博碩士論文 93343012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:35.173.234.140
姓名 李新民(Shin-Min Lee)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 304不銹鋼之摩擦鑽孔特性研究
(Characteristic study on AISI 304 stainless steel using friction drilling)
相關論文
★ 運用化學機械拋光法於玻璃基板表面拋光之研究★ 電泳沉積輔助竹碳拋光效果之研究
★ 凹形球面微電極與異形微孔的成形技術研究★ 運用電泳沉積法於不鏽鋼鏡面拋光之研究
★ 電化學結合電泳精密拋光不銹鋼之研究★ 純水中的電解現象分析與大電流放電加工特性研究
★ 結合電化學與電泳沉積之微孔複合加工研究★ 放電加工表面改質與精修效果之研究
★ 汽車熱交換器用Al-Mn系合金製程中分散相演化及再結晶行為之研究★ 磁場輔助微電化學銑削加工特性之研究
★ 磁場輔助微電化學鑽孔加工特性之研究★ 微結構電化學加工底部R角之改善策略分析與實做研究
★ 加工液中添加Al-Cr混合粉末對工具鋼放電加工特性之影響★ 不同加工液(煤油、蒸餾水、混合液)對鈦合金(Ti-6Al-4V)放電加工特性之影響
★ 放電與超音波振動複合加工添加TiC及SiC粉末對Al-Zn-Mg系合金加工特性之影響★ 添加石墨粉末之快速穿孔放電加工特性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摩擦鑽孔係藉由摩擦生熱的原理加工成形,具有無屑加工及乾式加工的特性。在金屬薄板熱摩擦鑽孔後,可形成3 ~ 4倍工件厚度的軸襯,可以提供後續攻螺紋的內孔,節省焊接螺帽的製程。沃斯田鐵系的不銹鋼材料,具有高韌性、熱傳導係數低及加工硬化等特性,使得一般的傳統麻花鑽頭,對於鑽削這類難加工材料,都會造成刀具的急速磨耗,甚至崩裂,大幅縮短刀具的壽命。但是不銹鋼材料擁有極佳的抗蝕性及抗磨耗性,因此在工業上廣泛的應用並扮演著重要的角色,所以有許多的研究,仍然繼續不銹鋼的鑽孔加工探討,以尋找出最佳的刀具材料、刀具形狀或是加工參數,以改善目前對於不銹鋼材料鑽孔加工的窘境。研究顯示,以進給率100mm/min,轉速1200rpm,比較鍍TiN高速鋼鑽頭、碳化鎢鑽頭與摩擦鑽的磨耗發現,摩擦鑽比其他兩組鑽頭具有更長的刀具壽命。藉由田口實驗法顯示,摩擦鑽錐角度30o,摩擦接觸率50%,進給率100mm/min,轉速3600rpm時,能得到最佳的孔壁表面粗糙度。加工孔橫段面的硬度,以愈接近孔壁邊緣,其硬度值愈高。摩擦鑽的披覆實驗結果顯示,由於固態潤滑效果及熱傳導係數的影響,使得AlCrN披覆層的摩擦鑽頭,測得的鑽頭磨耗及軸向力小於TiAlN披覆與非披覆的摩擦鑽。在不銹鋼摩擦鑽孔加工及其材料強化研究上顯示,微量潤滑鑽頭所加工的材料,要比乾式鑽頭具有更高的硬度產生。
摘要(英) Friction drilling utilizes the heat generated from the friction between the tool and the workpiece for machining. This process produces no chip, shortens the time required for hole-making and incurs less tool wear, thus lengthening the service life of the drill.After the friction drilling operation had been conducted, a thin plate (workpiece) was formed into a bush with a thickness of 3 times larger than that of the workpiece. The bush can provide a longer area of contact which can fit a shaft firmly. The bush can also be taped to create an internal screw without welding a nut.In this study, tungsten carbide drills with and without coating were employed to make holes in AISI 304 stainless steel, which is known to have high ductility, low thermal conductivity and great hardness.After the optimal drilling parameters of friction drilling were obtained, the optimal geometric shape and friction contact area ratio of the friction drill was selected to conduct experiments and compare with the traditional HSS twist drill coated TiN and Tungsten carbide drill. The results showed that HSS coated TiN was damaged seriously after two drilling runs and Tungsten carbide was already to create a serious wear of drill edge after three runs. However, the friction drill showed little wear and still can normally drill the AISI304 material after 60 runs. Therefore, the friction drill has a better performance than both the HSS coated TiN and the Tungsten carbide drill. Furthermore, the friction drill avoids serious tool wears, enhances drilled hole quality, and prolongs the tool life more significantly. TiAIN and AlCrN were coated onto the drill surface by physical vapor deposition (PVD). Performance of coated and uncoated cutting tools were examined for drillings made under different spindle speeds. Changes in relationship between drill surface temperature, tool wear and axial thrust force during machining were also explored. Experimental results reveal that lubricating effect of the coating and low thermal conductivity of AlCrN caused AlCrN-coated drill to produce the highest surface temperature but the lowest axial thrust force with the least tool wear. However, the difference in performance between coated and uncoated drills diminished with increase in number of holes drilled.
