博碩士論文 93343046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.236.117.38
姓名 賴成展(Cheng-chang Lai)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 鬆弛時間與動態接觸角對旋塗不穩定的影響
(Influences of Relaxation Time and Dynamic Contact Angle on Spin Coating Instability)
相關論文
★ 化學機械研磨流場模擬實驗研究★ 變轉速之旋轉塗佈實驗研究
★ 微小熱點之主動式冷卻★ 大尺寸晶圓厚膜塗佈
★ 迴轉式壓縮機泵浦吐出口閥片厚度對性能影響之研究★ 科氏力與預塗薄膜對旋轉塗佈之影響
★ 微液滴對微熱點之 冷 卻★ 大尺寸晶圓之化學機械研磨實驗研究
★ 液晶顯示器旋轉塗佈研究★ 流體黏度對旋塗減量之影響
★ 微熱點與微溫度感測器製作★ 高溫蓄熱器理論模擬
★ 熱氣泡式噴墨塗佈★ 注液模式對旋轉塗佈之影響
★ 磁流體旋塗不穩定之研究★ TFT-LCD狹縫式塗佈研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文以實驗的方法觀察液體薄膜在旋轉表面上的手指狀不穩定現象與其影響。論文的第一部份主要說明在晶圓旋轉前,靜置於晶圓中心的流體會因為鬆弛時間長短而對旋轉過程中流體薄膜產生的手指狀不穩定現象與薄膜擴展半徑大小產生影響。由實驗結果可知,鬆弛時間長短對於黏度小的液體影響程度比黏度大的流體更為明顯。在固定流體體積與轉盤的旋轉速度情況下,流體的初始半徑會隨著流體黏度變大而減小,因此與初始半徑相關的無因次參數-雷諾數也會因為此因素而變大。在鬆弛階段時,不同黏度流體的擴展速度也會不相同:鬆弛時間小於三分鐘的情況下,高黏度流體的液膜擴展速度遠比低黏度流體的擴展速度小。這種速度變化所產生的擾動效果就是造成低黏度流體在高雷諾數下臨界擴展半徑曲線產生轉折現象的原因,因為在此鬆弛時間內下低黏度流體尚未完全鬆弛。第二部份則證明流體之動態接觸角的變化也會影響薄膜的臨界擴展半徑並提出一個修正的無因次參數-修正邦德數解釋動態接觸角對手指狀不穩定現象所造成的影響。從實驗結果可以知道,在高邦德數與鬆弛時間為零的條件下,臨界接觸角的變化會造成薄膜的臨界擴展半徑與邦德數關係呈現非線性狀態,這是由於邦德數只考慮靜態接觸角的影響;但是在流體的薄膜擴展過程中,接觸角是隨時間變化的函數,因此需要考慮動態接觸角在旋轉塗佈過程中所產生的影響。本論文藉由加入動態接觸角的影響因素修正邦德數,產生一新的無因次參數-修正邦德數,重新歸納臨界半徑與修正邦德數的關係。此時,流體的臨界擴展半徑與修正邦德數變成函數曲線;因此,這一個新的函數關係可以被利用於預測流體的臨界擴展半徑。
摘要(英) This dissertation experimentally investigates the phenomena of fingering instability on a rotating disk. The first part of this dissertation mainly explains that relaxation time affects significantly the radius of a drop relaxing before spin coating especially for liquids of low viscosity. Even for a fixed volume of liquid and rotation speed, the initial film thickness and the corresponding rotational Reynolds number are all changed. The spreading velocities of a liquid front for each viscosity are different in the relaxation stage. For fluids with higher viscosity, the change in the velocity of the liquid front is smaller than that of fluids with lower viscosity within τr < 3 min. It is mainly the effect of a disturbance in the un-relaxed drop of low μ that causes the “turning phenomenon”. Furthermore, the critical radius for the onset of rivulet instability is dramatically altered. In addition, a modified rotational Bond number, which demonstrates the dynamic contact angle of fluid front that affects the dimensionless critical radius, is also proposed in the second part of this work. For high rotational Bond number, the variation of dimensionless critical radius is not linearly proportional to the rotational Reynolds number because of the variation of critical contact angles if the relaxation time is fixed at zero. By modifying the rotational Bond number with the change of critical contact angle, the dimensionless critical radius becomes a function of the modified rotational Bond number.
