg2Ni mixture: (a) nano cluster (b) matrix after 50h of milling. Cu peaks are associated with pure copper holder used in preparation of TEM sample…………………………………………………
162
Table list
Table 1.1 FreedomCAR hydrogen storage system targets………………………….. 2
Table 2.1 Metal hydrides and their hydrogen storage properties…………………… 6
Table 2.2 Synthesis procedure, pre-treatment, reaction condition and hydride form of Mg-Co-based hydrides…………………………………………………
31
Table 2.3 Reported composition and synthesis method for Mg2-xCo………………. 40
Table 2.4 MgCo and MgCo2 observation for different formation routes…………… 41
Table 2.5 The hydrogen absorption–desorption properties of Mg–Co-based BCC alloys………………………………………………………………………
51
Table 3.1 The absorption-desorption capacities and the calculated lattice parameters of each composition…………………………………………..
67
Table 3.2 Chemical analysis of Ti33V33Cr34 alloy at various depths from 0 to 1200Å (at%)……………………………………………………………................
70
Table 4.1 Hydrogen storage characteristics of (Ti33V33Cr34)¬100-x(Al-20wt.%Sc)x (=0, 0.2, 0.6, 2, 10) alloys under 55 atm H2 at 80℃…………………..…
92
Table 4.2 Composition of precipitates formed in the as-cast Ti33V33Cr34 alloy…….. 94
Table 4.3 Chemical analysis of scandium oxide in the (Ti33V33Cr34)98(Al-20wt%Sc)2 alloy………………………………………
95
Table 4.4 Chemical analysis of (Ti33V33Cr24Mn10)100-x(Al-20wt%Sc)x (x=0, 1, 2) by ICP (wt%)……………………………………………………………...
98
Table 4.5 Hydrogen storage properties and oxygen content of (Ti33V33Cr24Mn10)100-x(Al-20wt.%Sc)x (X=0, 1, 2) alloys under 55 atm H2 at 80℃…………………………………………………………………….
99
內 容
本文.............................................................................................................................. XIX
圖目錄.......................................................................................................................... XXII
表目錄.......................................................................................................................... XXⅧ
第一章 簡 介..................................................................................................... 181
第二章 儲氫合金文獻回顧................................................................................ 185
2.1 儲氫合金簡介………………………………………………………………… 185
2.2 Ti-V基bcc 儲氫合金………………………………………………………… 189
2.2.1 Ti-Mn/Ti-Mn-Zr/Ti-Mn-V/Ti-V-Cr/Ti-V-Cr-Mn儲氫合金………….. 193
2.2.2 合金元素添加對儲氫性質之影響………………………………………. 200
2.2.3 熱處理對儲氫性質之影響…………………………………………..….. 203
2.3 Mg-Co基儲氫合金…………………………………………………………….. 206
2.3.1 結合球磨及燒結程序合成Mg2CoH5………………………..…………….. 208
2.3.2 以反應機械合金法合成Mg2CoH5….....................................…………..…. 211
2.3.3 由奈米粉末以燒結法合成Mg2CoH5…….................................…………… 212
2.3.4 以Mg2CoH5 氫化物分解生成Mg2-xCo….................................................…… 214
2.3.5 合金元素添加對Mg及Mg-Co基合金儲氫性質影響…………..……….… 215
第三章 Pd對Ti33V33Cr34合金吸放氫性質影響..................................................... 223
3.1 動機................................................................................................................... 223
3.2 簡介................................................................................................................... 224
3.3 實驗步驟……………………………………………………………………... 225
3.4 結果與討論…………………………………………………………………... 227
3.4.1 (Ti33V33Cr34)100-xPdx 合金之吸放氫特性…………………………….…….. 227
3.4.2 SEM分析…………………………………………………………………... 230
3.4.3 熱分析…………………………………………………………………….. 232
3.4.4 X光繞射及電子顯微鏡分析…………………….……………………….. 234
3.4.5 X光光電子能譜儀分析…………………………………………………… 236
3.5 結論................................................................................................................... 245
第四章 添加Al、Cu及Al-20wt%Sc對Ti-V-Cr基合金吸放氫特性影響研究…
246
4.1 動機……………………………………………………………………..……. 246
4.2 簡介…………………………………………………………………………… 247
4.2.1 Ti-V基bcc合金………................................................................................ 247
4.2.2 Ti-V-Cr-Mn 合金...................................................................................... 248
4.3 實驗步驟………………………………………………………………........... 252
4.4 結果與討論…………………………………………………………………… 253
4.4.1 Ti33V33Cr34-x(x=Al、Cu、Al-20wt% Sc)合金吸放氫特性……………… 253
4.4.2 循環吸放氫測試對Ti-V-Cr-Mn 合金之儲氫特性影響………………… 262
4.5 結論…………………………………………………………………………… 274
第五章 由3Mg-MgCo2混合物以機械合金法合成Mg-Co合金之儲氫性質研究..
275
5.1 動機…………………………………………………………………….….…. 275
5.2 簡介………..….……………………………………………………………… 275
5.3 實驗步驟……………………………………………………………….…….. 276
5.3.1 MgCo2之合成……………………………………………….……………… 276
5.3.2 機械合金法………………………………………………………………. 279
5.3.3 球磨3Mg-MgCo2及2Mg-Co混合物之氫化……………………………….. 280
5.3.4 X-光繞射(XRD)/成份分析(EPMA)/可程式氫氣脫附(TPD)/穿透式電子顯微鏡(TEM)分析…………………………………………………….….
282
5.4 結果與討論……………………………………………………………….….. 282
5.4.1 MgCo2 化合物之合成………………………………………………….….. 282
5.4.2 Mg-Co 混合物之氫化………………………………………………….… 285
5.4.3 球磨之3Mg-MgCo2及2Mg-Co混合物吸放氫測試………………………… 287
5.5 結論…………………………………..…………………………………….… 298
第六章 Ni及Mg2Ni對Mg-Co合金儲氫性質之影響………..…………………… 300
6.1 動機………………………………………………….………………………. 300
6.2 簡介………………………………………………………..………………… 300
6.3 實驗步驟………………………………………………………………….….. 302
6.3.1 以IECP法合成Mg2Ni及MgCo2……………………..……………………………………………… 302
6.3.2 BCC 相鑑定……………………………………………………………… 306
6.4 結果與討論…………………………………………………………………... 308
6.5 結論………………..………………………………………………………… 321
第七章 總結論…………………………………………………………………. 322
第八章 未來工作……….……………………………………………………… 324
參考資料 ………………………………………………………………………. 325
圖目錄
圖2.1 儲氫合金之PCI結果………………………………………………………... 186
圖2.2 左邊圖代表一典型吸氫或放氫過程PCI圖,而右邊則為其對應之Van’t Hoff plot…………………………………………………………………...
187
圖2.3 吸放氫PCI曲線圖………………………………………………………….. 189
圖2.4 具合金M之V–1 mol%M及V–1 mol%Ti–1 mol%M合金之平台壓力變化… 190
圖2.5 添加合金元素M於韌性之二元V–M合金之平台壓力變……………….…. 190
圖2.6 具有雙相結構合金新設計…………………………………….…………... 191
圖2.7 TiMnV 之TEM顯微組織……..…………………………………………….. 192
圖2.8 Ti-V-Cr-Mn 之PCT曲線圖……………………….………………………... 192
圖2.9 在活化階段裂紋生成圖…………………………………………………… 192
圖2.10 Ti0.5V0.5Mn 合金於260 K 之PCT 曲線…………….………………………. 194
圖2.11 Ti-Cr-V合金中組成決定平衡氫壓之PCI圖…………………………….... 195
圖2.12 Ti–Cr–V合金系統於303 K之儲氫量…………………………………… 196
圖2.13 純V金屬與Ti–Cr–xV (Ti/Cr=2:3; x =80 to 5)合金於313 K 之放氫PCT曲線……………………………………………………………………..
197
圖2.14 Ti–xCr–20V(x=32,48及52)合金之PCT曲線…………….……………… 197
圖2.15 熱處理Ti–xV–Cr–Mn (x=35、45、55)合金之PCT曲線………..…….. 198
圖2.16 Ti0.32Cr0.43-xV0.25Alx (0≦x ≦0.08)合金於293 K之吸放氫PCI曲線……... 201
圖2.17 熱處理之Ti32Cr46V22Ce0.4合金分別於298K、318K及343K之放氫PCI曲線… 202
圖2.18 (Ti0.267Cr0.333V0.40)93Fe7–Cex合金於298K之PCI曲線[68]…………….…… 203
圖2.19 Ti–xV–Cr (x=0–7.5)合金經1673K 1小時熱處理後之XRD繞射圖…... 204
圖2.20 (a) Ti–xV–Cr(Cr/Ti= 40/25) (x=0、5、10、15、25、35)合金在鑄造狀態之放氫PCI曲線(b) Ti-xV-(62.5-x)Cr合金對應之P–C–T曲線.