關鍵字(中) ★ 摩擦鑽
★ 摩擦鑽孔
★ 無屑加工
★ 乾式鑽孔
★ 不銹鋼
關鍵字(英) ★ friction drill
★ friction drilling
★ chipless machining
★ dry drilling
★ stainless steel
論文目次 摘要
Abstract
謝誌
目錄
圖目錄
表目錄
第一章 緒論..............................................1
1-1 研究動機與目的.......................................................1
1-2 研究背景...........................................2
1-3 文獻回顧...........................................8
1-4 研究方法..........................................15
1-5 本論文之構成......................................17
第二章 基本原理.........................................19
2-1 摩擦鑽孔理論......................................19
2-2 田口方法理論......................................22
2-3 材料加工硬化特性..................................25
2-4 表面粗糙度........................................27
2-5 刀具材料性質......................................29
2-6 刀具磨耗機制......................................31
第三章AISI 304不銹鋼的摩擦鑽孔加工特性研究..............34
3-1 前言..............................................34
3-2 實驗說明..........................................36
3-2-1 摩擦鑽製備.....................................38
3-2-2 顯微鏡觀察.....................................40
3-2-3 微硬度量測方法.................................40
3-3結果與討論.........................................42
3-3-1利用田口實驗探討摩擦鑽幾何形狀及鑽削參數........42
3-3-1-1直交表及實驗數據.............................42
3-3-1-2 ANOVA分析...................................45
3-3-1-3 驗證實驗....................................46
3-3-2 不同鑽頭鑽削不銹鋼材料的加工壽命...............47
3-3-3 不銹鋼材料之微硬度探討.........................51
3-4 結論..............................................56
第四章 披覆型摩擦鑽的鑽孔特性...........................57
4-1 前言..............................................57
4-2 實驗說明..........................................59
4-3 結果與討論........................................64
4-3-1 溫度的影響.....................................64
4-3-2 摩擦鑽的磨耗...................................66
4-3-3 軸向力與扭力...................................74
4-4 結論..............................................81
第五章 不銹鋼摩擦鑽孔加工及其材料強化研究...............82
5-1 前言..............................................82
5-2 實驗說明..........................................84
5-2-1 摩擦鑽製作及鑽孔...............................85
5-2-2 晶相顯微觀察...................................86
5-2-3 硬度試驗.......................................86
5-3 結果與討論........................................88
5-3-1孔壁橫斷面成分分析..............................88
5-3-2晶相顯微組織觀察................................91
5-3-2-1薄板材料上的組織變化.........................91
5-3-2-2凸緣部分的組織變化...........................93
5-3-3微硬度測試......................................99
5-3-3-1乾式摩擦鑽...................................99
5-3-3-1-1自然冷卻..................................99
5-3-3-1-2高壓空氣急速冷卻.........................100
5-3-3-2微量潤滑摩擦鑽..............................101
5-3-3-2-1自然冷卻.................................101
5-3-3-2-2高壓空氣急速冷卻.........................102
5-4 結論.............................................104
第六章 摩擦鑽孔對於304不銹鋼與IN-713LC超合金的特性比較.105
6-1 前言.............................................105
6-2 實驗說明.........................................106
6-3 結果與討論.......................................110
6-3-1 孔徑橫斷面之微硬度探討........................110
6-3-2 真圓度探討....................................113
6-3-3 粗糙度探討....................................116
6-4 結論.............................................121
第七章 總結論..........................................122
參考文獻...............................................124
參考文獻 1. E. Brinksmeier, “Prediction of tool fracture in drilling,” Annals of the CIRP, vol. 39, pp. 97-100, 1990,
2. J.L. Cantero, M.M. Tardío, J.A. Canteli, M. Marcos, M.H. Miguélez, “Dry drilling of alloy Ti-6Al-4V,” International Journal of Machine Tools and Manufacture, vol. 45, pp. 1246-1255, 2005.
