博碩士論文 93343044 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.16.67.248
姓名 黃敬涵(Ching-Han Huang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 奈米尺度半導體材料薄膜轉移研究
(Investigation of the nanoscale semiconductor materials thin film layer transfer)
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 石墨材料時變劣化微結構分析
★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響★ 可程式控制器機構設計之流程研究
★ 伺服沖床運動曲線與金屬板材成型關聯性分析★ 鋁合金7003與630不銹鋼異質金屬雷射銲接研究
★ 應用銲針尺寸與線徑之推算進行銲線製程第二銲點參數優化與統一之研究★ 複合式類神經網路預測貨櫃船主機油耗
★ 熱力微照射製作絕緣層矽晶材料之研究★ 微波活化對被植入於矽中之氫離子之研究
★ 矽/石英晶圓鍵合之研究★ 奈米尺度薄膜轉移技術
★ 光能切離矽薄膜之研究★ 氮矽基鍵合之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究為製作單晶矽層具有奈米等級的SOI材料,利用氫離子聚合為基礎的單晶矽層之薄膜轉移法已被普遍應用,但矽單晶薄膜於轉移後,會轉移層上形成一層損傷層,通常需要再進一步化學機械研磨(CMP)將此粉碎層移除。本研究目的主要利用蝕刻的方式,藉由特定蝕刻液,於特定溫度下,將以轉移後之SOI薄膜表層的粉碎層去除,同時達到表面平滑的效果,避免掉CMP程序。研究中以犧牲遮蔽層的沉積有效的改善氫離子佈植時通道效應的發生,減緩氫離子植入時穿透進矽基板的深度差,剝離後之SOI薄膜的表面粗糙度獲得改善。其後藉由將粉碎層移除,使得表面粗糙度更進一步地降低,完成矽單晶轉移薄膜層的表面平滑化。而由於犧牲遮蔽層的應用,解決因氫離子的物理極限導致100奈米以下薄膜厚度的控制的問題,研究中發展4”、8”以上之超薄SOI。研究另一主題則利用熱力微波方式有效的降低薄膜轉移溫度及時間,將轉移溫度降至200 ℃以下,研究中發現使用热力微波可以增加氫離子動能,並且幫助克服能階障礙。
本研究文末更進一步發展新一代薄膜轉移技術技術之先導研究,利用Si(B/Ge)結構為一捕捉氫離子層,而氫離子則改以常壓電漿進行低能量離子浸入,利用加熱過程中,氫離子會在矽晶圓進行擴散移動至Si(B/Ge)層,達到氫離子濃度聚集的效果,而由於氫離子在矽晶圓內150 ℃可以快速擴散並不會造成晶格的損傷,因此轉移後的薄膜保持良好的磊晶結構。擴散氫離子在特定深度被Si(B/Ge)捕捉後,經電漿氫化過後的試片馬上以電漿活化晶圓鍵合技術與另一石英晶圓鍵合在一起,最終成功的在低於200 °C下將單晶矽薄膜轉移至石英上。
摘要(英) This study explores the fabrication of large area nano-scale thin films without a CMP process. A sacrificial screening layer on the top surface of the substrate is formed first; this avoids the channeling effect and exactly defines the thickness of the desired transfer layer below 100 nanometers, overcoming the difficulty of a shallow implant depth due to the light mass of hydrogen ions in the Smart-CutR process. After the transfer layer process, a chemical etching technique is used to remove the region of hydrogen-filled voids on the top of the transfer layer, resulting in a smooth surface on the transferred layer without using a CMP process. This study also uses Thermal-microwave co-activation process to fabricating SOI. The hydrogen implanted silicon substrate is irradiated by microwave at 200 degree centigrade anneal temperature to successfully achieve a completely 4” and 8” transferred layer. The result of this experiment demonstrates Thermal-microwave co-activation effective to excite hydrogen ions implanted in silicon to increase not only kinetic energy but also mobility.
