博碩士論文 93343019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.205.96.39
姓名 謝宏麟(Hung-Lin Hsieh)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 準共光程干涉術之新式大尺度定位平台之研究
(Novel Interferometric Stage Based on Quasi-Common-Optical-Path Configuration for Large Scale Displacement)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 外差光學式光柵干涉儀之研究★ 週期性極化反轉鈮酸鋰之結構製作與研究
★ 圖案化藍寶石基板之濕式蝕刻★ 高功率發光二極體於自然對流環境下之熱流場分析
★ 液珠撞擊熱板之飛濺行為現象分析★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析
★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析★ 交流電發光二極體之接面溫度量測
★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析
★ KY法生長大尺寸氧化鋁單晶之數值模擬分析★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文提出一個以準共光程為架構,可用以進行大行程位移運動的新型干涉儀式定位平台,此干涉儀式位移平台包含一準共光程量測系統及一雙伺服定位平台。
準共光程量測系統由一個外差光源、二維度的全像光柵、特製的半波片及鎖相放大器等元件所組成。本研究設計出兩種不同型式的準共光程量測系統架構,分別為單動式及差動式準共光程量測系統。其中,差動式準共光程量測系統之靈敏度、解析度及非線性相位誤差均較單動式準共光程量測系統為佳。另外,本研究利用一維度及二維度的位移運動實驗來驗證所提出之準共光程量測系統的可行性及性能,並分別將此系統之量測結果與商用電容式位移計、應變規、光學尺及干涉儀等儀器進行比對。由實驗的結果可證明此準共光程量測系統擁有一維度長行程及二維度大面積的直線(度)與位移的量測能力,並可同時維持高系統穩定性。
此外,本研究將一微步進定位平台及一平板彈簧型式的壓電致動平台結合在一起,用以進行一維度及二維度的大行程精密定位。透過最佳化的設計方法,本研究提出了最適合此平板彈簧型式的壓電致動平台的最佳化結構參數。
藉由結合此準共光程量測系統及雙伺服定位平台,本研究提出一以準共光程干涉儀為架構的精密定位系統,此定位系統之解析度及位移運動範圍分別可達到奈米級及釐米級,且同時具備極高之系統穩定性,可使用於大行程定位之相關研究及應用。
摘要(英) A novel interferometric stage based on quasi-common-optical-path (QCOP) configuration for large-area displacement applications has been developed. The interferometric stage includes a QCOP measurement system and dual-servo positioning stage.
The QCOP measurement system consists of a heterodyne light source, two-dimensional holographic grating, specially designed set of half wave plates and lock-in amplifiers. Two QCOP measurement configurations, for single and differential detection, were designed. The sensitivity, resolution and nonlinear phase error of the differential detection type are better than those of the single detection type. Feasibility and performances of the QCOP measurement system have been addressed and demonstrated using 1D and 2D displacement experiments and a systematic comparison with a commercial capacitive sensor, strain gauge, linear encoder and linear interferometer. The experimental results demonstrate that the QCOP measurement system has the ability to measure long-range (1D) and large-area (2D) straightness and displacement while maintaining high system stability.
Furthermore, a micro-stepper was used to integrate with a leaf-spring type PZT stage for 1D and 2D displacement positioning. The suitable parameters of leaf-spring type PZT stage were calculated using an optimization method.
By combining the QCOP measurement system with dual-servo positioning stage, the positioning resolution and range of interferometric stage can achieve the nanometer and milimeter levels with high system stability for large-scale applications.