3. Josef Tomiska, “The system Fe-Ni-Cr: revision of the thermodynamic description, Journal of Alloys and Compounds,” vol. 379, pp. 176-187, 2004.
4. E.O. Ezugwu and C.J. Lai, “Failure modes and wear mechanisms of M35 high speed steel drills when machining Inconel 901,” Journal of Materials Processing Technology, vol. 49, pp. 295-312, 1995.
5. C.T. Sims and C. H. William, “The superalloys (Book style),” New York, Wiley-Interscience, ch. 1, pp. 13-14, 1972.
6. E.C. Orth and S. Ebenhoch, “Machining workhardening metals,” The Carbide and Tool Journal, vol. 15, pp. 3-7, 1983.
7. L. Settineri, M.G. Faga, B. Lerga, “Properties and performances of innovative coated tools for turning inconel,” International Journal of Machine Tools and Manufacture, vol. 48, pp. 815-823, 2008.
8. H. Sasahara, A. Kato, H. Nakajima, H. Yamamoto, T. Muraki, Masaomi Tsutsumi, “High-speed rotary cutting of difficult-to-cut materials on multitasking lathe,” International Journal of Machine Tools and Manufacture, vol. 48, pp. 841-850, 2008.
9. Y.S. Sato, P. Arkom, H. Kokawa, T.W. Nelson, R.J. Steel, “Effect of microstructure on properties of friction stir welded Inconel Alloy 600,” Materials Science and Engineering A, vol. 477, pp. 250-258, 2008.
10. J. Lorentzon, N. Järvstråt, “Modelling tool wear in cemented-carbide machining alloy 718,” International Journal of Machine Tools and Manufacture, In Press, Corrected Proof, Available online 18 March 2008.
11. C.Y. Hsu, Y.Y. Lin, W.S. Lee, S.P. Lo, “Machining characteristics of Inconel 718 using ultrasonic and high temperature-aided cutting,” Journal of Materials Processing Technology, vol. 198, pp. 359-365, 2008.
12. R.E. Howe, “Producibility/Machinability of space-Age and conventional materials,” American Society of Tool and Manufacturing Engineers, Dearborn, Michigan, Ch. 1,2,5,7, 1986.
13. F.W. Wilson, R.W. Cox, “Machining the Space-age metals,” American Society of Tool and Manufacturing Engineers, Dearborn, Michigan, Dearbon, Michigan, Ch. 5, 1965.
14. T. Pfeifer, J. Elzer, “Measuring drill wear with digital image processing,” Measurement, vol. 8, pp. 132-136, 1990.
15. S.A. Jalali, W.J. Kolarik, “Tool life and machinability models for drilling steels,” International Journal of Machine Tools and Manufacture, vol. 31, pp. 273-282, 1991.
16. W.C. Chen, K.H. Fuh, “The cutting performance of a TiN-coated drill with curved primary cutting edges,” Journal of Materials Processing Technology, vol. 49, pp. 183-198, 1995.
17. Edith Morin, Jacques Masounave, E.E. Laufer bT, “Effect of drill wear on cutting forces in the drilling of metal-matrix composites,” Wear, vol. 184, pp. 11-16, 1995.
18. Z.Y. Wang, K.P. Rajurkar, “Cryogenic machining of hard-to-cut materials,” Wear, vol. 239, pp. 168-175, 2000.
19. Rui Li, Parag Hegde, A.J. Shih, “High-throughput drilling of titanium alloys,” International Journal of Machine Tools and Manufacture, vol. 47, pp. 63-74, 2007.
20. A.R.C. Sharman, A. Amarasinghe, K. Ridgway, “Tool life and surface integrity aspects when drilling and hole making in Inconel 718,” Journal of Materials Processing Technology, vol. 200, pp. 424-432, 2008.
21. Mauri Routio, Matti Säynätjoki, “Tool wear and failure in the drilling of stainless steel,” Journal of Materials Processing Technology, vol. 52, pp. 35-43, 1995.
22. W.C. Chen, X.D. Liu, “Study on the various coated twist drills for stainless steels drilling,” Journal of Materials Processing Technology, vol. 99, pp. 226-230, 2000.