At last, a diffusion-based hydrogen ion assisted layer transfer approach is developed to fabricate an epitaxial single-crystalline Si layer on a quartz wafer at a comparatively low temperature. A buried boron/germanium doped silicon, Si(B/Ge), layer was deposited to enhance the effect of hydrogen trapping and embrittlement to transfer the silicon cap layer by capturing hydrogen ions during plasma hydrogenation. The bonded to a quartz wafer and subsequently annealed for achieving a sufficiently high bonding strength. Layer transfer was then performed by initial microcrack generation at the interface after heating at 200 oC.
關鍵字(中) ★ 電漿擴散
★ 離子佈植
★ 薄膜轉移
★ 晶圓鍵合
★ 智切法
關鍵字(英) ★ Plasma diffusion
★ Ion implantation
★ Smart Cut
★ Wafer bonding
★ Layer transfer
論文目次 中文摘要 Ⅰ
英文摘要 Ⅱ
致謝 Ⅲ
目錄 Ⅳ
圖目錄 Ⅶ
表目錄 Ⅹ
附件 發表著作 A
第一章 緒論 1
1-1 矽晶圓積體電路發展概況 1
1-2 進入奈米尺度遇見的挑戰 2
1-3 解決方案:絕緣層矽(SILICON ON INSULATOR, SOI)技術鳥瞰 3
1-4 SOI技術關鍵:SOI材料技術的特點 5
1-5 SOI材料技術存在的問題與發展挑戰 8
第二章 文獻回顧 12
2-1 離子佈植技術技術(ION IMPLANTATION TECHNOLOGY) 12
2-1-1 離子佈植的基本理論 13
2-1-2 離子佈植造成的矽基材損傷 15
2-2 半導體晶圓鍵合技術(WAFER BONDING TECHNOLOGY) 17
2-2-1 晶圓鍵合文獻回顧 17
2-2-2 晶圓初步接觸的作用力 18
2-2-3晶圓產生鍵合的驅動力與機制 21
2-3 SOI薄膜轉移機制與技術 23
2-3-1氫在半導體矽晶圓中之現象 23
2-3-2 薄膜剝離機制 25
2-3-3微裂縫成長動力學 26
2-4 SOI關鍵技術製程 28
2-4-1 氧離子植入分離SOI(Separation by Implantation Oxygen, SIMOX) 29
2-4-2智切法(Smart CutR)SOI 30
2-4-3電漿浸入離子佈植SOI(Plasma Immersion Ion Implantation, PIII) 31
第三章 實驗規劃與設備 34
3-1 實驗之問題及目的 34
3-2 實驗規劃與步驟 36
3-2-1 矽晶圓準備及表面清洗 37
3-2-2 二氧化矽及犧牲遮蔽層沈積 38
3-2-3 離子佈植步驟 40
3-2-4 犧牲遮蔽層蝕刻移除研究 41
3-2-5 晶圓鍵合 41
3-2-6 薄膜轉移 42
3-2-7 SOI薄膜表面平坦:粉碎層蝕刻 42
3-3 實驗設備與分析儀器 43
3-3-1 離子佈植系統 43
3-3-2 薄膜沉積系統 44
3-3-3 直接晶圓鍵合系統 45
3-3-4 微波烤爐加熱系統 46
3-3-5 原子力顯微鏡(Atomic Force Microscope, AFM) 47
3-3-6 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 47
3-3-7 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) 48
3-3-8 鍵結狀況觀測裝置 48
第四章 實驗結果與討論 52
4-1 離子佈植與遮蔽犧牲層 52
4-2 遮蔽犧牲層蝕刻移除與晶圓鍵合 54
4-3 薄膜轉移技術 55
4-4 SOI薄膜粉碎層蝕刻情形 56
第五章 結論 59
5-1 實驗結論 59
5-2 未來發展 60
參考文獻 107
參考文獻 [1] Semiconductor industry Association, International Technology Roadmap for Semiconductor, San Joes, CA:SIA (2004).
[2] S.Veeraraghavan and J.G.Fossum, “Short channel effects in SOI MOSFET’s,”IEEE Trans.Electron Dev., 36, 522 (1989).
[3] H.B.Bakoglu, Circuits Interconnections and Packaging for VLSI, Addison Wesley Publishing Company, Singapore, 38 (1990).
[4] B. Elattari, et al., “Impact of charging on breakdown in deep trench isolation structures [parasitic MOSFET example],”European Solid-State Device Research, 513 (2003).