關鍵字(中) ★ 干涉儀式定位平台
★ 共光程
★ 位移
★ 大尺度
關鍵字(英) ★ Large scale
★ Displacement
★ Common Optical Path
★ Interferometric Stage
論文目次 摘要 I
ABSTRACT II
Resume III
致謝 IV
ACKNOWLEDGEMENTS IV
TABLLE OF CONTENTS VIII
LIST OF FIGURES XI
LIST OF TABLES XIV
NOMENCLATURE XV
CHAPTER 1. INTRODUCTION 1
1.1 Background 1
1.2 Literature review 3
1.2.1 Literature review of displacement measurement system 3
1.2.2 Literature review of driving stage 7
1.3 Motivation and Objectives 9
1.4 Arrangement of the thesis 10
CHAPTER 2. DEVELOPMENT OF MEASURING SYSTEM 15
2.1 Heterodyne interferometry 15
2.1.1 Heterodyne light source from a moving grating 16
2.1.2 Heterodyne light source from a rotating HWP 17
2.1.3 Heterodyne light source from an electro-optic modulator 18
2.1.4 Heterodyne light source from the Zeeman Effect 19
2.2 Grating interferometry 20
2.2.1 The phase variation resulting from the movement of a grating 20
2.2.2 Principle of grating interferometry 21
2.3 Quasi-common-optical-path heterodyne grating interferometry 22
2.3.1 One-dimensional QCOP heterodyne grating interferometer 22
2.3.2 Two-dimensional QCOP heterodyne grating interferometer 25
2.4 Single and differential types QCOP method 28
CHAPTER 3. DEVELOPMENT OF DISPLACEMENT DRIVING SYSTEM 35
3.1 Design of dual-servo positioning stage 35
3.2 Structure design of the leaf spring stage 36
3.3 Optimization design of the leaf spring stage 37
3.4 Analysis result and discussion about the leaf spring stage 39
3.5 FEM modal analysis 40
CHAPTER 4. EXPERIMENTAL RESULTS 55
4.1 Modal analysis experiment 55
4.2 Experimental results of one-dimensional QCOP 56
4.2.1 Experimental setup of one-dimensional QCOP 56
4.2.2 Forward and backward displacement test 58
4.2.3 Repeatability of one-dimensional QCOP 60
4.2.4 Stability of one-dimensional QCOP 61
4.3 Experimental results of two-dimensional QCOP 62
4.3.1 Experimental setup of two-dimensional QCOP 62
4.3.2 Two-dimensional straightness measurements 62
4.3.3 Two-dimensional displacement measurements 64
4.3.4 Stability of two-dimensional QCOP 65
4.3.5 Measurement resolution 65
4.3.6 Measurement speed 66
CHAPTER 5. DISCUSSIONS 79
5.1 QCOP heterodyne grating interferometer versus angular shearing interferometer 79
5.2 QCOP heterodyne grating interferometer versus conventional common and non-common path heterodyne interferometer 80
5.3 Single type QCOP method versus differential type QCOP method 81
5.3.1 Measurement resolution and sensitivity 81
5.3.2 Overall non-linear error 82
5.4 Non-uniformity grating pitch induced error. 84
5.5 Influence from the pitch, yaw and roll of the dual-servo positioning stage 85
5.6 Influence of modulation signal stability 87
CHAPTER 6. CONCLUSIONS 89
6.1 Conclusions 89
6.2 Future works 90
REFERENCES 92
Resume 102
LIST OF RELATED PUBLICATIONS 113
AUTHOR COMMUNICATIONS 114
參考文獻 REFERENCES
1.B. E. Maile, W. Henschel, H. Kurz, B. Rienks, R. Polman, and P. Kaars, "Sub-10 nm Linewidth and Overlay Performance Achieved with a Fine-Tuned EBPG-5000 TFE Electron Beam Lithography System," Japanese Journal of Applied Physics 39, 6836-6842 (2000).
2.G. Lerondel, A. Sinno, L. Chassagne, S. Blaize, P. Ruaux, A. Bruyant, S. Topcu, P. Royer, and Y. Alayli, "Enlarged near-field optical imaging," Journal of Applied Physics 106, 044913 - 044913-044914 (2009).
3.A. Sinno, P. Ruaux, L. Chassagne, S. Topcu, Y. Alay, G. Lerondel, S. Blaize, A. Bruyant, and P. Royer, "Enlarged atomic force microscopy scanning scope: Novel sample-holder device millimeter range," Review of Scientific Instruments 78, 095107 (2007).
4.A. Gombert, B. Blasi, C. Buhler, P. Nitz, J. Mick, W. Hosfeld, and M. Niggemann, "Some application cases and related manufacturing techniques for optically functional microstructures on large areas," Optical Engineering 13, 2525-2533 (2004).
5.J. Tersoff, and D. R. Hamann, "Theory of the scanning tunneling microscope," Physical Review B 31, 805–813 (1985).