關鍵字(中) ★ 鬆弛時間
★ 臨界半徑
★ 擾動
★ 動態接觸角
關鍵字(英) ★ Relaxation time
★ Critical radius
★ Disturbance
★ Dynamic contact angle
論文目次 摘要 I
Abstract II
List of Contents III
List of Figures V
List of Tables VIII
Nomenclature IX
Greek Symbols IX
Chapter 1. Introduction 1
1.1 Preface 1
1.2 Literature Review 2
1.2.1 Fundamentals of Spin Coating Process 2
1.2.2 Fingering Instability 4
1.2.3 Relaxation Time on Spin Coating Instability 5
1.2.4 Role of Dynamic Contact Angle on a Rotating Disk 6
1.3 Research Motivation 7
1.4 Content Summary 8
Chapter 2. Experimental Apparatus and Methods 13
2.1 Working Fluid 13
2.2 Liquid Dispensing System 14
2.3 Rotating System 14
2.4 Image Acquisition System 14
2.5 Dimensionless Analyses 16
2.6 Experimental Method 18
Chapter 3. Effect of Relaxation Time on Spin Coating Instability 26
3.1 Spreading Radius and Velocity in Relaxation Stage 26
3.2 Relationship between Critical Radius and Bond Number 28
3.3 Rc and R0 Increase with Increasing Re for a Fixed Bond Number 28
3.4 Effect of Relaxation Time to Coating Radius 30
Chapter 4. The Role of Dynamic Contact angle on a Rotating Disk 40
4.1 The Progress of Dynamic Contact Angle 40
4.2 Critical Radius versus Bond and Reynolds Numbers 42
4.3 Influence of Wetting Property: Dynamic Contact Angle 43
4.4 Effect of Dynamic Contact Angle for Modified Bond Number 45
Chapter 5. Conclusions and Recommendations 56
5.1 Conclusions 56
5.2 Recommendations 57
References 59
Publications 62
參考文獻 [1] S. Wolf, Silicone Processing for the VLSI Era, Lattice Press, California, 1986.
[2] M. Madau, Fundamentals of Microfabrication, CRC Press, New York, 1997.
[3] W. M. Morean, Semiconductor Lithography, Plenum Press, New York, 1988.
[4] B. Lorefice, D. Chen, B. Mullen, E. Gurer, R. Savage, and R. Reynolds, How to Minimize Resist Usage during Spin Coating, Semicond. Int., Vol. 21, pp.179, 1998.
[5] M. Sanada, K. Nakano, and M. Matsunaga, Characteristics of Material for Photoresist Spin Coating: Property for Reduction of Photoresist Consumption, Jpn. J. Appl. Phys., Vol. 37, pp.L1448, 1998.
[6] F. C. Chou, M. W. Wang, S. C. Gong, and Z. G. Yang, Reduction of Photoresist Usage during Spin Coating, J. Electro. Mater., Vol. 30, pp.432, 2001.
[7] M. W. Wang and F. C. Chou, Fingering Instability and Maximum Radius at High Rotational Bond Number, J. Electrochem. Soc., Vol. 148, pp.G283, 2001.
[8] K. H. Huang, F. C. Chou, and C. P. Yang, Visualization of the Effect of Liquid Dispensing Method during Spin Coating, Jpn. J. Appl. Phys., Vol. 46, pp.5238, 2007.
[9] A. G. Emslie, F. T. Bonner, and L. G. Peck, Flow of a Viscous Liquid on a Rotating Disk, J. Appl. Phys., Vol. 29, pp.858, 1958.
[10] P. H. Walker and J. G. Thompson, Flow of a Non-Newtonian Fluids on a Flat Rotating Disk, Proc. Am. Soc. Testing Material Part II, Vol. 22, pp.464, 1992.
[11] N. Fraysse and G. M. Homsy, An Experimental Study of Rivulet Instabilities in Centrifugal Spin Coating of Viscous Newtonian and Non-Newtonian Fluids, Phys. Fluids, Vol. 6, pp.1491, 1994.