[5] N. K. Jha, and V.R. Rao, “Understanding the NBTI degradation in halo-doped channel p-MOSFETs,”Physical and Failure Analysis Integrated Circuits, 311 (2004).
[6] J. Yuan, and J. C. S. Woo, “Tunable work function in fully nickel-silicided polysilicon gates for metal gate MOSFET applications, ” IEEE Electron Device Letters, 26, 87 (2005).
[7] T. Fuse, et al., “A 0.5-V power-supply scheme for low-power system LSIs using multi-V/sub th/ SOI CMOS technology, ” IEEE Journal of Solid-state Circuits, 38, 303 (2003).
[8] J.-O. Plouchart, et al., “A power-efficient 33 GHz 2:1 static frequency divider in 0.12-/spl mu/m SOI CMOS, ” Proc. IEEE radio Frequency Integrated Circuits (RFIC) Symposium, 329 (2003).
[9]吳憲昌,陳啟東,單電子電晶體的進展與應用,自然科學簡訊第十五卷第四期,115 (2003)。
[10] A.J.Auberton-Herve, Proc.-Electrochem. Soc., 90-6, 544 (1990).
[11] J.-P. Colinge, Silicon-on-Insulator Technology: Materials to VLSI, 3rd Edition, Springer Science+Business Media, Inc., New York (2004).
[12] G. C.Messenger and M.S.Ash, The effect of Radiation on Electronic systems, Van Nostramd Rienhold Company, New York (1986).
[13] G. K. Celler and S. Cristoloveanu, “Frontiers of Silicon-on- Insulator,” J. Appl. Phys., 93, 4955 (2003).
[14]莊達人,「VLSI製造技術」,五版,高立圖書有限公司,臺北縣 (民國91年)。
[15] J. B. Kuo and K.-W. Su, CMOS VLSI Engineering: Silicon-on-Insulator (SOI), Kluwer Academic Publishers, Boston (1998).
[16] 陳威良,「電漿離子佈植製作SOI及佈植缺陷之研究」,國立清華大學,碩士論文 (民國90年)。
[17] 李隆盛,「非正統之金氧半導體場效電晶體」,電子與材料雜誌 14,80 (2002)。
[18] Toshiaki KURITA and Mitsuo TAKEMOT, “Design of low power-consumptionnLS’s,” OKI technical review 188, 68, 29 (2001).
[19] M. Valdinoci, et al., “Floating body effects in polysilicon thin-film transistors,”IEEE Trans. Electron Devices, 44, 2234 (1997).
[20] Krishnan, S. and Fossum, J. G,”Grasping SOI floating-body effects,” Circuits and Devices Magazine, IEEE, 14, 32 (1998).
[21] Y.-C. Tseng, et al.,”Local floating body effect in body-grounded SOI nMOSFETs,” Proc. IEEE International SOI conference, 6-9, 26 (1997).
[22] B. Maiti et al, ”PVD TiN metal gate MOSFETs on bulk silicon and fully depleted silicon-on-insulator (FDSOI) substrates for deep sub-quarter micron CMOS technology”, in IEDM Tech. Dig., 781 (1998).
[23] Zheng Taolei, Luo Jinsheng, and Zhang Xing,”On pure self-heating effect" of MOSFET in SOI,”Proc. Solid-State and Integrated-Circuit Technology, 1, 665 (2001).
[24] Sun Zimin, Liu Litian, and Li Zhijian,“Self-heating effect in SOI MOSFETs,”Proc. Solid-State and Integrated Circuit Technology, 572 (1998).
[25] R. J. T Bunyan, ”Self-heating effects in sub-micron SOI-MOSFETS,”IEE Colloquium on Sub-Micron VLSI Reliability, 4/1 (1992).
[26] E. Haralson, et al.,”Influence of self heating in a BiCMOS on SOI technology,”Proc. Solid-State Device Research, 337 (2004).
[27] Zenglang Xia, Yinbo Li, and Yuanfu Zhao,”The effect of self-heating on hot-carrier effects in deep submicron SOI/NMOS,”Proc. Microelectronics, 1, 221 (2000).