6.F. Felten, G. A. Schneider, J. M. Saldana, and S. V. Kalinin, "Modeling and measurement of surface displacements in BaTiO3 bulk material in piezoresponse force microscopy," Journal of Applied Physics 96, 104-108 (2004).
7.L. L. Chu, and Y. B. Gianchandani, "A micromachined 2D positioner with electrothermal actuation and sub-nanometer capacitive sensing," Journal of Micromechanics and Microengineering 13, 279-285 (2003).
8.F. Zhang, H. I. Smith, and J. Dai, "Fabrication of high-secondary-electron-yield grids for spatial-phase-locked electron-beam lithography," Journal of Vacuum Science & Technology B 23, doi:10.1116/1111.2110341 (2005).
9.S. K. Kuo, C. C. Hung, C. C. Lin, and W. H. Yang, "Development of a nano-displacement measurement system," Measurement 40, 256-263 (2007).
10.C. G. Chen, P. T. Konkola, R. K. Heilmann, G. S. Pati, and M. L. Schattenburg, "Image metrology and system controls for scanning beam interference lithography," Journal of Vacuum Science & Technology B 19, 2335-2341 (2001).
11.L. F. Johnson, G. W. Kammlott, and K. A. Ingersoll, "Generation of periodic surface corrugations," Applied Optics 17, 1165 (1978).
12.S. H. Zaidi, and S. R. J. Brueck, "Multiple-exposure interometric lithography," Journal of Vacuum Science & Technology B 11, 658 (1993).
13.H. H. Solak, D. He, W. Li, S. Singh-Gasson, B. H. Sohn, X. M. Yang, and P. Nealey, "Exposure of 38 nm period grating patterns with extreme ultraviolet interferometric lithography," Applied Physics Letters 75, 2328 (1999).
14.X. Liu, W. Clegg, D. F. L. Jenkins, and B. Liu, "Polarization Interferometer for Measuring Small Displacement," IEEE Transactions on Instrumentation and Measurement 50, 865-871 (2001).
15.Y. Wang, Q. Wang, P. Li, J. Lan, and K. Guo, "Photorefractive holographic interferometry for the measurement of object tilt and in-plane displacement," Proceedings of SPIE 4292, 230-236 (2002).
16.N. K. Mohan, and P. Rastogi, "Phase-shifting whole-field speckle photography technique for the measurement of in-plane deformations in real time," Optics Letters 27, 565-567 (2002).
17.H. J. Wang, J. Y. Chen, C. M. Liu, and L. W. Chen, "Phase-shifting moire interferometry based on a liquid crystal phase modulator," Optical Engineering 44, 015602 (2005).
18.W. C. Kuo, C. Chou, and H. T. Wu, "Optical heterodyne surface-plasmon resonance biosensor," Optics Letters 28, 1329-1331 (2003).
19.C. C. Wu, C. C. Hsu, J. Y. Lee, H. Y. Chen, and C. L. Dai, "Optical heterodyne laser encoder with sub-nanometer resolution," Measurement Science and Technology 19, 045305 (2008).
20.F. Restagno, J. Crassous, E. Charlaix, and M. Monchanin, "A new capacitive sensor for displacement measurement in a surface-force apparatus," Measurement Science and Technology 12, 16-22 (2001).
21.D. E. Duffy, "Moire Gauging of In-Plane Displacement Using Double Aperture Imaging," Applied Optics 11, 1778-1781 (1972).
22.T. E. Carlsson, J. Gustafsson, and N. H. Abramson, "Method for fringe enhancement in holographic interferometry for measurement of in-plane displacements," Proceedings of SPIE 37, 1845-1848 (1998).
23.Lion Precision, "Lion Precision white paper 2004 User manual and literature," (2004).
24.R. Tripathi, G. S. Pati, A. Kumar, and K. Singh, "In-plane displacement measurement using a photorefractive speckle correlator," Optics Communications 149, 355-365 (1998).
25.I. A. Sokolov, "Adaptive photodetectors: novel approach for vibration measurements," Measurement 27, 13-19 (2000).