205
圖2.21 Mg2CoH5 氫化物之DSC曲線…………………………………………….….. 208
圖2.22 經球磨及燒結程序之2Mg–Co於400℃之PCI曲線………………………... 209
圖2.23 球磨2Mg–Co多次循環後於250及300 ℃之(A)吸氫及(B)放氫曲線….…. 209
圖2.24 Mg–Co–H系統及不同合成路徑所合成3種氫化物之Van’t Hoff圖…. 210
圖2.25 (A)第1 (B)第2 (C)第3路徑合成氫化物之吸氫性質評估。每一階段以垂直線分開,而燒結參數如每一圖頂部說明………………………...….
210
圖2.26 預球磨之2Mg–Co混合物以不同反應球磨時間所得粉末之XRD繞射圖… 211
圖2.27 Mg2CoH5以(A)反應球磨法及(B)燒結法合成之吸氫動力學。初始壓力:(A) 4.3MPa及(B) 4.8MPa…………………………………..…………….
212
圖2.28 用以製備奈米金屬顆粒之氫電漿金屬反應設備示意圖……………….... 213
圖2.29 製備之Mg與Co金屬奈米顆粒電子顯微鏡明視野圖……………………… 213
圖2.30 Mg–Co系統XRD繞射曲線圖:(a) Mg–Co-1 (真空、623 K、48 h),(b) Mg–Co-2 (4MPa H2、623 K、48 h),(c) Mg–Co-3 (4MPa H2、673 K、24 h)及(d) Mg–Co-4 (Mg–Co-3 抽真空30分鐘後)……………………
213
圖2.31 每一合金於350 ℃及2 MPa氫壓下之活化曲線………………………… 217
圖2.32 合金吸放氫循環測試結果。此圖顯示循環次數與最大儲氫量之關係。循環測試條件為於350℃下維持48分鐘,並於1 MPa下持續吸氫24分鐘及於0.2 MPa下放氫24分鐘………………………………………………..
217
圖2.33 具2 mol% BCC合金添加與無添加MgH2,於不同球磨時間下之吸氫動力學曲線。測試壓力:10 bar,溫度: 573 K …………………………………
220
圖2.34 Mg50Co45Fe5 三元合金經200小時球磨,於373 K第一次吸氫與放氫之PCT曲線…………………………………………………………………………
221
圖2.35 Mg50Co45Pd5三元合金經200小時球磨,於373 K第一次吸氫與放氫之PCT曲線……………………………………………..…………………………..
222
圖3.1 (Ti33V33Cr34)100-xPdx (X=0、0.05、0.5、3)合金在55atm氫氣壓與80℃溫度下之初始吸氫曲線……………………………………..………………..
227
圖3.2 (a) (Ti33V33Cr34)100-xPdx (X=0-3) 合金於80℃第一次放氫曲線及(b) (Ti33V33Cr34)100-xPdx (X=0-3) 合金於80℃第二次吸放氫PCT曲線………...
228
圖3.3 Ti33V33Cr34 及(Ti33V33Cr34)99.5Pd0.5 合金於80℃下吸氫循環次數與吸氫量關係…………………………………………………………………………
229
圖3.4 Ti33V33Cr34 及 (Ti33V33Cr34)99.5Pd0.5合金於80℃循環測試下,第一次、第25次及第50次之吸放氫PCT曲線……………………………………………...
230
圖3.5 (a) Ti33V33Cr34 (b) (Ti33V33Cr34)99.5Pd0.5 及(c) (Ti33V33Cr34)97Pd3 合金經第一次吸放氫後之SEM圖像…………………………………………………..
231
圖3.6 經50次循環吸放氫測試之(a) Ti33V33Cr34 合金 (b) (Ti33V33Cr34)99.5Pd0.5合金(c) Ti33V33Cr34 合金(1200X) 及(d) (Ti33V33Cr34)99.5Pd0.5合金(1200X) 之不同合金粉末 SEM 圖像………………………………………………..
232
圖3.7 (Ti33V33Cr34)100-xPdx (X=0、0.05、0.5、3)合金經第一次吸放氫測試後,試樣之熱分析曲線………………………………………………………….
233
圖3.8 Ti33V33Cr34及(Ti33V33Cr34)99.5Pd0.5合金經第50次吸放氫測試後,試樣之熱分析曲線………………………………………………………………………
234
圖3.9 鑄態 (Ti33V33Cr34)100-xPdx (X=0、0.05、0.5、3)合金及 Ti-V-Cr / Ti-V-Cr-Pd0.5 合金經50次吸放氫循環測試後之X光繞射圖……….........
235
圖3.10 (a) 及 (b) (Ti33V33Cr34)99.5Pd0.5 合金之TEM影像,此合金粉末於400℃溫度及10atm氫氣壓下活化一小時………………………………………..
236
圖3.11 Ti33V33Cr34、(Ti33V33Cr34)99.5Pd0.5 及 (Ti33V33Cr34)97Pd3 合金由0至 1200Å不同深度之氧含量(%)………………………………………………………..
237
圖3.12 (a) Ti33V33Cr34 合金之Ti2P (b) Ti33V33Cr34合金之V2p在0 Å 至1200 Å不同表面深度之XPS能譜…………………………………………………..
239
圖3.13 (a) Ti33V33Cr34 合金之Cr 2p (b) (Ti33V33Cr34)97Pd3 合金之Ti2p在0 Å 至1200 Å不同表面深度之XPS能譜…………………………………………..
240
圖3.14 (a) (Ti33V33Cr34)97Pd3合金之V2p (b) (Ti33V33Cr34)97Pd3合金之Cr2p在0 Å 至1200 Å不同表面深度之XPS能譜………………………………………..
241
圖3.15 (a) (Ti33V33Cr34)97Pd3 合金之Pd 3d (b) (Ti33V33Cr34)99.5Pd0.5合金之Pd3d在0 Å 至1200 Å不同表面深度之XPS能譜………………………………..
242
圖3.16 BCC儲氫合金活化機構示意圖,描述:(a)鑄造狀態(b)活化階段(c)無法活化階段(d)添加Pd階段………………………………………………...
244
圖4.1 Ti33V33Cr(34-x)Mnx (x=0、5、10、15、20)合金經80℃ PCI吸放氫測試後,各組成試樣之DSC曲線…………………………………….………………
250
圖4.2 Ti33V33Cr19Mn15合金以不同加熱溫度執行DSC測試後試樣之XRD繞射曲線 250
圖4.3 (a)真空電弧熔解爐(b)真空電弧熔解爐內置真空吸引鑄造系統示意圖 252
圖4.4 Ti33V33Cr34-xAl x (x=0、1、1.5) 合金之XRD曲線……………….………… 254
圖4.5 (Ti33V33Cr24Mn10)100-xCux (x=0、1、2、3)合金於80℃之吸放氫曲線…… 254
圖4.6 鑄態(Ti33V33Cr24Mn10)100-xCux (x=0、1、2、3) 合金之X光繞射曲線…….. 255
圖4.7 (Ti33V33Cr34)¬100-x(Al-20wt.%Sc)x (x=0、0.2、0.6、2、10)合金之XRD曲線…................................................................................................................
257
圖4.8 (Ti33V33Cr34)100-x(Al-20wt.%Sc)x (x=0、0.2、0.6、2、10) 合金於80℃之放氫曲線...................................................................................................
258
圖4.9 (a) 鑄態Ti-V-Cr 及 (b)鑄態 Ti-V-Cr-(Al-20wt%Sc)2晶粒形狀及其分佈狀態.……………………….…………………………………….……
259
圖4.10 鑄態 Ti33V33Cr34 合金晶出物之背向電子影像………………..…….……. 260
圖4.11 鑄態 (Ti33V33Cr34)98(Al-20wt%Sc)2 合金之(a) Sc氧化物背向電子(BEI)影像(b) 氧含量線性掃瞄分析(c)鈧含量線性掃瞄分析………….……..
261
圖4.12 鑄態之(Ti33V33Cr24Mn10)100-x(Al-20wt.%Sc)x(x=0、1、2)合金XRD分析結果 263
圖4.13 鑄態(Ti33V33Cr24Mn10)100-x(Al-20wt.%Sc)x (x=0、1、2)於80℃、超高純度H2(purity > 99.999%)下合金之初始放氫曲線..........................................
264
圖 4.14 鑄態 Ti33V33Cr24Mn10 合金於80℃第1次,第12次、第22次及第32次吸放氫循環測試之PCT曲線..................................................................................
266
圖4.15 鑄態(Ti33V33Cr24Mn10)99(Al-20wt.%Sc)1合金於80℃第1次、第12次、第22次及第32次吸放氫循環測試之PCT曲線.....................................................
267
圖4.16 速凝Ti33V33Cr24Mn10合金於80℃第1次、第12次、第22次及第32次吸放氫循環測試之PCT曲線.....................................................................................
268
圖 4.17 速凝(Ti33V33Cr24Mn10)99(Al-20wt.%Sc)1合金於80℃第1次、第12次、第22次及第32次吸放氫循環測試之PCT曲線.....................................................