[28] C. K. Subramanian, and G.. W. Neudeck, “SOI processing by epitaxial lateral overgrowth,” Proc. IEEE International SOI conference, 132-133 (1991).
[29] K. Izumi, “Historical overview of SIMOX,” Vacuumk, 42, 333 (1991).
[30] A. O. Adan, et al., “SOI as a mainstream IC technology,” Proc. IEEE International SOI Conference, 9-12 (1998).
[31] Badih El-Kareh, Fundamentals of semiconductor processing technologies, Ch. 6 Ion-Implantation, 353.
[32] S. M. Sze, VLSI Technology, Ch. 7 Ion-Implantation, 327.
[33] J. Lindhard, M. Scharff, and H. Schiott, “Rang concepts and heavy ion ranges”, Mat. Fys. Med. Dan. Vid Selsk, 33(14), 1 (1964).
[34] M. J. P. Gopstaken, et al., “Effect of crystalline regrowth on dopanr profiles in preamorphized silicon,” Applied Surface Science, 231-232, 688 (2004).
[35] Lourdes Pelaz, et al., “Monte carlo modeling of amorhpization resulting from ion implantation in Si,” Computational Materials Science, 27,1 (2003).
[36] M. Sayed, et al., “Molecular dynamics simulations of implantation damage and recovery in semiconductors,” Nuclear Instrument and Methods in Physics Research B, 102, 218 (1995).
[37] Hua Li, Xin-Dong Peng, and Nai-Ben Ming, “Comparison among the growth mechanisms of stacking fault, twin lamella and screw dislocation: a Monte Carlo simulation,” Journal of Crystal Growth, 149, 241 (1995).
[38] Roger G. horn, “Surface forces and their action in ceramic materials,” J. Am. Ceram. Soc. 73(5), 1117(1990).
[39] Kai-Tak wan, Douglas T. Smith, and Brian R. Lawn, “Fracture and contact adhesion energies of Mica-Mica, Silica-Silica, and Mica-Silica interfaces in dry and moist atmospheres,” J. Am. Ceram. Soc., 75, 667 (1992).
[40] J. B. Lasky, S. R. Stiffler, F. R. white, and J. R. Abernathey, IEDM Tech. Dig., 648 (IEEE, New York, 1985).
[41] J. B. Lasky, “Wafer bonding for silicon-on-insulator technologies,” Appl. Phys. Lett., 48, 78 (1986).
[42] M. Shimbo, et al., “silicon-to-silicon direct bonding method,” J. Appl. Phys. 60(8), 2987 (1986).
[43] Q.-Y. Tong, X.-L. Xu, and H. Shen, “Diffusion and oxide viscous flow mechanism in SDB process and silicon wafer rapid thermal bonding,” Electron. Lett., 26, 697 (1990).
[44] K.-Y. Ahn, et al., ”Stability ofinterfacial oxide layers during silicon wafer bonding,” J. Appl. Phys., 65, 561 (1989).
[45] H. Takagi, et al., “Low-temperature direct bonding of silicon and silicon dioxide by surface activation method,” Sensors and Actuators A, 70, 164 (1998).
[46] T. A. Michalske and E. R. Fuller,“ Closure and repropagation of healed cracks in silicate glass”, J. Am. Ceram. Soc., 68, 586 (1985).
[47] L. R. Fisher and J. N. Israelachvili, “ Direct measurement of effect of meniscus forces on adhesion: A study of the applicability of macroscopic thermodynamics to microscopic liquid interface”, Colloids Surf., 3, 303 (1981).
[48] J. N. Israelachvili, P. McGuiggan, and R. Horn, “Basic physics of interactions between surfaces in dry, humid and aqueous environments”, Proceedings of 1st International Symposium on Semiconductor Wafer bonding: Science, Technology and Applications, 92-7, 33 (1992).
[49] W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to ceramics, John Weily & Sons. Inc., 1976.
[50] Q. Y. Tong, E. Schmidt, and U. Gosele, “Hydrophobic silicon wafer bonding”, Appl. Phys. Lett., 64, 625 (1994).
[51] C. H. Seager and D. S. Ginley, “Studies of the hydrogen passivation of silicon grain boundaries”, J. Appl. Phys., 52(2), 1050 (1981).
