博碩士論文 93344007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:3.15.17.60
姓名 涂勝宏(Sheng-Hung Tu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 清洗液處理後之銅晶圓表面之濕潤行為
(Wetting behavior on copper wafers after etch cleaning processes)
相關論文
★ 反離子的凝聚作用和釋放於界劑溶液中添加鹽類的影響之研究★ 以離子型界劑溶解微脂粒之研究
★ 奈米添加物對微乳液滴靜電特性的影響–蒙地卡羅模擬法★ W/O型微乳液液滴之電荷分佈量測
★ 溫度和PEG-脂質對磷脂醯膽鹼與離子型界面活性劑間作用的影響之研究★ 明膠的溶膠-凝膠相變化與微乳液-有機凝膠相變化
★ 膽固醇與膽鹽對微脂粒穩定度的影響★ 電解質溶液的表面張力-蒙地卡羅模擬法
★ 稀薄聚電解質溶液中的反離子凝聚現象★ 溫度不敏感性之電動力學行為於毛細管區域電泳
★ 以熱力學性質定義帶電粒子的電荷重正化現象★ 聚乙二醇與界面活性劑的作用
★ 聚電解質溶液中的反離子凝聚現象★ 聚電解質在中性高分子溶液中的泳動行為
★ 在聚電解質溶液中的有效電荷★ 以分散粒子動力學法模擬雙性團聯共聚物微胞之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (全文檔遺失)
請聯絡國立中央大學圖書館資訊系統組 TEL:(03)422-7151轉57422,或E-mail聯絡
摘要(中) 本論文內容主要分成兩個部分。第一部分主要是探討在矽晶片上利用物理沉積方式產生之銅薄膜在經過雙氧水氧化過後其表面的特性變化,主要觀察的方式為監控接觸角隨著時間的變化與表面氧化層的膜厚變化。第二部分則是探討銅薄膜使用醋酸處理過後可得到表面為純銅的潤濕特性,以及使用一般在半導體製程中常用之酸與鹼來探討其對於銅表面的影響並且以市售不同氧化態之銅及其氧化物粉末來解釋選擇性蝕刻之行為。

銅薄膜在雙氧水中經過短暫的浸泡在表面變化生成親水性高的銅氧化層。此親水性高之銅氧化層在常溫常壓下靜置數小時後,其親水特性會漸漸的降低並往疏水性方向變化,在接觸角如此明顯的變化下,使用XPS光譜來分析其銅晶片表面之化學組成變化時,其光譜圖幾乎是一樣,並無預期中有應有之明顯變化。這樣的親水性改變被歸因於最表面的氧化銅產生脫氧原子反應,此論點亦在真空的條件下再次被證實,其反應式可表示為CuO Cu2O + 1/2 O2。在真空下所產生之氧氣會立即被從銅表面移除進而迫使平衡反應向右側進行,其結果造成銅表面疏水性加速變化,同樣的結果在XPS光譜分析比對前後依然無觀察到明顯的變化。

在本論文之第二部分中,主要是探討純銅表面的濕潤行為以及使用不同酸或鹼溶液處理後的表面行為特性。其中使用的酸或鹼溶液分別為冰醋酸、稀硝酸、稀氫氟酸以及2.38%的TMAH(四甲基氫氧化銨)。首先利用ICP-OES(電感耦合等離子體原子發射光譜)分析各種不同氧化態之銅粉末溶解在不同酸或鹼溶液中的銅離子濃度可以換算出其蝕刻速率及選擇比。此外在醋酸的實驗中可以得到純銅表面並且發現其與純水的接觸角約為45度。銅薄膜表面自然生成之氧化層經過各種酸或鹼溶液處理過後的濕潤行為表現並不盡相同,但是如果先經過冰醋酸之前處理過後,亦即從純銅表面開始反應,再經過不一樣的酸或鹼處理時其表面的濕潤行為會變得很接近,這樣的現象可經由不同氧化態銅粉之溶解實驗以及冰醋酸處理後會得到純銅表面之原理而得到解釋。純銅表面在經過不同酸或鹼溶液處理後在常溫常壓下之再氧化行為過程中之銅氧化層膜厚變化與純水之接觸角變化也在本論文中有所探討。

摘要(英) The thin CuO flm is acquired by a quick dip of copper in H2O2 solutions at room temperature. The CuO filmq appears smooth and exhibits superhydrophilic nature. The composition change cannot be verifed by X-ray photoelectron spectroscopy but can be manifested by the water contact angle. In the ambient condition, the thickness of the oxidized layer and the surface hydrophobicity grow gradually, while the chemical composition of the overall oxidized film remains essentially unchanged. That is, in the vacuum, the growth rate of the hydrophobicity is significantly elevated, revealing deoxidation on the upmost surface. Our results indicate that growing hydrophobicity on the CuO film is spontaneous and the reversible wettability transition can be observed by H2O2 oxidation and vacuum deoxidation.