269
圖4.18 速凝(Ti33V33Cr24Mn10)99(Al-20wt%Sc)1、鑄態(Ti33V33Cr24Mn10)99(Al-20wt%Sc)1 及 鑄態Ti33V33Cr24Mn10 合金經32次吸放氫循環測試後之粉體顆粒狀態……………………………………………
269
圖4.19 鑄態(Ti33V33Cr24Mn10)99(Al-20wt.%Sc)1、速凝 (Ti33V33Cr24Mn10)99(Al-20wt.%Sc)1 及鑄態Ti33V33Cr24Mn10 合金粉末經80℃、第32次吸放氫循環測試後之XRD繞射圖………….…….……………
270
圖4.20 描述 Sc添加對Ti-V-Cr-Mn 合金氧化物形成及初始活化行為之影響: (a) 在高氧濃度狀況(未添加Sc) (b)低氧濃度狀態(添加Sc後)……….
272
圖5.1 Mg-Co 二元相圖,圖中Mg80Co20 及 Mg70Co30 成份比例為用以合成MgCo2化合物之起始原料成份…………………………………..……………….
277
圖5.2 合成MgCo2之恆溫揮發鑄造爐……………………………………………… 278
圖5.3 以恆溫揮發鑄造法合成MgCo2之各種不同熔煉程序(熔煉時間對熔煉溫度關係圖)………………………………………………………………….
278
圖5.4 生產製造3Mg-MgCo2及2Mg-Co混合物球磨使用之ball mill 設備及研磨步驟(每一步驟間格為15分鐘)……………………………………………
279
圖5.5 Mg-Co合金之氫化系統裝置圖……………….……………………………. 280
圖 5.6 (a)金屬氫化物於各種溫度下進行吸放氫性質量測之PCI設備 (b)儀器 前操控面板示意圖.………………………….……………………….…….
281
圖5.7 由Mg80Co20為起始材料合成之MgCo2顯微組織圖。亮區晶出相為MgCo2,而暗區為富鎂含量之 Mg-MgCo2共晶相…………………………………………………………
283
圖5.8 由Mg80Co20為起始材料合成之MgCo2顯微組織圖。亮區晶出相為MgCo2,而深孔洞為Mg揮發程序所留之空孔……………………………..…………
283
圖5.9 由Mg70Co30為起始材料合成之MgCo2顯微組織圖。亮區晶出相為MgCo2,而深孔洞為Mg揮發程序所留之空孔…………………….……………………
284
圖5.10 以750℃持溫6小時執行Mg揮發程序之IECP法所合成之MgCo2粉末XRD 繞射分析圖.......................................................................................................
284
圖5.11 各種狀態下之3Mg-MgCo2 及2Mg-Co XRD繞射圖:(a) 球磨前3Mg-MgCo2 混合物 (b) 經50小時球磨後3Mg-MgCo2混合物 (c) 經氫化後之3Mg-MgCo2 混合物(d) 經50小時球磨之2Mg-Co混合物(e) 經氫化後之2Mg-Co球磨混合物…………………………………………………………
286
圖5.12 Mg2CoH5以50atm氫壓於400℃15小時氫化,容易氫化之機構示意圖........ 287
圖5.13 球磨3Mg-MgCo2 及2Mg-Co混合物於115-350℃之吸氫速率....................... 288
圖5.14 球磨3Mg-MgCo2混合物於115-350℃溫度範圍之放氫速率........................ 289
圖5.15 球磨100小時之3Mg-MgCo2 混合物於115-350℃溫度區間吸氫速率......... 290
圖5.16 球磨100小時之3Mg-MgCo2 混合物於115-350℃溫度區間放氫速率. ....... 290
圖5.17 經50小時球磨3Mg-MgCo2 混合物於115-350℃溫度區間PCI放氫曲線.... 291
圖5.18 經100小時球磨3Mg-MgCo2 混合物於115-350℃溫度區間PCI放氫曲線.... 292
圖5.19 經50小時球磨3Mg-MgCo2 混合物於300-350℃下之PCT曲線..................... 294
圖5.20 球磨3Mg-MgCo2混合物由0至8atm之吸氫曲線............................................ 295
圖5.21 球磨3Mg-MgCo2 之XRD繞射圖,其中,試樣先經400℃抽真空1小時,接著於350℃與最高至8atm氫壓下之PCI測試………………………………
295
圖5.22 球磨3Mg-MgCo2 混合物在下列條件下之XRD測試曲線:(A)於真空下400℃燒結15小時(B)於 400℃ 50 atm H2下氫化15小時,接著於此溫度下抽真空1小時………………………..……………………………….…..
296
圖5.23 氫化之3Mg-MgCo2混合物以5 ℃ /min加熱速率測得之TPD曲線………… 296
圖5.24 球磨2Mg-Co及3Mg-MgCo2混合物於115℃下之PCI測試曲線…………….. 297
圖5.25 球磨2Mg-Co及3Mg-MgCo2混合物於22℃下之吸氫曲線………………..… 297
圖5.26 氫化物分解Van?t Hoff 圖,此氫化物係於5 MPa氫壓及400℃溫度下氫化15小時而成………………………………………..…………………….
298
圖6.1 Mg-Ni 二元相圖及IECP法所用以合成Mg2Ni化合物可行成份範圍…….. 302
圖6.2 IECP法合成Mg2Ni粉末電阻熔解爐………………………………………... 303
圖6.3 (a)-(d) 量產Mg2Ni粉末之恆溫揮發鑄造法(IECP)………..….. 304
圖6.4 (a) TEM 繞射camera (b)繞射環………………………………………… 306
圖6.5 以IECP法製備之Mg2Ni 粉末XRD繞射圖…………………………..……… 309
圖6.6 經球磨50小時之(a)3Mg-MgCo2混合物(b) 3Mg-MgCo2-10wt%Ni混合物(c) 3Mg-MgCo2-10wt%Mg2Ni混合物(d)3Mg-MgCo2-20wt%Mg2Ni混合物之XRD繞射圖…………………………………………………………….…………...
310
圖6.7 球磨50小時之(a)3Mg-MgCo2混合物(b)3Mg-MgCo2-10wt%Ni混合物(c) 3Mg-MgCo2-10wt%Mg2Ni混合物(d)3Mg-MgCo2-20wt%Mg2Ni混合物,於400℃、5 MPa氫壓下氫化15小時所得氫化相之XRD繞射圖….............…
311
圖6.8 3Mg-MgCo2-10wt%Ng2Ni 氫化物之XRD繞射圖。此合金先經350℃高溫下抽真空1小時,接著於25℃、5 MPa氫壓下氫化1小時…………….….…
312
圖6.9 經50小時球磨之 (a) 3Mg-MgCo2 混合物(b) 3Mg-MgCo2-10wt%Ni混合物(c) 3Mg-MgCo2-10wt%Mg2Ni混合物(d) 3Mg-MgCo2-20wt%Mg2Ni 混合物,經氫化後以5℃ min-1加熱速率所量測之氫化物分解TPD曲線…….…….
313
圖6.10 經50小時球磨及於400℃下以5MPa氫壓氫化15小時後之(a)3Mg-MgCo2混合物(b)3Mg-MgCo2-10wt%Ni混合物(c)3Mg-MgCo2-10wt%Mg2Ni混合物(d) 3Mg-MgCo2-20wt%Mg2Ni混合物,於115-350℃溫度區間之吸氫速率……
314
圖 6.11 形成Mg-Co基氫化物之Spillover機構,其包括解離氫分子成為氫原子;氫原子從催化劑處遷移至基材界面處及氫原子擴散至合金內部…...
314
圖6.12 經50小時球磨及於400℃下以5MPa氫壓氫化15小時後之(a) 3Mg-MgCo2混合物(b)3Mg-MgCo2-10wt%Ni混合物(c)3Mg-MgCo2-10wt%Mg2Ni混合物(d) 3Mg-MgCo2-20wt%Mg2Ni 混合物,於115-350℃溫度區間之放氫速率
316
圖6.13 球磨之(a)3Mg-MgCo2 混合物(b)3Mg-MgCo2-10wt%Ni混合物(c) 3Mg-MgCo2-10wt%Mg2Ni混合物(d) 3Mg-MgCo2-20wt%Mg2Ni混合物於350℃之吸放氫PCI曲線……………………………………………………….…
316
圖6.14 經50小時球磨及於400℃下以5MPa氫壓氫化15小時後之(a)3Mg-MgCo2 混合物(b)3Mg-MgCo2-10wt%Ni混合物(c)3Mg-MgCo2-10wt%Mg2Ni混合物(d) 3Mg-MgCo2-20wt%Mg2Ni混合物於115℃之吸放氫PCI曲線…………………………………………………………………………...
317
圖6.15 3Mg-MgCo2-20wt%Ng2Ni氫化物之XRD繞射圖。此合金先經400℃抽真空1小時,接著於115℃及5 MPa氫壓下氫化1小時……………….….….….
317
圖6.16 3Mg-MgCo2-10wt%Ng2Ni氫化物之XRD繞射圖。此合金先經400℃抽真空1小時,接著於25℃及5 MPa氫壓下氫化1小時……………..……….…….