[52]D. S. Ginley and D. M. Haaland, “Observation of grain boundary hydrogen in polycrystalline silicon with Fourier transform infrared spectroscopy”, Appl. Phys. Lett., 39(3), 271 (1981).
[53] J. K. G. Panitz, D. J. Sharp and C. R. Hills, “Near-surface microstructural modifications in low energy hydrogen ion bombarded silicon”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 3(1), 1 (1985).
[54] N. M. Johnson, et al., “Defects in single-crystal silicon induced by hydrogenation”, Phys. Rev. B, 35(8), 4166 (1987).
[55] S. Romani and J. H. Evans, “Platelet defects in hydrogen implanted silicon”, Nuclear Instruments and Methods in Physics Research Section B, 44(3), 313 (1990).
[56] G. F. Cerofolini, et al., “Hydrogen-related complexes as the stressing species in high-fluence, hydrogen-implanted, single-crystal silicon”, Phys. Rev. B, 46(4), 2061 (1992).
[57] M. Gao, et al., “A transmission electron microscopy study of microstructural defects in proton implanted silicon”, J. Appl. Phys., 80(8), 4767 (1996).
[58] W. K. Chu, et al., “Distribution of irradiation damage in silicon bombarded with hydrogen”, Phys. Rev. B, 16(9), 3851 (1977).
[59] C. G. Van de Walle, et al., “Theory of hydrogen diffusion and reactions in crystalline silicon”, Phys. Rev. B, 39(15), 10791(1989).
[60] K. J. Chang and D. J. Chadi, “Hydrogen bonding and diffusion in crystalline silicon”, Phys. Rev. B, 40(17), 11644 (1989).
[61] T. Hara, et al., “H+ implantation in Si for the void cut SOI manufacturing”, Proc. Ion Implantation Technology International Conference, 45 (1996).
[62] Bo Chen, “Mechanisms of layer-transfer related to silicon-on-insulator structures”, New Jersey Institute of Technology, Ph.D. Dissertation (2004).
[63] I. Radu, “Layer transfer of semiconductors and complex oxides by helium and/or hydrogen implantation and wafer bonding”, Martin Luther University, Ph.D. Dissertation (2003).
[64] C. M. Varma, “Hydrogen-implant induced exfoliation of silicon and other crystals”, Appl. Phys. Lett., 71(24), 3519 (1997).
[65]T. Hochbauer, “On the Mechanisms of Hydrogen Implantation Induced Silicon Surface Layer Cleavage”, Marburg University, Ph.D. Dissertation, 2001.
[66] J. Grisolia, G. Ben, Assayag, A. Claverie, B. Aspar, C. Lagahe, and L. Laanab, “A transmission electron microscopy quantitative study ofthe growth kinetics of H platelets in Si” Appl. Phys. Lett., 76, 852 (2000).
[67] T.-H. Lee, “Semiconductor thin film transfer by wafer bonding and advanced ion implantation layer splitting technologies”, Duke University, Ph.D. Dissertation (1998).
[68] L. Huang, “Layer transfer of semiconductor and insulator materials by wafer bonding and hydrogen implantation”, Duke University, Ph.D. Dissertation (1999).
[69] A. K. El-Senussi and J. P. H. Webber, “On the double cantilever beam technique for studying crack propagation”, J. Appl. Phys., 56(4), 885 (1984).
[70] Hong Xiao, Introduction to Semiconductor Manufacturing Technology, Prentice-Hall Inc. (1992).
[71] Julian Blake, “SIMOX (Separation by Implantation of Oxygen)”, Encyclopedia of Physical Science and Technology, 14, 805 (2001).
[72] G.L. Sun, “Cool plasma activated surface in silicon direct bonding technology”, J.de Physique, 49(C4), 79 (1988).
[73] K. Izumi, M. Doken, and H. Ariyoshi, “CMOS devices fabricated on buried SiO2 layers formed by Oxygen implantation into silicon,” Electron. Lett., 14, 593 (1978).
[74] G. K.Celler, et al., “High quality Si-on-SiO2 films by large dose oxygen implantation and lamp annealing,” Appl. Phys. Lett., 48(8), 532 (1986).