26.D. Crespo, J. Alonso, and E. Bernabeu, "Reflection optical encoders as three-grating moire’ systems," Applied Optics 39, 3805-3813 (2000).
27.L. Liwei, A. P. Pisano, and R. HoweT., "A micro strain gauge with mechanical amplifier," Journal of Microelectromechanical Systems 6, 313 - 321 (1997).
28.Hewlett Packard, "5526A Laser Measurement System User's Guide," (1980).
29.Y. Yee, H. J. Nam, S. H. Lee, J. U. Bu, and J. W. Lee, "PZT actuated micromirror for fine-tracking mechanism of high-density optical data storage," Sensors and Actuators A 89, 166-173 (2001).
30.J. W. Judy, D. L. Polla, and W. P. Robbins, "A linear piezoelectric stepper motor with submicrometer step size and centimeter travel range," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 37, 428 - 437 (1990).
31.L. Chassagne, S. Topcu, Y. Alayli, and P. Juncar, "Highly accurate positioning control method for piezoelectric actuators based on phase-shifting optoelectronics," Measurement Science and Technology 16, 1771-1777 (2005).
32.S. S. Aphale, S. Devasia, and S. O. R. Moheimani, "High-bandwidth control of a piezoelectric nanopositioning stage in the presence of plant uncertainties," Nanotechnology 19, 125503 (2008).
33.R. K. Heilmann, C. G. Chen, P. TKonkola, and M. L. Schattenburg, "Dimensional metrology for nanometre-scale science and engineering: towards sub-nanometre accurate encoders," Nanotechnology 15, 504-511 (2004).
34.J. R. Matez, R. S. Crandall, B. Brycki, and G. A. D. Briggs, "Bimorph‐driven x–y–z translation stage for scanned image microscopy," Review of Scientific Instruments 58, 567 - 570 (1987).
35.M. Holmes, R. Hocken, and D. Trumper, "The long-range scanning stage: a novel platform for scanned-probe microscopy," Precision Engineering 24, 191-209 (2000).
36.S. Yoo, and S. w. Kim, "Self-calibration algorithm for testing out-of-plane errors of two-dimensional profiling stages," International Journal of Machine Tools and Manufacture 44, 767-774 (2004).
37.C. C. Hsu, C. C. Wu, J. Y. Lee, H. Y. Chen, and H. F. Weng, "Reflection type heterodyne grating interferometry for in-plane displacement measurement," Optics Communications 281, 2582–2589 (2008).
38.J. Y. Lee, H. Y. Chen, C. C. Hsu, and C. C. Wu, "Optical heterodyne grating interferometry for displacement measurement with subnanometric resolution," Sensors and Actuators A 137, 185–191 (2007).
39.F. P. Chiang, and R. M. Juang, "Laser speckle interferometry for plate bending problems," Applied Optics 23, 997 (1976).
40.S. Hecop, "Laser interferometric system for displacement measurement with high precision," Nanotechnology 2, 88-95 (1991).
41.J. H. Song, K. C. Kim, and S. H. Kim, "Reducing tilt errors in moire’ linear encoders using phase-modulated grating," Review of Scientific Instruments 71, 2296-2300 (2000).
42.D. Lin, X. Jiang, and F. Xie, "High stability multiplexed fibre interferometer and its application on absolute displacement measurement and on-line surface metrology," Optics Express 12, 5729-5934 (2004).
43.C. K. Lee, G.-Y. Wu, C. T. Teng, W. J. Wu, C. T. Lin, w. H. Hsiao, H. C. Shie, J. S. Wang, S. C. Lin, C. C. Lin, C. F. Lee, and Y. C. Lin, "A high performance doppler interferometer for advanced optical storage system," Japanese Journal of Applied Physics 38, 1730-1741 (1998).
44.J. A. Gilbert, R. L. Shepherd, H. J. Cole, and P. R. Ashley, "Three-dimensional displacement measurement using diffractive optic interferometry," Optical Engineering 36, 3336–3342 (1997).
45.S. T. Lin, "Three-dimensional displacement measurement using a newly designed moire interferometer," Optcal Engineering 40, 822-826 (2001).