318
圖6.17 (a)-(b)經50小時球磨3Mg-MgCo2-10wt% Mg2Ni混合物之(a)TEM明視野影像(b)擇區繞射圖……………………………….………………………
320
圖6.18 3Mg-MgCo2-10wt%Mg2Ni混合物以附屬於TEM之EDS於(a)奈米聚集物(b)基地之成份分析結果。其中偵測到之Cu訊號強度,主要是因以銅網裝填TEM粉末試樣所致……………………………..……………………..…
320
表目錄
表1.1 FreedomCAR 儲氫系統目標規範值…………………………….…….. 182
表 2.1 金屬氫化物及其儲氫性質…………………………………………….… 186
表 2.2 合成Mg-Co基氫化物之程序、前處理、反應條件及氫化物種類……… 207
表 2.3 已發表之組成及其合成Mg2-xCo方法………………………..…………. 214
表 2.4 由不同合成路徑觀察MgCo及MgCo2形成……………………………… 214
表 2.5 Mg–Co-基 BCC合金之吸放氫性質………………………….………… 222
表 3.1 各種合金組成之吸放氫量及其晶格常數大小…………………………. 235
表 3.2 Ti33V33Cr34於合金表面0至1200Å不同深度之化學組成 (at%)………. 238
表 4.1 (Ti33V33Cr34)¬100-x(Al-20wt.%Sc)x (x=0、0.2、0.6、2、10) 合金於80℃、55 atm氫壓下之吸放氫性質及其晶格常數……………………………
258
表 4.2 鑄態Ti33V33Cr34 合金鑄造內部晶出相之成份分析結果………………... 260
表 4.3 (Ti33V33Cr34)98(Al-20wt%Sc)2 合金之鈧氧化物化學分析結果………… 261
表 4.4 (Ti33V33Cr24Mn10)100-x(Al-20wt%Sc)x (x=0、1、2)合金之ICP成份分析結果 (wt%)……….……….………..……………………………….…...
264
表4.5 (Ti33V33Cr24Mn10)100-x(Al-20wt.%Sc)x (X=0、1、2)合金於80℃、55 atm H2下之儲氫性質與合金內之氧含量分析結果…………….……………
265
參考文獻 References
[1] “Basic research needs for the hydrogen economy- report of the basic energy sciences workshop on hydrogen production, storage, and use”, Argonne National Laboratory, U.S. Department of Energy, Second edition, February 2004, available at : http://www.sc.doe.gov/bes/hydrogen.pdf.
[2] W. Lohstroh, R. J. Westerwaal, A. C. Lokhorst, J. L. M. van Mechelen, B. Dam, R. Griessen, Double layer formation in Mg–TM switchable mirrors (TM: Ni, Co, Fe), J. Alloys Compd., 404–406 (2005) 490–493.
[3] J. Qua, B. Sunb, J. Zhenga, R. Yanga, Y. Wanga, X. Li, Hydrogen desorption properties of Mg thin films at room temperature, J. Power Sources 195 (2010) 1190–1194.
[4] S. Bao, K. Tajima, Y. Yamada, M. Okada, K. Yoshimura, Magnesium–titanium alloy thin-film switchable mirrors, Sol. Energy Mater. Sol. Cells 92 (2008) 224–227.
[5] S. Bao, Y. Yamada, K. Tajima, M. Okada, K. Yoshimura, Optical property and cycling durability of polytetrafluoroethylene top-covered and metal buffer layer inserted Mg-Ni switchable mirror, Sol. Energy Mater. Sol. Cells 93 (2009) 1642-1646.
[6] K. Tajima, Y. Yamada, S. Bao, M. Okada, K. Yoshimura, Optical switching properties of all-solid-state switchable mirror glass based on magnesium–nickel thin film for environmental temperature, Sol. Energy Mater. Sol. Cells, in press.
[7] K. Yoshimura, Y. Yamada, S. Bao, K. Tajima, M. Okada, Preparation and characterization of gasochromic switchable-mirror window with practical size, Sol. Energy Mater. Sol. Cells 93 (2009) 2138–2142.
[ 8] B. Farangis, P. Nachimuthu, T. J. Richardson, J. L. Slack, B. K. Meyer, R. C. C. Perera, M. D. Rubin, Structural and electronic properties of magnesium–3D transition metal switchable mirrors, Solid State Ionics 165 (2003) 309– 314.
[9] F. S. Yang, G. X. Wang, Z. X. Zhang, X. Y. Meng, V. Rudolph, Design of the metal hydride reactors – A review on the key technical issues, Int J. Hydrogen Energy 35 (2010) 3832–3840.
[10] J. G. Park, H. Y. Jang, S. C. Han, P. S. Lee, J. Y. Lee, Hydrogen storage properties of TiMn2-based alloys for metal hydride heat pump, Mater. Sci. Eng. A 329–331 (2002) 351–355.
[11] J. K. Kim, I. S. Park, K. J. Kim, K. Gawlik, A hydrogen-compression system using porous metal hydride pellets of LaNi5-xAlx, Int. J. Hydrogen Energy 33 ( 2008 ) 870 – 877.
[12] Z. Dehouche, M. Savard, F. Laurencelle, J. Goyette, Ti–V–Mn based alloys for hydrogen compression system, J. Alloys Compd., 400 (2005) 276–280.
[13] H. Taizhong, W. Zhu, F. Shanglong, X. Baojia, X. Naixin, Comparison of hydrogen storage characteristics between as-cast and melt-spun TiCr1.1V0.5Fe0.1Mn0.1 alloys, Mater. Sci. Eng. A 390 (2005) 362–365.
[14] X. Q. Guo, D. V. Louzguine, S. Yamaura, L. Q. Ma, W. Sun, M. Hasegawa, A. Inoue, Hydrogen absorption in Ti-Zr-Ni-Cu amorphous alloy, Mater. Sci. Eng. A338 (2002) 97-100.
[15] X. B. Yu, Z. Wu, B. J. Xia, N. X. Xu, Hydrogen storage performance of quenched Ti–V-based alloy, J. Alloys Compd., 373 (2004) 134–136.
[16] S. Kalinichenka, L. Rontzsch, B. Kieback, Structural and hydrogen storage properties of melt-spun Mg–Ni–Y alloys, Int J. Hydrogen Energy 34 (2009)7749-7755.
[17] J. Huot, Chapter 16 - kinetics and thermodynamics, Hydrogen Technology, Springer-Verlag Berlin Heidelberg (2008) 472-499.
[18] G. Principi, F. Agresti, A. Maddalena, S. L. Russo, The problem of solid state hydrogen storage, Energy 34 (2009) 2087–2091.
[19] H. Yukawa, D. Yamashita, S. Ito, M. Morinaga, S. Yamaguchi, Alloying effects on the phase stability of hydrides formed in vanadium alloys, Mater. Trans., 43 (2002) 2757-2762.
[20] H. Yukawa, A. Teshima, D. Yamashita, S. Ito, S. Yamaguchi, M. Morinaga, Alloying effects on the hydriding properties of vanadium at low hydrogen pressures, J. Alloys Compd., 337 (2002) 264–268.
[21] S. Ito, D. Yamashita, K. Komiya, H. Yukawa, M. Morinaga, Compositional dependence of phase stability of γ phase formed in vanadium alloys, J. Alloys Compd., 364 (2004) 137–140.
[22] E. Akiba, H. Ibab, Hydrogen absorption by Laves phase related BCC solid solution, Intermetallics 6 (1998) 461-470.
[23] T. Mouri, H. Iba, Hydrogen-absorbing alloys with a large capacity for a new energy carrier, Mater. Sci. Eng. A 329–331 (2002) 346–350.
[24] X. Yu, B. Xia, Z. Wu, N. Xu, Phase structure and hydrogen sorption performance of Ti–Mn-based alloys, Mater. Sci. Eng. A 373 (2004) 303–308.
[25] B. H. Liu, D. M. Kim, K. Y. Lcc, J. Y. Lee, Hydrogen storage properties of TiMn2-based alloys, J. Alloys Compd., 240 (1996) 214-218.
[26] M. Au, F. Pourarian, S. G. Sankar, W. E. Wallace, L. Zhang, TiMn2-based alloys as high hydrogen storage materials, Mater. Sci. Eng. B 33 (1995) 53-57.
[27] T. Huang, Z. Wu, X. Yu, J. Chen, B. Xia, T. Huang, N. Xu, Hydrogen absorption–desorption behavior of zirconium-substituting Ti–Mn based hydrogen storage alloys, Intermetallics 12 (2004) 91–96.
[28] E. Akiba, H. Ibab, Hydrogen absorption and modulated structure in Ti-V-Mn alloys, J. Alloys Compd., 253-254 (1997) 21-24.
[29] Y. Nakamura, E. Akiba, New hydride phase with a deformed FCC structure in the Ti–V–Mn solid solution–hydrogen system, J. Alloys Compd., 311 (2000) 317–321.
[30] S. V. Mitrokhin, Regularities of hydrogen interaction with multicomponent Ti(Zr)–Mn–V Laves phase alloys, J. Alloys Compd., 404–406 (2005) 384–387.
[31] S. Couillaud, H. Enoki, S. Amira, J. L. Bobet, E. Akiba, J. Huot, Effect of ball milling and cold rolling on hydrogen storage properties of nanocrystalline TiV1.6Mn0.4 alloy, J. Alloys Compd., 484 (2009) 154–158.
[32] M. Shibuya, J. Nakamura, H. Enoki, E. Akiba, High-pressure hydrogenation properties of Ti–V–Mn alloy for hybrid hydrogen storage vessel, J. Alloys Compd., 475 (2009) 543–545.