[75] D. Hill, P. Fraundorf, and G. Fraundorf, “The reduction of dislocations in oxygen implanted silicon-on-insulator layers by sequential implantation and annealing,” J. Appl. Phys., 63(10), 4933 (1988)
[76] F. Namavar, et al., Proc. IEEE SOS/SOI Technology Workshop, 117 (1989).
[77] J. Stoemenos, et al., “New conditions for synthesizing SOI structures by high dose oxygen implantation,” J. Crystal Growth, 73(3), 546 (1985).
[78] E. A. Mayell-Ondruz et al., “A model for the evolution of implanted oxygen profiles in silicon,” Thin Solid Films, 114(4), 357 (1984).
[79] P. L. F. Hemment, “Semiconductor on insulator and thin film transistor technology,” Proc. MRS Symposium, 53, 207 (1986).
[80] M. Bruel, “Silicon on insulator material technology,” Electron. Lett., 31, 1201 (1995).
[81] Christophe Maleville, and Carlos Mazure, “Smart-CutR technology: from 300 mm ultrathin SOI production to advanced engineered substrates”, Solid-State Electronics, 48, 1055 (2004).
[82] W. P. Maszara, “SOI material by wafer bonding: an overview,” Proc. IEEE International SOI Conference, 18 (1991).
[83] M. K. Weldon, et al., “ Mechanisms of silicon exfoliation by hydrogen implantation and He, Li and Si co-implantation,” Proc. IEEE International SOI conference, 124 (1997).
[84] C. Malleville, et al., “Wafer Bonding and H-Implantation Mechanisms Involved in The Smart-Cut Technology”, Material Science and Engineering B, 46, 14 (1997)
[85]S. J. Pearton, et al., “Hydrogen in crystalline semiconductors,” Appl. Phys. A, 43,153 (1987).
[86] N. M. Johnson, et al., “Defect in single-crystal silicon induced by hydrofenation,” Phys. Rev. B, 35, 4166 (1987).
[87] Goesele, et al., USP. 5877070, (1999).
[88] C. Qian and B. Terreault, “Blistering of silicon crystals by law KeV hydrogen and helium ions,” J. Appl. Phys. 90(10), 5152 (2001).
[89] C. Qian, B. Terreault, and S. C. Gujrathi, “Layer splitting in Si by H+He ion co-implantation: channeling effect limitation at low energy,” Nucl. Instrum. Metods Phys. Res. B., 175-177, 711 (2001).
[90] P. K. Chu and X. C. Zeng, “Hydrogen induced surface blistering of sample chuck materials in hydrogen plasma immersion ion implantation,” Journal of Vacuum Science & Technology A, 19(5), 2031 (2001).
[91] Z. N. Fan, et al., “ Surface hydrogen incorporation and profile broadening caused by sheath expansion in hydrogen plasma immersion ion implantation,” IEEE Transactions on Plasma Science, 28(2), 371 (2000).
[92] W. G. En, et al., “Genesis process: SA new SOI wafer fabrication method,” Proc. IEEE International SOI conference, 163 (1998).
[93] L. W. Wang, et al., “Damage in hydrogen plasma implanted silicon,” J. Appl. Phys., 90(4), 1735 (2001).
[94] P. K. Chu, “Contamination issues in hydrogen plasma immersion ion implantation of silicon – a brief review,” Surface & Coatings Technology, 156, 244 (2002).
[95] M. K. Weldon, et al., “Mechanism of silicon exfoliation induced by hydrogen/helium co-implantation,” Appl. Phys. Lett., 73(25), 3721 (1998).
[96] Xinzhong Duo, et al., “Defect and strain in hydrogen and helium coimplanted single-crystal silicon,” J. Phys. D: Appl. Phys., 34, 5 (2001).
[97] R. Tonini, et al., “High-dose helium-implanted single-crystal silicon: Annealing behavior,” J. Appl. Phys., 29(3), 597 (1958).
[98]T. Hochbauer, et al., “Comparison of thermally and mechanically induced Si layer transfer in hydrogen-implanted Si wafers,”Nuclear Instruments and Methods in Physics Research B, 216, 257 (2004).
[99] T. -H. Lee, J. Lin, and J. Peng, “Nova-Cut Process: Fabrication of Silicon Insulator Materials”, Proc. IEEE International SOI Conference, 189 (2002).