46.N. K. Mohan, J. S. Darlin, M. H. M. Ara, M. P. Kothiyal, and R. S. Sirohi, "Speckle photography with BaTiO3 crystal for the measurement of in-plane displacement field distribution of distant," Optics and Lasers in Engineering 29, 211-216 (1998).
47.K. C. Fan, and Y. Zhao, "A laser straightness measurement system using optical fiber and modulation techniques," International Journal of Machine Tools & Manufacture 40, 2073–2081 (2000).
48.C. M. Wu, "Heterodyne interferometric system with subnanometer accuracy for measurement of straightness," Applied Optics 43, 3812-3816 (2004).
49.K. C. Fan, C. L. Chu, J. L. Liao, and J. I. Mou, "Development of a high-precision straightness measuring system with DVD pick-up head," Measurement Science and Technology 14, 47–54 (2003).
50.K. Matsuda, M. Roy, T. Eiju, J. W. O’Byrne, and C. J. R. Sheppard, "Straightness measurements with a reflection confocal optical system—an experimental study," Applied Optics 41, 3966-3970 (2002).
51.Q. Feng, B. Zhang, and C. Kuang, "A straightness measurement system using a single-mode 'ber-coupled laser module," Optics & Laser Technology 36, 279 – 283 (2004).
52.J. Y. Lee, and M. P. Lu, "Optical heterodyne grating shearing interferometry for long-range positioning applications," Optics Communications 284, 857-862 (2011).
53.Y. Jourlin, J. Jay, and O. Parriaux, "Compact diffractive interferometric displacement sensor in reflection," Precision Engineering 26, 1-6 (2002).
54.Q. Chen, D. Lin, J. Wu, J. Yan, and C. Yin, "Straightness/coaxiality measurement system with transverse Zeeman dual-frequency laser," Measurement Science and Technology 16, 2030–2037 (2005).
55.X. Wang, X. Dong, J. Guo, and T. Xie, "Two-dimensional displacement sensing using a cross diffraction grating scheme," Journal of Optics A: Pure Pplied Optics 6, 106-111 (2004).
56.L. Chassagne, S. Topcu, Y. AlaylI, P. Juncar, G. Lerondel, S. Blaize, A. Bruyant, I. Stefanon, and P. Royer, "High accuracy optoelectronic control system for near field characterization of millimeter long wave guiding structures," Proceedings of SPIE 5858, 585806 (2005).
57.H. C. Yeh, W. T. Ni, and S. s. Pan, "Digital closed-loop nanopositioning using rectilinear flexure stage and laser interferometry," Control Engineering Practice 13, 559-566 (2004).
58.C. M. Liaw, R. Y. Shue, H. C. Chen, and S. C. Chen, "Development of a linear brushless DC motor drive with robust position control," IEE Proceedings of Electric Power Applications 148, 111-118 (2001).
59.S. H. Chang, and Y. C. Wang, "Design and performance of a piezoelectric actuated precise rotary positioner," IEEE International Conference on Mechatronics, 2005. ICM '05., 313 - 317 (2005).
60.L. Chassagne, M. Wakim, S. Xu, S. Topcu, P. Ruaux, P. Juncar, and Y. Alayl, "A 2D nano-positioning system with sub-nanometric repeatability over the millimetre displacement range," Measurement Science and Technology 18, 3267–3272 (2007).
61.W. Arden, "Future semiconductor material requirements and innovations as projected in the ITRS 2005 roadmap," Materials Science and Engineering B 134, 104-108 (2006).
62.H. L. Hsieh, J. Y. Lee, W. T. Wu, J. C. Chen, R. Deturche, and G. Lerondel, "Quasi-common-optical-path heterodyne grating interferometer for displacement measurement," Measurement science and technology 21, 115304 (2010).
63.H. K. Teng, and K. C. Lang, "Heterodyne interferometer for displacement measurement with amplitude quadrature and noise suppression," Optics Communications 280, 16-22 (2007).
64.R. A. Sprague, and C. L. Koliopoulos, "Time integrating acousto-optic correlator," Pplied Optics 15, 89-92 (1976).
65.D. C. Su, M. H. Chiu, and C. D. Chen, "Simple two-frequency laser," Precision Engineering 18, 161-163 (1996).