[33] J. Y. Wang, Comparison of hydrogen storage properties of Ti0.37V0.38Mn0.25 alloys prepared by mechanical alloying and vacuum arc melting, Int J. Hydrogen Energy 34 (2009) 3771-3777.
[34] M. Shibuya, J. Nakamura, E. Akiba, Hydrogenation properties and microstructure of Ti–Mn-based alloys for hybrid hydrogen storage vessel, J. Alloys Compd., 466 (2008) 558–562.
[35] S. F. Santos, J. Huot, Hydrogen storage in Ti–Mn–(FeV) BCC alloys, J. Alloys Compd., 480 (2009) 5–8.
[36] S. W. Cho, C. S. Han, C. N. Park, E. Akiba, Hydrogen storage characteristics of Ti-Zr-Cr-V alloys, J. Alloys Compd., 289 (1999) 244-250.
[37] S. W. Cho, C. N. Park, J. H. Yoo, J. Choi, J. S. Park, C. Y. Suh, G. Shim, Hydrogen absorption-desorption characteristics of Ti(0.22+X)Cr(0.28+1.5X)V(0.5-2.5X) (0≦X≦0.12) alloys, J. Alloys Compd., 403 (2005) 262-266.
[38] X. B. Yu, J. Z. Chen, Z. Wu, B. J. Xia, N. X. Xu, Effect of Cr content on hydrogen storage properties for Ti-V-based BCC-phase alloys, Int. J. Hydrogen Energy 29 (2004) 1377-1381.
[39] H. Jin , J. Zhang, X. Meng, G. Lin, J. Ge, Hydrogen Storage Properties and Structure of TiV0.8-xCr1.2Alx Alloys, Rare Metal Mat. Eng., 37 (2008) 803-807.
[40] X. Liu, L. Jiang, Z. Li, Z. Huang, S. Wang, Improve plateau property of Ti32Cr46V22 BCC alloy with heat treatment and Ce additive, J. Alloys Compd., 471 (2009) L36–L38.
[41] S. W. Cho, C. S. Han, C. N. Park, E. Akiba, The hydrogen storage characteristics of Ti–Cr–V alloys, J. Alloys Compd., 288 (1999) 294-298.
[42] S. W. Cho, G. Shim, G. S. Choi, C. N. Park, J. H. Yoo, J. Choi, Hydrogen absorption–desorption properties of Ti0.32Cr0.43V0.25 alloy, J. Alloys Compd., 430 (2007) 136–141.
[43] T. Tamura, T. Kazumi, A. Kamegawa, H. Takamura, M. Okada, P rotium absorption properties and protide formations of Ti–Cr–V alloys, J. Alloys Compd., 356–357 (2003) 505–509.
[44] B. K. Singh, G. Shim, S. W. Cho, Effects of mechanical milling on hydrogen storage properties of Ti0.32Cr0.43V0.25 alloy, Int. J. Hydrogen Energy 32 (2007) 4961 – 4965.
[45] Y. Tominaga, K. Matsumoto, T. Fuda, T. Tamura, T. Kuriiwa, A. Kamegawa, H. Takamura, M. Okada, Protium Absorption-desorption properties of Ti-V-Cr-(Mn,Ni) alloys, Materials Transactions, JIM, Vol. 41, No. 5 (2002) 617-620.
[46] T. Tamura, Y. Tominaga, K. Matsumoto, T. Fuda, T. Kuriiwa, A. Kamegawa, H. Takamura, M. Okada, Protium absorption properties of Ti–V–Cr–Mn alloys with a b.c.c. structure, J. Alloys Compd., 330–332 (2002) 522–525.
[47] X. B. Yu, Z. Wu, B. J. Xia, N. X. Xu, Enhancement of hydrogen storage capacity of Ti-V-Cr-Mn BCC phase alloys, J. Alloys Compd., 372 (2004) 272-277.
[48] C. Wan, X. Ju, Y. Qi, C. Fan, S. Wang, X. Liu, L. Jiang, A study on crystal structure and chemical state of TiCrVMn hydrogen storage alloys during hydrogen absorption-desorption cycling, Int. J. Hydrogen Energy 34 (2009 ) 8944-8950.
[49] J. H. Yoo, G. Shim, C. N. Park, W. B. Kim, S. W. Cho, Influence of Mn or Mn plus Fe on the hydrogen storage properties of the Ti-Cr-V alloy, Int. J. Hydrogen Energy 34 (2009) 9116-9121.
[50] B. K. Singh, S. W. Choa, K. S. Bartwal, Effect on structure and hydrogen storage characteristics of composite alloys Ti0.32Cr0.43V0.25 with LaNi5 and rare-earth elements La, Ce, Y, J. Alloys Compd., 478 (2009) 785–788.
[51] Y. Qiao, M. Zhao, X. Zhu, G. Cao, Effect of Cerium on Microstructure and Electrochemical Performance of Ti-V-Cr-Ni Electrode Alloy, J. Rare Earths 25 (2007) 341 – 347.
[52] Y. Liu, S. Zhang, R. Li, M. Gao, K. Zhong, H. Miao, H. Pan, Electrochemical performances of the Pd-added Ti-V-based hydrogen storage alloys, Int. J. Hydrogen Energy 33 ( 2008 ) 728 – 734.
[53] A. Zaluska, L. Zaluski, J. O. Ström-Olsen, Nanocrystalline magnesium for hydrogen storage, J. Alloys Compd., 288 (1999) 217–225.
[54] R. Janot, A. Rougier, L. Aymard, C. Lenain, R. Herrera-Urbina, G. A. Nazri, J. M. Tarascon, Enhancement of hydrogen storage in MgNi by Pd-coating, J. Alloys Compd., 356-357 (2003) 438-441.
[55] M. Hara, Y. Hatano, T. Abe, K. Watanabe, T. Naitoh, S. Ikeno, Y. Honda, Hydrogen absorption by Pd-coated ZrNi prepared by using Barrel-Sputtering System, J. Nucl. Mater. 320 (2003) 265-271.
[56] A. Zaluska, L. Zaluski, J. O. Ström-Olsen, Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage, Appl. Phys. A 72 (2001) 157–165.
[57] L. Zaluski, A. Zaluska, P. Tessier, J. O. Ström-Olsen, R. Schulz, Catalytic effect of Pd on hydrogen absorption in mechanically alloyed Mg2Ni, LaNi5 and FeTi, J. Alloys Compd., 217 (1995) 295-300.
[58] Y. Yan, Y. Chen, H. Liang, C. Wu, M. Tao, M. Tu, Effect of Al on hydrogen storage properties of V30Ti35Cr25Fe10 alloy, J. Alloys Compd., 426 (2006) 253–255.
[59] H. Liang, Y. Chen, Y. Yan, C. Wu, M. Tao, Cyclic properties of hydrogen absorption and desorption in V–Ti–Cr–Fe(Al,Si) alloy, Mater. Sci. Eng. A 448 (2007) 128–134.
[60] J. Mi, X. Guo, X. Liu, L. Jiang, Z. Li, L. Hao, S. Wang, Effect of Al on microstructures and hydrogen storage properties of Ti26.5Cr20(V0.45Fe0.085)100−xAlxCe0.5 alloy, J. Alloys Compds., 485 (2009) 324–327.
[61] J. H. Yoo, G. Shim, J. S. Yoon, S. W. Cho, Effects of substituting Al for Cr in the Ti0.32Cr0.43V0.25 alloy on its microstructure and hydrogen storage properties, Int. J. Hydrogen Energy 34 (2009) 1463-1467.
[62] J. H. Yoo, G. Shim, S. W. Cho, C. N. Park, Effects of desorption temperature and substitution of Fe for Cr on the hydrogen storage properties of Ti0.32Cr0.43V0.25 alloy, Int J. Hydrogen Energy 32 (2007) 2977 – 2981.
[63] S. M. Lee, T. P. Perng, Effects of boron and carbon on the hydrogenation, properties of TiFe and Ti1.1Fe, Int. J. Hydrogen Energy 25 (2000) 831- 836.
[64] M. Uno, K. Takahashi, T. Maruyama, H. Muta, S. Yamanaka, Hydrogen solubility of BCC titanium alloys, J. Alloys Compds., 366 (2004) 213–216.
[65] S. W. Cho, J. H. Yoo, G. Shim, C. N. Park, J. Choi, Effects of B addition on the hydrogen absorption–desorption property of Ti0.32Cr0.43V0.25 alloy, Int. J. Hydrogen Energy 33 (2008) 1700 – 1705.
[66] C. L. Wu, Y. G. Yan, Y. G. Chen, M. D. Tao, X. Zheng, Effect of rare earth (RE) elements on V-based hydrogen storage alloys, Int. J. Hydrogen Energy 33 (2008) 93 – 97.
[67] J. Mi, X. Liu, Y. Li, L. Jiang, Z. Li, Z. Huang, S. Wang, Effect of cerium content on microstructure and hydrogen storage performance of Ti24Cr17.5V50Fe8.5Cex (x=0–1.0) alloys, J. Rare Earths, 27(2009)154-158.