[12] T. G. Myers, Application of Non-Newtonian Models to Thin Film Flow, Phys. Rev. E, Vol. 72, pp.066302, 2005.
[13] S. A. Jenekhe, Effect of Solvent Mass Transfer on Flow of Polymer Solutions on a Flat Rotating Disk, Ind. Eng. Chem. Fundam., Vol. 23, pp.425, 1984.
[14] S. Shimoji, A New Analysis Model for Spin Coating Process with Solvent Evaporation, Jpn. J. Appl. Phys., Vol. 26, pp.905, 1987.
[15] F. Ma and J. H. Hwang, The Effect of Air Shear on the Flow of a Thin Liquid Film over a Rough Rotating Disk, J. Appl. Phys. Vol. 68, pp.1265, 1990.
[16] F. Zoueshtiagh, R. Ali, A. J. Colley, P. J. Thomas, and P. W. Carpenter, Laminar-Turbelent Boundary-Layer Transition over a Rough Rotating Disk, Phys. Fluids, Vol. 8, pp.2441, 2003.
[17] H. C. Cho, F. C. Chou, M. W. Wang, and C. S. Tsai, Effect of Coriolis Force on Fingering Instability and Liquid Usage Reduction, Jpn. J. Appl. Phys., Vol. 44, pp.L606, 2005.
[18] H. C. Cho and F. C. Chou, Rivulet Instability with Effect of Coriolis Force, Jpn. J. Appl. Phys., Vol. 22, pp.221, 2006.
[19] T. G. Myers and J. P. F. Charpin, The Effect of the Coriolis Force on Axisymmetric Rotating Thin Film Flows, Int. J. Non-Linear Mechanics, Vol. 36, pp.629, 2001.
[20] H. E. Huppert, Flow and Instability of a Viscous Current Down a Slope, Nature, Vol. 300, pp.427, 1982.
[21] L. W. Schwartz, Viscous Flows Down and Inclined Plane: Instability and Finger Formation, Phys. Fluids A, Vol. 1, pp.443, 1989.
[22] S. M. Troian, E. Herbolzheimer, S. A. Safran, and J. F. Joanny, Fingering Instability of Driven Spreading Films, Europhys. Lett., Vol. 10, pp.25, 1989.
[23] F. Melo, J. F. Joanny, and S. Fauve, Fingering Instability of Spinning Drops, Phys. Rev. Lett., Vol. 63, pp.1958, 1989.
[24] M. A. Spaid and G. M. Homsy, Stability of Newtonian Viscoelastic Dynamic Contact Lines, Phys. Fluids, Vol. 8, pp.460, 1996.
[25] M. A. Spaid and G. M. Homsy, Stability of Viscoelastic Dynamic Contact Lines: An Experimental Study, Phys. Fluids, Vol. 9, pp.823, 1997.
[26] I. S. McKinley and S. K. Wilson, The Linear Stability of a Drop of Fluid during Spin Coating or Subject to a Jet or Air, Phys. Fluids, Vol. 14, pp.133, 2002.
[27] L. W. Schwartz and R. V. Roy, Theoretical and Numerical Results for Spin Coating of Viscous Liquids, Phys. Fluids, Vol. 16, pp.569, 2004.
[28] M. E. R. Shanahan, Wetting Dynamics with Variable Interfacial Tension, Oil Gas Sci. Technol., Vol. 56, pp.83, 2001.
[29] P. G. de Gennes, B. W. Francoise, and D. Quere, Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (1st ed.), Springer, New York, 2004.
[30] I. Veretennikov, A. Indeikina, and H. C. Chang, Front Dynamics and Fingering of a Driven Contact Line, J. Fluid Mech., Vol. 373, pp.81, 1998.
[31] I. S. Bayer and C. M. Megaridis, Contact Angle Dynamics in Droplets Impacting on Flat Surfaces with Different Wetting Characteristics, J. Fluid Mech., Vol. 558, pp.415, 2006.
指導教授 周復初、洪勵吾
(Fu-chu Chou、Lih-wu Hourng)
審核日期 2008-11-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明