66.D. C. Su, M. H. Chiu, and C. D. Chen, "A heterodyne interferometer using an electro-optic modulator for measuring small displacements," Journal of Optics 27, 19-23 (1996).
67.M. Sargent, W. E. Lamb, and R. L. Fork, "Theory of a Zeeman laser I," Phys. Rev. 164, 436 (1967).
68.W. J. Bates, "A wavefront shearing interferometer," Proceedings of Physics Socoirty. 59, 940 (1947).
69.M. V. R. K. Murty, "The Use of a Single Plane Parallel Plate as a Lateral Shearing Interferometer with a VisibleGas Laser Source " Pplied Optics 3, 531 (1964).
70.A. Teimel, "Technology and applications of grating interferometers in high-precision measurement," Precision Engineering 14, 147-154 (1992).
71.S. Yokozeki, and T. Suzuki, "Shearing Interferometer Using the Grating as the Beam Splitter," Pplied Optics 10, 1575 (1971).
72.C. M. B. Cordeiro, L. Cescato, A. A. Freschi, and L. Li, "Measurement of phase differences between the diffracted orders of deep relief gratings," Optics Express 28, 683-685 (2003).
73.K. Patorski, "Grating shearing interferometer with variable shear and fringe orientation," Applied Optics 25, 4192-4198 (1986).
74.C. F. Kao, C. C. Chang, and M. H. Lu, "Double-diffraction planar encoder by conjugate optics," Optical Engineering 44, 023603-023601-023607 (2005).
75.J. C. Wyant, "Double Frequency Grating Lateral Shear Interferometer," Applied Optics 12, 2057-2060 (1973).
76.V. Ronchi, "Forty Years of History of a Grating Interferometer," Applied Optics 3, 437-451 (1964).
77.T. K. Gaylord, and M. G. Moharam, "Analysis and applications of optical diffraction by gratings," Proceedings of the IEEE 73, 894 - 937 (1985).
78.S. J. Friedman, B. Barwick, and H. Batelaan, "Focused-laser interferometric position sensor," Review of Scientific Instruments 76, 123106 - 123106-123105 (2005).
79.H. J. Pahk, D. S. Lee, and J. H. Park, "Ultra precision positioning system for servo motor–piezo actuator using the dual servo loop and digital filter implementation," International Journal of Machine Tools and Manufacture 41, 51-63 (2001).
80.C. M. Wu, J. Lawall, and R. D. Deslattes, "Periodic nonlinearity resulting from ghost reflections in heterodyne interferometry," Optics Communications. 215, 17-23 (2003).
81.W. Hou, "Optical parts and the nonlinearity in heterodyne interferometers," Precision Engineering 30, 337-346 (2006).
82.P. L. Teoh, B. Shirinzadeh, C. W. Foong, and G. r. Alici, "The measurement uncertainties in the laser interferometry-based sensing and tracking technique," Measurement 32, 135–150 (2002).
83.C. M. Wu, and R. D. Deslattes, "Analytical modeling of the periodic nonlinearity in heterodyne interferometry," Applied Optics 37, 6696 (1998).
84.T. Eom, T. Choi, K. Lee, H. Choi, and S. Lee, "A simple method for the compensation of the nonlinearity in the heterodyne interferometer," Measurement Science and Technology 13, 222-225 (2002).
85.H. L. Huang, C. H. Liu, .W. Y. Jywe, M. S. Wang, Y. R. Jeng, L. L. Duan, and T. H. Hsu, "Development of a DVD pickup-based four-degree-of freedom motion error measuring system for single-axis linear moving platform," Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 224, 37-50 (2010).
86.R. Ramesh, M. A. Mannan, and A. N. Poo, "Error compensation in machine tools — a review Part I: geometric, cutting-force induced and fixture-dependent error," International Journal of Machine Tools & Manufacture 40, 1235-1256 (2000).
87.H. F. F. Castro and M. Burdekin, " Dynamic calibration of the positioning accuracy of machine tools and coordinate measuring machines using a laser interferometer," International Journal of Machine Tools & Manufacture 43, 947-954 (2003).
指導教授 雷鴻德、李朱育、陳志臣
(Gilles Lerondel、Ju-Yi Lee、Jyh-Chen Chen)
審核日期 2011-6-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明