[68] X. P. Liu, F. Cuevas, L. J. Jiang, M. Latroche, Z. N. Li, S. M. Wang, Improvement of the hydrogen storage properties of Ti–Cr–V–Fe BCC alloy by Ce addition, J. Alloys Compd., 476 (2009) 403–407.
[69] M. Okada, T. Kuriiwa, T. Tamura, H. Takamura and A. Kamegawa, Ti-V–Cr b.c.c. alloys with high protium content, J. Alloys Compd., 330-332 (2002) 511-516.
[70] G. Fernández, F. C. Gennari, G. O. Meyer, Influence of sintering parameters on formation of Mg–Co hydrides based on their thermodynamic characterization, J. Alloys Compd., 462 ( 2008) 119-124.
[71] I. G. Fernández, G. O. Meyer, F. C. Gennari, Hydriding/dehydriding behavior of Mg2CoH5 produced by reactive mechanical milling, J. Alloys Compd., 464 ( 2008) 111-117.
[72] H. Shao, T. Liu, Y. Wang, H. Xu, X. Li, Preparation of Mg-based hydrogen storage materials from metal nanoparticles, J. Alloys Compd., 465 ( 2008) 527-533.
[73] C. T. Hsieh, J. L. Wei, J. Y. Lin, W. Y. Chen, Hydrogenation and dehydrogenation of Mg2Co nanoparticles and carbon nanotube composites, J. Power Sources, 183 (2008) 92-97.
[74] I. G. Fernández, G. O. Meyer, F. C. Gennari, Reversible hydrogen storage in Mg2CoH5 prepared by a combined milling-sintering procedure, J. Alloys Compd., 446-447( 2007) 106-109.
[75] F. C. Gennari, F. J. Castro, Formation, composition and stability of Mg–Co compounds, J. Alloys Compd., 396 (2005) 182-192.
[76] Y. Zhang, Y. Tsushio, H. Enoki, E. Akiba, The study on binary Mg–Co hydrogen storage alloys with BCC phase, J. Alloys Compd., 393 ( 2005) 147-153.
[77] H. Shao, H. Xu, Y. Wang, X. Li, Synthesis and hydrogen storage behavior of Mg–Co–H system at nanometer scale, J. Solid State Chem., 177 (2004) 3626-3632.
[78] J. L. Bobet, E. Akiba, B. Darriet, Effect of substitution of Fe and Ni for Co in the synthesis of Mg2Co compound using the mechanical alloying method, J. Alloys Compd., 297 ( 2000) 192-198.
[79] Y. Zhang, Y. Tsushio, H. Enoki, E. Akiba, The hydrogen absorption–desorption performances of Mg–Co–X ternary alloys with BCC structure, J. Alloys Compd., 393 ( 2005) 185-193.
[80] C. W. Hsu, S. L. Lee, R. R. Jeng, J. C. Lin, Int. J. Hydrogen Energy 32 (2007) 4907-4911.
[81] H. Aoyagi, K. Aoki, T. Masumoto, Effect of ball milling on hydrogen absorption properties of FeTi, Mg2Ni and LaNi 5, J. Alloys Compd., 231 (1995) 804-809.
[82] L. Zaluski, A. Zaluska, P. Tessier, J. O. Strrm-Olsen, R. Schulz, Catalytic effect of Pd on hydrogen absorption in mechanically alloyed Mg2Ni, LaNi5 and FeTi, J. Alloys Comp., 217 (1995) 295-300.
[83] H. Hotta, M. Abe, T. Kuji , H. Uchida, Synthesis of Ti–Fe alloys by mechanical alloying, J. Alloys Compd., 439 (2007) 221–226.
[84] L. Zaluski, A. Zaluska, J. O. Strrm-Olsen, Hydrogen absorption in nanocrystalline Mg2Ni formed by mechanical alloying, J. Alloys Comp., 217 (1995) 245-249.
[85] X. Liu, Y. Zhu, L. Li, Hydriding characteristics of Mg2Ni prepared by mechanical milling of the product of hydriding combustion synthesis, Int J. Hydrogen Energy 32 (2007) 2450 – 2454.
[86] ASM International's Binary Alloy Phase Diagrams, Second Edition (1990).
[87] S. Orimo, H. Fujii and K. Ikeda, Notable hydriding properties of a nanostructured composite material of the Mg2Ni–H system synthesized by reactive mechanical grinding, Acta Materialia 45 (1997), pp. 331–341
[88] K. S. Jung, E. Y. Lee, K. S. Lee, Catalytic effects of metal oxide on hydrogen absorption of magnesium metal hydride, J. Alloys Compd., 421 (2006) 179–184.
[89] H. Imamura, K. Masanari, M. Kusuhara, H. Katsumoto, T. Sumi, Y. Sakata, High hydrogen storage capacity of nanosized magnesium synthesized by high energy ball-milling, J. Alloys Compd., 386 (2005) 211–216.
[90] B. Sakintuna, F. Lamari-Darkrim, M. Hirscher, Metal hydride materials for solid hydrogen storage: A review, Int J. Hydrogen Energy 32 (2007) 1121 – 1140.
[91] L. Zhenglong, L. Zuyan, C. Yanbin, Cyclic hydrogen storage properties of Mg milled with nickel nano-powders and NiO, J. Alloys Compd., 470 (2009) 470–472.
[92] S. H. Hong, S. N. Kwon, J. S. Bae, M. Y. Song, Hydrogen-storage properties of gravity cast and melt spun Mg–Ni–Nb2O5 alloys, Int. J. Hydrogen Energy 34 (2009) 1944-1950.
[93] N. Hanada, T. Ichikawa, H. Fujii, Catalytic effect of Ni nano-particle and Nb oxide on H-desorption properties in MgH2 prepared by ball milling, J. Alloys Compd., 404–406 (2005) 716–719.
[94] O. Friedrichs, T. Klassen, J. C. Sa’nchez-Lo’pez, R. Bormann, A. Ferna’ndez, Hydrogen sorption improvement of nanocrystalline MgH2 by Nb2O5 nanoparticles, Scripta Materialia 54 (2006) 1293–1297.
[ 95] C. K. Lin, C. K. Wang , P.Y. Lee, H. C. Lin , K. M. Lin, The effect of Ti additions on the hydrogen absorption properties of mechanically alloyed Mg2Ni powders, Mater. Sci. Eng. A 449–451 (2007) 1102–1106.
[96] K. Nogitaa, S. Ockert, J. Pierce, M. C. Greaves, C. M. Gourlay, A. K. Dahle, Engineering the Mg–Mg2Ni eutectic transformation to produce improved hydrogen storage alloys, Int J. Hydrogen Energy 34 (2009) 7686-7691.
[97] X. B. Yu, Z. X. Yang, H. K. Liu, D. M. Grant, G. S. Walker, The effect of a Ti-V-based BCC alloy as a catalyst on the hydrogen storage properties of MgH2, Int. J. Hydrogen Energy, in press.
[98] G. Liang, J. Huot, S. Boily, A. Van Neste, R. Schulz, Hydrogen storage in mechanically milled Mg-LaNi5 and MgH2-LaNi5 composites, J. Alloys Compd., 297 (2000) 261-265.
[99] T. Kondo, K. Shindo, M. Arakawa, Y. Sakurai, Microstructure and hydrogen absorption–desorption properties of Mg–TiFe0.92Mn0.08 composites prepared by wet mechanical milling, J. Alloys Compd., 375 (2004) 283–291.
[100] Z. Liu, Z. Lei, Cyclic hydrogen storage properties of Mg milled with nickel nano-powders and MnO2, J. Alloys Comp., 443 (2007) 121–124.
[101] Z. Yu, Z. Liu, E. Wang, Hydrogen storage properties of the Mg–Ni–CrCl nanocomposite, J. Alloys Compd., 333 (2002) 207–214.
[102] W. Oelerich, T. Klassen, R. Bormann, Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials, J. Alloys Compd., 315 (2001) 237–242.
[103] R. Vijay, R. Sundaresan, M. P. Maiya, S. S. Murthy, Hydrogen storage properties of Mg–Cr2O3 nanocomposites: The role of catalyst distribution and grain size, J. Alloys Compd., 424 (2006) 289–293.
[104] M. Y. Song, J. L. Bobet, B. Darriet, Improvement in hydrogen sorption properties of Mg by reactive mechanical grinding with Cr2O3, Al2O3, CeO2, J. Alloys Compd., 340 (2002) 256-262.
[105] Z. Dehouche, T. Klassen, W. Oelerich, J. Goyette, T. K. Bose, R. Schulz, Cycling and thermal stability of nanostructured MgH2-Cr2O3 composite for hydrogen storage, J. Alloys Compd., 347 (2002)319-323.
[106] C. Y. Chen, S. K. Lin, Improvement of hydrogen absorption performance of mechanically alloyed Mg2Ni powders by silver doping, Mater. Trans., 48 (2007)1113-1118.
[107] A. D. Rud, A. M. Lakhnik, V. G. Ivanchenko, V. N. Uvarov, A. A. Shkola, V. A. Dekhtyarenko, L. I. Ivaschuk, N. I. Kuskova, Hydrogen storage of the Mg–C composites, Int. J. Hydrogen Energy 33 ( 2008 ) 1310 – 1316.