23. H.K. Tonshoff, A. Mohlfeld, “PVD-coating for wear protection in dry cutting operations,” Surface and Coatings Technology, vol. 93, pp. 88-92, 1997.
24. J. Nickel, A.N. Shuaib, B.S. Yilbas, S.M. Nizam, “Evaluation of the wear of plasma-nitrided and TiN-coated HSS drills using conventional and Micro-PIXE techniques,” Wear, vol. 239, pp. 155-167, 2000.
25. B.S. Yilbas, S.M. Nizam, “Wear behavior of TiN coated AISI H11 and AISI M7 twist drills prior to plasma nitriding,” Journal of Materials Processing Technology, vol. 105, pp. 352-358, 2000.
26. Rodrigo Panosso Zeilmann, Walter Lindolfo Weingaertner, “Analysis of temperature during drilling of Ti6Al4V with minimal quantity of lubricant,” Journal of Materials Processing Technology, vol. 179, pp. 124-127, 2006.
27. H.Z. Li, H. Zeng, X.Q. Chen, “An experimental study of tool wear and cutting force variation in the end milling of Inconel 718 with coated carbide inserts,” Journal of Materials Processing Technology, vol. 180, pp. 296-304, 2006.
28. K.R.C. Soma Raju, Nadimul Haque Faisal, D. Srinivasa Rao, S.V. Joshi, G. Sundararajan, “Electro-spark coatings for enhanced performance of twist drills,” Surface and Coatings Technology, vol. 202, pp. 1636-1644, 2008.
29. I.J. Smith, D. Gillibrand, J.S. Brooks, W.D. Münz, S. Harvey, R. Goodwin, “Dry cutting performance of HSS twist drills coated with improved TiAlN,” Surface and Coatings Technology, vol. 90, pp. 164-171, 1997.
30. Matthew Bono, Jun Ni, “The effects of thermal distortions on the diameter and cylindricity of dry drilled holes,” International Journal of Machine Tools and Manufacture, vol. 41, pp. 2261-2270 , 2001.
31. Y.C. Chen, Y.S. Liao, “Study on wear mechanisms in drilling of Inconel 718 superalloy,” Journal of Materials Processing Technology, vol. 140, pp. 269-273, 2003.
32. N. Wain, N.R. Thomas, S. Hickman, J. Wallbank, D.G. Teer, “Performance of low-friction coatings in the dry drilling of automotive Al–Si alloys,” Surface and Coatings Technology, vol. 200, pp. 1885-1892, 2005.
33. Lijing Bai, Xiaodong Zhu, Jiming Xiao, Jiawen He, “Study on thermal stability of CrTiAlN coating for dry drilling,” Surface and Coatings Technology, vol. 201, pp. 5257-5260, 2007.
34. Eyup Bağci, Babur Ozcelik, “Investigation of the effect of drilling conditions on the twist drill temperature during step-by-step and continuous dry drilling,” Materials and Design, vol. 27, pp. 446-454, 2006.
35. Xiaozhong Song, Junghsen Lieh, David Yen, “Application of small-hole dry drilling in bimetal part,” Journal of Materials Processing Technology, vol. 186, pp. 304-310, 2007.
36. M. Kerkhofs, M. Van Stappen, “The performance of (Ti,Al)N-coated flowdrills,” Surface and Coatings Technology, vol. 68-69, pp. 741-746, 1994.
37. Scott F. Miller, Jia Tao, Albert J. Shih, “Friction drilling of cast metals,” International Journal of Machine Tools and Manufacture, vol. 46, pp. 1526-1535, 2006.
38. Scott F. Miller, Peter J. Blau, Albert J. Shih, “Tool wear in friction drilling,” International Journal of Machine Tools and Manufacture, vol. 47, pp. 1636-1645, 2007.
39. H.M. Chow, S.M. Lee, L.D. Yang, “Machining characteristic study of friction drilling on AISI 304 stainless steel,” Journal of Materials Processing Technology, In Press, Corrected Proof, Available online 27 December 2007.
40. S.M. Lee, H.M. Chow, B.H. Yan, “Friction drilling of IN-713LC cast superalloy,” Materials and Manufacturing Processes, vol. 22, pp. 893-897, 2007.
41. S.A. David, G.M. Goodwin, D.N. Braski, “Solidification behavior of austenitic stainless steel filler metals,” Welding Journal, vol. 58, pp. 330-336, 1979.