[100] D. C. Thompson, et al., “Microwave-Cut silicon layer transfer,” Appl. Phys. Lett., 87(22), 224103 (2005).
[101] D. C. Thompson, et al., “Microwave Activation of Exfoliation in Ion?cut Silicon Layer Transfer,” Mater. Res. Soc. Symp. Proc., 994, 0994-F11-07 (2007).
[102] T. Ohmi, “Total Room Temperature Wet Cleaning for Si Substrate Surface,” J. Electrochem. Soc., 143, 2957 (1996).
[103] 小川洋輝、崛池靖浩著,顏誠廷譯,半導體潔淨技術,普林斯頓國際有限公司,臺北縣,民國九十二年。
[104] H. Xiao著,U半導體製程技術導論U,羅正忠和張鼎張譯,二版,臺灣培生教育出版,臺北市,民國九十三年。
[105] Q.-Y. Tong and U. Gosele, USemiconductor Wafer Bonding: Science and TechnologyU, John Wiley&Sons, Inc., New York, 1999.
[106] P.-H. Chen, et al., “The Characteristic Behavior of TMAH Water Solution forAnisotropic Etching on Both Silicon Substrate and SiOB2 Layer”, USensors andActuators A: PhysicalU, 93(2), 132 (2001).
[107] Takao Yonehara, Kiyofumi Sakaguchi, and Nobuhiko Sato, “Epitaxial layer transfer by bond and etch back of porous Si,” Appl. Phys. Lett., 64(16), 2108 (1994).
[108]W. P. Maszara, “Silicon-on-Insulator by Wafer Bonding: A Review”, J.
Electrochem. Soc., 138(1), 341 (1991).
[109]A. R. Lang, “Direct Observation of Individual Dislocations by X-ray
Diffraction”, J. Appl. Phys., 29(3), 597 (1958).
[110] R. A. Lemons and C. F. Quate, “Acoustic Microscope – Scanning Version”,
Appl. Phys. Lett., 24(4), 163 (1974).
[111] J.Lindhard,M.Scharff and H.E.Schiot,Mat. Fys. Medd. Dan.Vid.Selsk,33(14) (1963)。
[112] Q.-Y. Tong and U. Gosele, Semiconductor Wafer Bonding: Science and Technology, John Wiley&Sons, Inc., New York, 1999.
[113] J. T. S. Lin, J. Peng, and T.-H. Lee, 2002 IEEE International SOI conference, 189 (2002).
[114] D. C. Thompson, T. L. Alford, J. W. Mayer, T. Hchbauer, M. Nastasi, S. S. Lau, N. D. Theodore, K. Henttinen, L. Suni, and P. K. Chu, Appl. Phys. Lett., 87, 224103 (2005).
[115] M. Alexe and U. Gosele, Wafer Bonding - Application and Technology, 1st ed. Berlin, Germany: Springer-Verlag, 91 (2004).
[116] J. N. Lee, Y. W. Choi, B. J. Lee, and B. T. Ahn, J. Appl. Phys., 82, 2918 (1997)
[117] G. A. Samara, “Temperature and pressure dependences of the dielectric constants of semiconductors”, Physical Review B, 27(6), 3494 (1983).
[118] Takao Yonehara, Kiyofumi Sakaguchi, and Nobuhiko Sato, “Epitaxial layer transfer by bond and etch back of porous Si,” Appl. Phys. Lett., 64(16), 2108 (1994).
[119] L.-J. Huang, Ph. D. Dissertation, Duke University, 1999.
[120] C. -H. Huang, C. -C. Ho, S. -C. Jeng, and T. -H. Lee, “Low-Stress Silicon Layer Transfer onto Quartz by means of Enhanced Hydrogen Ion Capture within an Epitaxial Si (B/Ge) Buried Layer,” Electrochemical and Solid-State Letters, Accepted.
[121] James Ziegler, et al., Ion Implantation Science and Technology, Ion Implantation Technology Inc., 2008.
[122] Kris V. Srikrishnan, US Patent 5882987, 1999.
指導教授 李天錫(Tien-Hsi Lee) 審核日期 2009-10-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明