[108] O. Gutfleisch, S. D. Toè, M. Herrich, A. Handstein, A. Pratt, Hydrogen sorption properties of Mg–1 wt.% Ni–0.2 wt.% Pd prepared by reactive milling, J. Alloys Compd. 404-406 (2005) 413-416.
[109] R. A. Varin, T. Czujko and Z. S. Wronski, Thermal stability of Vale Inco nanonometric nickel as a catalytic additive for magnesium hydride (MgH2), Int. J. Hydrogen Energy 34 (2009) 8603-8610.
[110] R. Baer, Y. Zeiri, R. Kosloff, Hydrogen transport in nickel (111), Phys. Rev. B 55 (1997) 952-974.
[111] G. Siviero, V. Bello, G. Mattei, P. Mazzoldi, G. Battaglin, N. Bazzanella, R. Checchetto, A. Miotello, Structural evolution of Pd-capped Mg thin films under H2 absorption and desorption cycles, Int. J. Hydrogen Energy 34 (2009) 4817-4826.
[112] Z. Lei, Z. Liu, Y. Chen, Cyclic hydrogen storage properties of Mg milled with nickel nano-powders and NiO, J. Alloys Compd., 470 (2009) 470–472.
[113] M.Y. Song, S. N. Kwon, J. S. Bae, S. H. Hong, Hydrogen-storage properties of melt spun Mg–23.5 wt% Ni milled with nano Nb2O5, J. Alloys Compd., 478 (2009) 501–506.
[114] F. Li, L. Jiang, J. Du, S. Wang, X. Liu, F. Zhan, Investigation on synthesis and hydrogenation properties of Mg-20wt%Ni-1wt% TiO2 composite prepared by reactive mechanical alloying, J. Alloys Compd., 452 (2008) 421-424.
[115] Z. Li, X. Liu, L. Jiang, S. Wang, Characterization of Mg–20 wt% Ni–Y hydrogen storage composite prepared by reactive mechanical alloying, Int. J. Hydrogen Energy 32 (2007) 1869 – 1874.
[116] M. Y. Song, S. N. Kwon, D. R. Mumm, S. H. Hong, Development of Mg-oxide–Ni hydrogen-storage alloys by reactive mechanical grinding, Int. J. Hydrogen Energy 32 (2007) 3921 – 3928.
[117] R. Vijay, R. Sundaresan, M. P. Maiya, S. S. Murthy, Application of Mgx wt% MmNi5 (x=10-70) nanostructured composites in a hydrogen storage device, Int J. Hydrogen Energy 32 (2007) 2390 – 2399.
[118] K. Tanaka, T. Miwa, K. Sasaki, K. Kuroda, TEM studies of nanostructure in melt-spun Mg–Ni–La alloy manifesting enhanced hydrogen desorbing kinetics, J. Alloys Compd., 478 (2009) 308–316.
[119] Y. Fu, M. Groll, R. Mertz, R. Kulenovic, Effect of LaNi5 and additional catalysts on hydrogen storage properties of Mg, J. Alloys Compd., 460 (2008) 607–613.
[120] A. Zaluska, L. Zaluski, J. O. Strom-Olsen, Structure, catalysis and atomic reactions on the nano-scale: a systematic approach to metal hydrides for hydrogen storage, Appl. Phys A 72(2001) 157-165.
[121] X. L. Wang, J. P. Tu, P. L. Zhang, X. B. Zhang, C. P. Chen, X. B. Zhao, Hydrogenation properties of ball-milledMgH2–10 wt%Mg17Al12 composite, Int. J. Hydrogen Energy 32 (2007) 3406 – 3410.
[122] H. Gu, Y. Zhu, L. Li, Characterization of hydrogen storage properties of Mg-30 wt.% Ti1.0V1.1Mn0.9 composite, J. Alloys Compd., 424 (2006) 382–387.
[123] A. L. Yonkeu, I. P. Swainson, J. Dufour, J. Huot, Kinetic investigation of the catalytic effect of a body centered cubic-alloy TiV1.1Mn0.9 (BCC) on hydriding/dehydriding properties of magnesium, J. Alloys Compd., 460 (2008) 559–564.
[124] H. Shao, K. Asano, H. Enoki, E. Akiba, Fabrication, hydrogen storage properties and mechanistic study of nanostructured Mg50Co50 body-centered cubic alloy, Scripta Mater. 60 (2009) 818-821.
[125] M. Okada, T. Kuriiwa, A. Kamegawa, H. Takamura. Role of intermetallics in hydrogen storage materials, Mater. Sci. Eng.A329-331 (2002) 305-312.
[126] X. B. Yu, S. L. Feng, Z. Wu, B. J. Xia, N. X. Xu, Hydrogen storage performance of Ti-V-based BCC phase alloys with various Fe content, J. Alloys Compd. 393(2005) 129-134.
[127] X. B. Yu, Z. X. Yang, S. L. Feng, Z. Wu, N. X. Xu, Influence of Fe addition on hydrogen storage characteristics of Ti-V-based alloy, Int. J. Hydrogen Energy 31(2006) 1176-1181.
[128] H. Pan, R. Li, M. Gao, Y. Liu, Q. Wang, Effects of Cr on the structural and electrochemical properties of TiV-based two-phase hydrogen storage alloys, J. Alloys Compd., 404-406 (2005) 669-674.
[129] H. Pan, R. Li, M. Gao, Y. Liu, Y. Lei, Q. Wang, Effects of Ni on the structural and electrochemical properties of Ti-V-based hydrogen storage alloys, Int J Hydrogen Energy 31(2006) 1188-1195.
[130] Y. Yan, Y. Chen, H. Liang, X. Zhou, C. Wu, M. Tao, Effect of Ce on the structure and hydrogen storage properties of V55Ti22.5Cr16.1Fe6.4, J. Alloys Compd., 429 (2007) 301-305.
[131] X. Shan, J. H. Payer, W. D. Jennings, Mechanism of increased performance and durability of Pd-treated metal hydriding alloys, Int J Hydrogen Energy 34 (2009) 363-369.
[132] X. Shan, J. H. Payer, J. S. Wainright, Improved durability of hydrogen storage alloys, J. Alloys Compd., 430 (2007) 262–268.
[133] Y. P. Wu, R. R. Jeng, J. K. Nieh, H. Y. Bor, Study of hydrogen storage performance of BCC phase hydrogen storage alloys, ICAM 2010, 3rd international conference on advanced manufacture, Kenting, Taiwan (2010).
[134] L. F. Chen, J. A. Wang, M. A. Valenzuela, X. Bokhimi, D. R. Acosta, O. Novaro, Hydrogen spillover and structural defects in a PdO/zirconia nanophase synthesized through a surfactant-templated route, J. Alloys Compd., 417 (2006) 220–223.
[135] R. R. Jeng, C. Y. Chou, S. L. Lee, Y. C. Wu, H. Y. Bor, Effect of Mn, Ti/Cr ratio and heat treatment on hydrogen storage properties of Ti-V-Cr-Mn alloys, J. Chin. Inst. Eng., in press.
[136] H. Itoh, H. Arashima, K. Kubo, T. Kabutomori, K. Ohnishi, Improvement of cyclic durability of BCC structured Ti–Cr–V alloys, J. Alloys Compd., 404–406 (2005) 417–420.
[137] C. Wu, X. Zheng, Y. hen, M. Tao, G. Tong, J. Zhou, Hydrogen storage and cyclic properties of V60Ti(21.4+x)Cr(6.6-x)Fe12 (0 ≦x ≦ 3) alloys, Int J Hydrogen Energy, in press.
[138] T. Dou, Z. Wu, J. Mao, N. Xu, Application of commercial ferrovanadium to reduce cost of Ti–V-based BCC phase hydrogen storage alloys, Mater. Sci. Eng. A 476 (2008) 34–38.
[139] J. Huot, H. Enoki, E. Akiba, Synthesis, phase transformation, and hydrogen storage properties of ball-milled TiV0.9Mn1.1, J. Alloys Compd. 453 (2008)203-209.
[140] G. Mazzolai, Some physical aspects of hydrogen behaviour in the H-Storage bcc alloys Ti35VxCr65−x, Ti40VxMn50−xCr10 and TixCr97.5−xMo2.5, Int. J. Hydrogen energy 33 (2008) 7116-7121.
[141]B. Coluzzi, A. Biscarini, G. Mazzolai, F. M. Mazzolai, A. Tuissi, F. Agresti, S. Lo Russo, A. Maddalena, P. Palade, G. Principi, Physical properties of hydrogen in TiVMnCr bcc alloys as deduced from hydrogen absorption/desorption and mechanical spectroscopy experiments, J. Alloys Compd. 456 (2008) 118-124.
[142] S. F. Santos, J. Huot, Hydrogen storage in TiCr1.2(FeV)x BCC solid solutions, J. Alloys Compd., 472 (2009) 247-251.
[143] A. Kamegawa, T. Tamura, H. Takamura, M. Okada, Protium absorption–desorption properties of Ti–Cr–Mo bcc solid solution alloys, J. Alloys Compd., 356-357 (2003) 447-451.
[144] J. J. Reilly, R. H. Wiswall, The Higher Hydrides of Vanadium and Niobium, Inorg. Chem., 9 (1970)1678-1682.