42. S.A. David, J.M. Vitek, T.L. Hebble, “Effect of rapid solidification on stainless steel weld metal microstructure and its Implications on the schaeffler diagram,” Welding Journal, vol. 66, pp. 289-300, 1987.
43. C. Phaniraj, M. Nandagopal, S.L. Mannan, P. Rodriguez, “The relationship between transient and steady state creep in AISI 304 stainless steel,” Acta Metallurgica et Materialia, vol. 39, pp. 1651-1656, 1991.
44. Tsann-Rong Lin, “Cutting behavior of a TiN-coated carbide drill with curved cutting edges during the high-speed machining of stainless steel,” Journal of Materials Processing Technology, vol. 127, pp. 8-16, 2002.
45. S. Dolin ek, “Work-hardening in the drilling of austenitic stainless steels,” Journal of Materials Processing Technology, vol. 133, pp. 63-70, 2003.
46. K.A. Abou-El-Hossein, Z. Yahya, “High-speed end-milling of AISI 304 stainless steels using new geometrically developed carbide inserts,” Journal of Materials Processing Technology, vol. 162-163, pp. 596-602, 2005.
47. W. Wallace, R.T. Holt, T. Terada, “The nature of the sulfo-carbides observed in nickel-base superalloys,” Metallography, vol. 6, pp. 511-526, 1973.
48. R.J.E. Glenny, J.E. Northwood, A. Burwood-Smith, “Materials for gas turbines,” International Metallurgical Reviews, vol. 20, pp. 1-28, 1975.
49. W.V. Yovdebis, O. Kwon, “Carbide phases in nickel-base superalloys : nucleation properties of MC type carbide,” Metal Science, vol. 17, pp. 385-388, 1983.
50. E.O. Ezugwu, Z.M. Wang, A.R. Machado, “The machinability of nickel-based alloys: a review,” Journal of Materials Processing Technology, vol. 86, pp. 1-16, 1998.
51. Y. S. Tarng, S. C. Juang, C. H. Chang, “The use of grey-based Taguchi methods to determine submerged arc welding process parameters in hardfacing,” Journal of Materials Processing Technology, vol. 128, pp. 1-6, 2002.
52. J. A. Ghani, I. A. Choudhury, H. H. Hassan, “Application of taguchi method in the optimization of end milling parameters,” Journal of Materials Processing Technology, vol. 145, pp. 84-92, 2004.
53. 余煥騰、陳適範,金屬塑性加工學,全華科技圖書股份有限公司,34頁,民89
54. 高霖、鳳佩華、張秀芳,單項塑性材料細晶強化的強度與韌性,鍛壓技術,5期,22頁,民83
55. 邱江明,不銹鋼的種類與特性,工業材料,97期,79頁,民84
56. S.S. Wu, S.Y. Chen, D. Gan, “Effects of grain boundary carbide on the stress-strain curves of type 316 stainless,” Materials Science and Engineering A, vol. 127, pp. 1-5, 1990.
57. Niels Hansen, “Hall-Petch relation and boundary strengthening,” Scripta Materialia, vol. 51, pp. 801-806, 2004.
58. Niels Hansen, “Boundary strengthening in undeformed and deformed polycrystals, Materials Science and Engineering A,” vol. 409, pp. 39-45, 2005.
59. G. Saada, “Hall-Petch revisited,” Materials Science and Engineering A, vol. 400-401, pp. 146-149, 2005.
60. Hai-long YI, Lin-xiu DU, Guo-dong WANG, Xiang-hua LIU, “Strengthening mechanism of a new 700 MPa hot rolled high strength Steel,” Journal of Iron and Steel Research, International, vol. 15, pp. 76-80, 2008.
61. 洪良德,切削刀具學,全華科技圖書股份有限公司,29-40頁,民74
62. S. Ramalingam and P. K. Wright, “Abrasive wear in machining: experiment with material of controlled microstructure,” Journal of Engineering Materials and Technology, Transactions of the ASME, vol. 103, pp. 151-156, 1981.
63. M. Pirtini, I. Lazoglu, “Forces and hole quality in drilling,” International Journal of Machine Tools and Manufacture, vol. 45, pp. 1271-1281, 2005.
64. Nam P. Sum, “New theories of wear and their implication for tool materials,” Wear, vol. 62, pp. 1-20, 1980.
65. A.S. Korhonen, E.H. Sirvio, “A new low pressure plasma nitriding method,” Thin Solid Films, vol. 96, pp. 103-108, 1982.