The wet cleaning process in semiconductor fabrication often involves the immersion of the copper wafer into etching solutions and thereby its surface properties are significantly altered. The wetting behavior of a copper film deposited on silicon wafer is investigated after a short dip in various etching solutions. The etchants include glacial acetic acid and dilute solutions of nitric acid, hydrofluoric acid, and tetramethylammonium hydroxide. A thin oxide layer always remains on the surface of as-received Cu wafers when they are subject to etching treatments. A pure Cu wafer can be obtained by the glacial acetic acid treatment and its water contact angle (CA) is about 45. As the pure Cu wafer is placed in the ambient condition, the oxide thickness grows rapidly to the range of 10 to 20 Å within 3 hours and the CA on the hydrophilic surface also rises. In the vacuum, it is surprising to find that the CA and surface roughness of the pure Cu wafer can grows significantly. These interesting results may be attributed to the rearrangement of surface Cu atoms to reduce the surface free energy.

關鍵字(中) ★ 接觸角
★ 濕潤性
★ 氧化銅
★ 氧化亞銅
★ 親水性
★ 疏水性
關鍵字(英) ★ contact angle
★ wettability
★ cuprous oxide
★ cupric oxide
★ hydrophilic
★ hydrophobic
論文目次 中文提要 ……………………………………………………………… i
Abstract ……………………………………………………………… iii
Contents ……………………………………………………………… v
List of Tables ……………………………………………………………… vi
List of Figures ……………………………………………………………… vii

Chapter 1 Introduction………………………………………………… 1
References 6

Chapter 2 Instrument and analyze methods……………………….…. 8
2-1 X-ray Photoelectron Spectrometer (XPS)…………………… 8
2-2 Atomic Force Microscope (AFM)…………………………… 12
2-3 Scanning Electron Microscope (SEM)………………….…… 15
2-4 Transmission Electron Microscopy (TEM)……………..…… 21
2-5 Inductively Coupled Plasma Optical Emission Spectrometer
(ICP-OES)……………………………………………………25
2-6 Spectroscopic Ellipsometer (SE)…………………………….. 29
2-7 Contact Angle (CA) measuring system……………………… 33
References 37

Chapter 3 Growing Hydrophobicity on a Smooth Copper Oxide
Thin Film at Room Temperature and Reversible
Wettability Transition………………………………………

39

3-1 Introduction…………………………………………………... 39
3-2 Results and discussion………………………...………………41
References 51

Chapter 4 Time-Varying Wetting Behavior on Copper Wafer after
Dipping in Etching Solutions……………………….……… 53
4-1 Introduction………………………………………………...… 53
4-2 Experimental Methods……………………………………..… 56
4-2-1 Materials……………………………………………………… 56
4-2-2 Characterizations…………………………………………….. 56
4-2-3 Powder dissolution tests……………………………………… 57
4-2-4 Etching tests of PVD Cu wafer………………………………. 57
4-3 Results and discussion……………………………………….. 58
4-3-1 Dissolution rates of Cu, Cu2O, CuO and Cu(OH)2 powders… 58
4-3-2 Copper wafer treated by etching solutions…………………… 59
4-3-3 Etched Cu wafer after rinsed by DIW……………………….. 60
4-3-4 Growing hydrophobicity of copper wafer…………………… 61
References 73

Chapter 5 Conclusions………………………………………………..… 77
參考文獻 [1] Nirmal Chaudhary, Robert Guerra and Brady Cole, the 30th International Symposium on Microelectronics (IMAPS-ISHM 97), p.12, Philadelphia, PA, 1997, October.
[2] Tapan Gupta, Copper Interconnect Technology, Springer New York, 2009.
[3) Mikhail Baklanov, Karen Maex, Martin Green, Dielectric Films for Advanced Microelectronics, John Wiley & Sons Ltd., 2007.
[4] Hye Kyung Jung , Hyun-Bae Lee, Tsukasa, M., Jung, E., Jong-Ho Yun, Lee, Jong Myeong, Gil-Heyun Choi, Siyoung Choi, Chilhee Chung, Reliability Physics Symposium (IRPS), IEEE International, 2011.
[5] C.C. Yang, C.C. Ko, H. Ou Yang, K.F. Chen, Y.Y. Peng, J.W. Liou, C.C. Chou, H.Y. Tsai, K.C. Lin, S.M. Jeng, H.J. Tao, M. Cao, “Wet Clean Induce Pattern Collapse Mechanism Study”, Solid State Phenomena, 187, p.253, 2012.
[6] Method of etching semiconductor devices using a hydrogen peroxide-water mixture, US 7105458 B1.
[7] Y. L. Wang, T. C. Wang, J. Wu, W. T. Tseng, C. F. Lin, “A modified multi-chemical spray cleaning process for post shallow trench isolation chemical”, Thin Solid Film, 332, p.385, 1998.
[8] W. T. Tseng, D. Canaperi, A. Ticknor, V. Devarapalli, L. Tai, L. Economikos, J. MacDougal, C. Bunke, M. Angyal, J. Muncy, X. Chen, J. Zhang, Q. Fang, and J. Zheng, “Post Cu CMP cleaning process evaluation for 32nm and 22nm technology nodes”, Advanced Semiconductor Manufacturing Conference (ASMC), 23th Annual SEMI, p.57, 2012.
[9] Y. Yamada, Y. Yagi, N. Konishi, N. Ogiso, K. Katsuyama, S. Asaka, J. Noguchi, and T. Miyazaki, “Analysis of Post-Chemical-Mechanical-Polishing Cleaning Mechanisms for Improving Time-Dependent Dielectric Breakdown Reliability”, Journal of The Electrochemical Society, 155, p.H301, 2008.
指導教授 曹恒光(Heng-Kwong Tsao) 審核日期 2014-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明