[145] T. Kuriiwa, T. Tamura, T. Amemiya, T. Fuda, A. Kamegawa, H. Takamura, M. Okada, New V-based alloys with high protium absorption and desorption capacity, J. Alloys Compd., 293-295 (1999) 433-436.
[146] S. Challet, M. Latroche, F. Heurtaux, Hydrogenation properties and crystal structure of the single BCC (Ti0.355V0.645)100−xMx alloys with M = Mn, Fe, Co, Ni (x = 7, 14 and 21), J. Alloys Compd., 439 (2007)294-301.
[147] R. R. Jeng, S. L. Lee, C. W. Hsu, Y. P. Wu, J. C. Lin, Effects of the addition of Pd on the hydrogen absorption–desorption characteristics of Ti33V33Cr34 alloys, J. Alloys Compd., 464(2008) 467-471.
[148] X. P. Song, P. Pei, P. L. Zhang, G. L. Chen, The influence of alloy elements on the hydrogen storage properties in vanadium-based solid solution alloys, J. Alloys Compd., 455 (2008) 392-397.
[149] S. Basak, K. Shashikala, S. K. Kulshreshtha, Hydrogen absorption characteristics of Zr substituted Ti0.85VFe0.15 alloy, Int. J. Hydrogen energy 33 (2008) 350-355.
[150] Z. Huang, F. Cuevas, X. Liu, L. Jiang, S. Wang, Effects of Si addition on the microstructure and the hydrogen storage properties of Ti26.5V45Fe8.5Cr20Ce0.5 BCC solid solution alloys, Int. J. Hydrogen energy 34 (2009) 9385-9392.
[151] T. Tamura, M. Hatakeyama, T. Ebinuma, A. Kamegawa, H. Takamura, M. Okada, Protium absorption properties of Ti-V-Cr-Mn alloys, Mater. Trans., JIM, 43 (2002) 1120-1123.
[152] H. Yukawa, M. Takagi, A. Teshima, M. Morinaga, Alloying effects on the stability of vanadium hydrides, J. Alloys Compd., 330–332 (2002) 105–109.
[153] Y. Yan, Y. Chen, C. Wu, M. Tao, H. Liang, A low-cost BCC alloy prepared from a FeV80 alloy with a high hydrogen storage capacity, J. Power Sources 164 (2007) 799–802.
[154] H. Arashima, F. Takahashi, T. Ebisawa, H. Itoh and T. Kabutomori, Correlation between hydrogen absorption properties and homogeneity of Ti–Cr–V alloys, J. Alloys Compd., 356-357 (2003) 405-408.
[155] S. Bouaricha, J. Huot, D. Guay, R. Schulz, Reactivity during cycling of nanocrystalline Mg-based hydrogen storage compounds, Int. J Hydrogen Energy, 27 (2002) 909–913.
[156] X. B. Yu, Z. Wu, N. X. Xu, Effects of melt-quenching rates on the hydrogen storage properties of Ti-based BCC phase alloy, Physica B 344 (2004) 456–461.
[157] X. B. Yu, Z. Wu, B. J. Xia, N. X. Xu, The activation mechanism of Ti–V-based hydrogen storage alloys, J. Alloys Compd., 375 (2004) 221–223.
[158] H. Itoh. H. Arashima, K. Kubo, T. Kabutomori, The influence of microstructure on hydrogen absorption properties of Ti–Cr–V alloys, J. Alloys Compd., 330-332 (2002) 287-291.
[159] M. Tsukahara, K. Takahashi, A. Isomura, T. Sakai, J. Alloys Compd., 265 (1998) 257-263.
[160] C. T. Liu, Z. P. Lu, Effect of minor alloying additions on glass formation in bulk metallic glasses, Intermetallics 13 (2005) 415–418.
[161] A. J. Perry, A. A. Kundig, M. Holand, A. Dommann, Oxygen impurity sequestering in amorphous Zr–Al–Ni–Cu–Ti alloys by scandium addition, Mater. Sci. Eng. A 417 (2006) 294–298.
[162] Y. Wang, W. Hua, J. Qu, L. Xie, X. Li, Structure changes and optical properties of Mg2Ni switchable mirrors, Int. J. Hydrogen Energy 33 (2008) 7207-7213.
[163] R. Janot, F. Cuevas, M. Latroche, A. Percheron-Guegan, Influence of crystallinity on the s tructural and hydrogenation properties of Mg2X phases (X=Ni, Si, Ge, Sn), Intermetallics 14 (2006) 163-169.
[164] A. Patah, A. Takasaki, J. S. Szmyd, Influence of multiple oxide (Cr2O3/Nb2O5) addition on the sorption kinetics of MgH2, Int. J. Hydrogen Energy 34 (2009) 3032-3037.
[165] Y. Kojima, Y. Kawai, T. Haga, Magnesium-based nano-composite materials for hydrogen storage, J. Alloys Compd. 424 (2006) 294-298.
[166] H. Shao, T. Liu, Y. Wang, H. Xu, X. Li, Preparation of Mg-based hydrogen storage materials from metal nanoparticles, J. Alloys Compd., 465 ( 2008) 527-533.
[167] K. F. Aguey-Zinsou, J. R. Ares-Fernández, Synthesis of colloidal magnesium: a near room temperature store for hydrogen, Chem. Mater., 20 (2008) 376–378.
[168] H. Shao, K. Asano, H. Enoki, E. Akiba, Fabrication and hydrogen storage property study of nanostructured Mg–Ni–B ternary alloys, J. Alloys Compd., 479 (2009) 409-413.
[169] N. Cui, B. Luan, H. K. Liu, H. J. Zhao, S. X. Dou, Characteristics of magnesium-based hydrogen-storage alloy electrodes, J. Power Sources 55 (1995) 263-267.
[170] S. Bouaricha, J. P. Dodelet, D. Guay, J. Hout, S. Boily, R. Schulz, Effect of carbon-containing compounds on the hydriding behavior of nanocrystalline Mg2Ni, J. Alloys Compd. 307 (2000) 226-233.
[171] F. C. Gennari, M. R. Esquivel, Structural characterization and hydrogen sorption properties of nanocrystalline Mg2Ni, J. Alloys Compd. 459 (2008) 425-432.
[172] F. C. Gennari, F. J. Castro, J. J. Andrade Gambo, Synthesis of Mg2FeH6 by reactive mechanical alloying: formation and decomposition properties, J. Alloys Compd. 339 (2002) 261–267.
[173] J. A. Puszkiel, P. A. Larochette, F. C. Gennari, Thermodynamic and kinetic studies of Mg–Fe–H after mechanical milling followed by sintering, J. Alloys Compd. 463 (2008) 134–142.
[174] J. A. Puszkiel, P. A. Larochette, F. C. Gennari, Thermodynamic–kinetic characterization of the synthesized Mg2FeH6–MgH2 hydrides mixture, Int. J. Hydrogen Energy 33 (2008) 3555-3560.
[175] A. Reiser, B. Bogdanovic, K. Schlichte, The application of Mg-based metal-hydrides as heat energy storage systems, Int. J. Hydrogen Energy 25 (2000) 425–430.
[176] T. Aizawa, K. I. Hasehira, C. Nishimura, Solid state synthesis of non-equilibrium phase in Mg-Co and Mg-Fe systems via bulk mechanical alloying, Materials Transactions, Vol.44 (2003) 601-610.
[177] Y. Wang, T. Aizawa, C. Nishimura, Solid-state synthesis of hydrogen storage Mg2Co alloys via bulk mechanical alloying, Mater. Trans., Vol.47 (2006) 1052-1057.
[178] S. Bao, K. Tajima, Y. Yamada, M. Okada, K. Yoshimura, Polytetrafluoroethylene (PTFE) top-covered Mg-Ni switchable mirror thin films, Mater. Trans., Vol.49 No.08 (2008) pp.1919-1921.
[179] I. G. Fernández, F. C. Gennari, G. O. Meyer, Influence of sintering parameters on formation of Mg–Co hydrides based on their thermodynamic characterization, J. Alloys Compd. 462 (2008) 119-124.
[180] J. Chen, H. T. Takeshita, D. Chartouni, N. Kuriyama, T. Sakai, Synthesis and characterization of nanocrystalline Mg2CoH5 obtained by mechanical alloying, J. Mater. Sci. 36 (2001) 5829-5834.
[181] M. Y. Song, Effects of mechanical alloying on the hydrogen storage characteristics of Mg-xwt%Ni (x=0, 5, 10, 25 and 55) mixtures, Int. J. Hydrogen Energy 20(1995) 221-227.
[182] “Electron beam analysis of materials”, second edition, M. H. Loretto, Published in 1994 by Chapman & Hall, London.
[183] C. Suryanarayana, Mechanical alloying and milling, Prog. Mater. Sci. 46 (2001) 1-184.
[184] H. Shao, K. Asano, H. Enoki, E. Akiba, Correlation study between hydrogen absorption property and lattice structure of Mg-based BCC alloys, Int. J. Hydrogen Energy 34 (2009) 2312-2318.
指導教授 李勝隆(Sheng-Long Lee) 審核日期 2010-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明