66. J.R. Roos, J.P. Celis, E. Vancoille, H. Veltrop, S. Boelens, F. Jungblut, J. Ebberink, H. Homberg, “Interrelationship between processing, coating properties and functional properties of steered arc physically vapour deposited (Ti,AI)N and (Ti,Nb)N coatings,” Thin Solid Films, vol. 193-194, pp. 547-556, 1990.
67. K. Adachi, N. Arai, K. Okita, K. Ogawa, R. Niba, “A study on drilling of SUS304 by TiN-coated drills,” Bulletin Japan Society of Precision Engineering, vol. 24, pp. 200-205, 1990.
68. E.M. Trent, “Cutting steel and iron with cemented carbide tools, Part I. An analysis of tool wear,” Journal of The Iron and Steel Institute, vol. 201, pp. 847-855, 1963.
69. E.M. Trent, “Cutting steel and iron with cemented carbide tools, part II. Conditions of seizure at the tool-work interface,” Journal of The Iron and Steel Institute, vol. 201, pp. 923-932, 1963.
70. E.M. Trent, “Cutting steel and iron with cemented carbide tools, part III, The influence of metallurgical factors in the flow zone,” Journal of The Iron and Steel Institute, vol. 201, pp. 1001-1015, 1963.
71. Reginaldo T. Coelhoa, Eu-Gene Ng, M.A. Elbestawi, “Tool wear when turning hardened AISI 4340 with coated PCBN tools using finishing cutting conditions,” International Journal of Machine Tools and Manufacture, vol. 47, pp. 263-272, 2007.
72. M. Lahres, P. Müller-Hummel, O. Doerfel, “Applicability of different hard coating in dry milling aluminium alloys,” Surface and Coating Technology, vol. 91, pp. 116-121, 1997.
73. D.M. Haan, S.A. Batzer, W.W. Olson, J.W. Sutherland, “An experimental study of cutting fluid effects in drilling,” Journal of Materials Processing Technology, vol. 71, pp. 305-313, 1997.
74. I. Milošev, H.-H. Strehblow, B. Navinšek, “XPS in the study of high-temperature oxidation of CrN and TiN hard coatings,” Surface and Coatings Technology, vol. 74-75, pp. 897-902, 1995.
75. P. Panjan, B. Navin ek, A. Cvelbar, I. Milo ev, A. Zalar, “Oxidation of TiN, ZrN, TiZrN, CrN, TiCrN and TiN/CrN multilayer hard coatings reactively sputtered at low temperature,” Thin Solid Films, vol. 281-282, pp. 298-301, 1996.
76. P. Panjan, B. Navin ek, A. Cvelbar, A. Zalar, J. Vlcek, “High-temperature oxidation of TiN/CrN multilayers reactively sputtered at low temperatures,” Surface and Coatings Technology, vol. 98, pp. 1497-1502, 1998.
77. O. Knotek, F. Löffler, G. Krämer, “Performance behaviour of Physical-vapour-deposition-coated cermets interrupted cut machining,” Surface and Coatings Technology, vol. 62, pp. 669-673, 1993.
78. M. Nouari, G. List, F. Girot, D. Géhin, “Effect of machining parameters and coating on wear mechanisms in dry drilling of aluminium alloys,” International Journal of Machine Tools and Manufacture, vol. 45, pp. 1436-1442, 2005.
79. J.A. van Geffen, “Piercing tools,” US Patent 3,939,683, 1976.
80. Y.L. Su, T.H. Liu, C.T. Su, S.H. Yao, W.H. Kao, K.W. Cheng, “Wear of CrC-coated carbide tools in dry machining,” Journal of Materials Processing Technology, vol. 171, pp. 108-117, 2006.
81. H.K. Tönshoff, A. Mohlfeld, “Surface treatment of cutting tool substrates,” International Journal of Machine Tools and Manufacture, vol. 38, pp. 469-476, 1998.
82. H.G. Prengel, P.C. Jindal, K.H. Wendt, A.T. Santhanam, P.L. Hegde, R.M. Penich, “A new class of high performance PVD coatings for carbide cutting tools,” Surface and Coatings Technology, vol. 139, pp. 25-34, 2001.
83. S. Sharif, E.A. Rahim, “Performance of coated- and uncoated-carbide tools when drilling titanium alloy-Ti-6Al4V,” Journal of Materials Processing Technology, vol. 185, pp. 72-76, 2007.
84. G.S. Fox-Rabinovich, B.D. Beake, J.L. Endrino, S.C. Veldhuis, R. Parkinson, L.S. Shuster, M.S. Migranov, “Effect of mechanical properties measured at room and elevated temperatures on the wear resistance of cutting tools with TiAlN and AlCrN coatings,” Surface and Coatings Technology, vol. 200, pp. 5738-5742, 2006.
85. W. Kalss, A. Reiter, V. Derflinger, C. Gey, J.L. Endrino, “Modern coatings in high performance cutting applications,” International Journal of Refractory Metals and Hard Materials, vol. 24, pp. 399-404, 2006.
86. J.L. Endrino, G.S. Fox-Rabinovich, A. Reiter, S.V. Veldhuis, R. Escobar Galindo, J.M. Albella , J.F. Marco, “Oxidation tuning in AlCrN coatings,” Surface and Coatings Technology, vol. 201, pp. 4505-4511, 2007.
87. S.H. Yao, “Evaluation of TiN/AlN nano-multilayer coatings on drills used for micro-drilling,” Surface and Coatings Technology, vol. 197, pp. 351-357, 2005.
88. P.C. Jindal, A.T. Santhanam, U. Schleinkofer, A.F. Shuster, “Performance of PVD TiN, TiCN, and TiAlN coated cemented carbide tools in turning,” International Journal of Refractory Metals and Hard Materials, vol. 17, pp. 163-170, 1999.
89. M.V. Cardoso, S.T. Amaral, E.M.A. Martini, “Temperature effect in the corrosion resistance of Ni–Fe–Cr alloy in chloride medium,” Corrosion Science, In Press, Corrected Proof, Available online 4 July 2008.
90. J.A. Paro, T.E. Gustafsson, J. Koskinen, “Drilling of conventional cast stainless steel with HIPed NiTi coating,” Journal of Materials Processing Technology, vol. 153-154, pp. 622-629, 2004.
91. Shin Min Lee, Han Ming Chow, Fuang Yuan Huang, Biing Hwa Yan, “Friction drilling of austenitic stainless steel by uncoated and PVD AlCrN- and TiAlN-coated tungsten carbide tools,” International Journal of Machine Tools and Manufacture, In Press, Accepted Manuscript, Available online 5 August 2008.
92. Gui-jiang Li, Qian Peng, Cong Li, Ying Wang, Jian Gao, Shu-yuan Chen, Jun Wang, Bao-luo Shen, “Microstructure analysis of 304L austenitic stainless steel by QPQ complex salt bath treatment,” Materials Characterization, vol. 59, pp. 1359-1363., 2008.
93. Liang Wang, Shijun Ji, Juncai Sun, “Effect of nitriding time on the nitrided layer of AISI 304 austenitic stainless steel,” Surface and Coatings Technology, vol. 200, pp. 5067-5070, 2006.
94. Mumin Sahin, “Characterization of properties in plastically deformed austenitic-stainless steels joined by friction welding,” Materials and Design, vol. 30, pp. 135-144, 2009.
95. M.J. Donachie, S.J. Donachie, “Superalloys:a technical guide,” ASM International, 2003.
96. A. Jawaid, S. Koksal, S. Sharif, “Cutting performance and wear characteristics of PVD coated and uncoated carbide tools in face milling Inconel 718 aerospace alloy,” Journal of Materials Processing Technology, vol. 116, pp. 2-9, 2001.
97. I.A. Choudhury, M.A. El-Baradie, “Machinability of nickel-base super alloys:a general review,” Journal of Materials Processing Technology, vol. 77, pp. 278-284, 1998.
98. C.N. Wei, H.Y. Bor, C.Y. Ma, T.S. Lee, “A study of IN-713LC superalloy grain refinement effects on microstructure and tensile properties,” Materials Chemistry and Physics, vol. 80, pp. 89-93, 2003.
99. E.O. Ezugwu, J. Bonney, D.A. Fadare, W.F. Sales, “Machining of nickel-base, Inconel 718, alloy with ceramic tools under finishing conditions with various coolant supply pressures,” Journal of Materials Processing Technology, vol. 162-163, pp. 609-614, 2005.
指導教授 顏炳華(Biing - Hwa Yan) 審核日期 2008-10-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明