博碩士論文 93394007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:35.175.191.168
姓名 陳映秀(Ying-Hsiu Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
(Initial Solvent-screening of Racemic (R/S)(±)-Ibuprofen and Crystallization Kinetics of Ibuprofen Sodium Salt)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長
★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究★ 蔗糖的同質異構型構
★ 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例
★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣
★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究
★ 生命的起源與天門冬氨酸在水中的結晶★ 微調具光學活性聯二萘酚和其二甲亞碸包合物的光激發光性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 外消旋物質包含外消旋聚集物、外消旋混合物或者擬消旋體(固體溶液)。市面上大部分(90-95%)的外消旋藥都是外消旋混合物。在這篇論文中,我們集中在包含伊普以及伊普鹽二水化合物的外消旋混合物藥的結晶,並且嘗試提供對增進藥物發展效率的一系列工程技術資料。這篇論文完成了兩個重要的研究。
首先,我們是第一個使用23種溶液(水、甲醇、乙醇、異丙醇、正丁醇、苯甲醇、丙酮、乙睛、硝基苯、二甲基甲醯胺、二甲基亞楓、丁酮、乙酸乙酯、甲基第三丁基醚、正庚烷、N,N-二甲基苯胺、二甲苯、間二甲苯、甲苯、苯、1,4,-二氧陸圜、四氫呋喃以及氯仿)利用初始溶液篩選法來徹底以及同時收集依普的外消旋混合物包含溶解度、同質異相、結晶度以及結晶形貌的工程技術資料。在這個部份,我們是伊普外消旋混合物的溶劑同質異相表的發明者。溶劑同質異相表是材料的特性。研究的結果如下:(1)伊普外消旋混合物幾乎不溶於水,(2)粉末X光繞射以及微分熱插掃描分析儀的研究顯示伊普為同型物質,(3)伊普外消旋混合物從二甲基甲醯胺溶液中成長的結晶比起其他容易有最高的結晶度,最後(4)不同的溶液(從極性溶劑到非極性溶劑)可以修改伊普外消旋混合物的結晶體長寬比。對於伊普而言,在晶體中是以二聚物的鍵結方式形成羧酸,且羧酸族群相對地比較喜歡溶解於極性的溶劑中。因此伊普的晶體長寬比,在極性溶劑中會比非極性溶劑小。
第二,我們集中在伊普外消旋混合物的結晶動力學。在這個部份,我們是第一個使用0.02公克的純對應結構體的 (S)-(-)-伊普鈉鹽二水化合物以及單對掌性的酸性 (S)-(+)-伊普作為添加物。另外,我們使用電導度計來執行原位監控整個結晶程序並且整合熱力學與動力學的資訊。利用電導度計我們可以獲得結晶過程的時間點從成核的誘發期到晶體成長終點,然後評估基礎地成核與結晶成長因子。這個研究的結果非常的重要,因為不同的添加劑被加入的出現會改變結晶的路徑來製造:(1)伊普鈉鹽二水外消旋混合物,(2)伊普鈉鹽二水外消旋聚集物,(3)伊普鈉鹽的擬外消旋體。
摘要(英) Racemic species involve racemic conglomerate, racemic compound, or pseudoracemate (solid solution). On the market, most racemic drugs are racemic compound (90-95%). In this thesis, we focused on the crystallization of the racemic compound drug including ibuprofen ((R/S)(±)-2-[4-isobutylphenyl)propionic acid, C13H18O2) and sodium ibuprofen dihydrate ((R/S)(±)-sodium 2-(4-isobutylphenyl) propanoate, C13H17NaO2·2H2O), and attempted to provide a series of effective engineering technology data to improve the efficiency for drug development. Two important studies in this thesis were performed.
Firstly, we were the first to use 23 solvents (water, methanol, ethanol, isopropyl alcohol (IPA), n-butyl alcohol, benzyl alcohol, acetone, acetonitrile, nitrobenzene, N,N-Dimethylformamide (DMF), dimethy sulfoxide (DMSO), methyl ethyl ketone (MEK), ethyl acetate, methyl-t- butyl ester (MTBE), n-heptane, N,N-dimethylaniline(DMA), xylene, p-xylene, toluene, benzene, 1,4 dioxane, tetrahydrofurn (THF), and chloroform.) by initial solvent-screening to collect engineering technology data including solubility, polymorphism, crystallinity, and crystal habit of racemic compound of ibuprofen, simultaneously. In this section, we are the inventors for the “form space” of the racemic compound of ibuprofen. “Form space” is the material’s characteristics. Results of this investigation were shown as the following: (1) the racemic compound of ibuprofen was practically insoluble in water, (2) the powder x-ray diffraction (PXRD) and differential scanning calorimetry (DSC) studies showed that ibuprofen was isomorphic, (3) the degree of crystallinity of racemic ibuprofen in DMF was higher than the ones given from other solvents, finally, (4) the different type of solvents (from polar to non-polar) can modify the aspect ratio of racemic compound of ibuprofen. Because the racemic compound of ibuprofen packing was formed by dimer formation in solution before the incorporation into the crystal. Hence, racemic compound of ibuprofen have a carboxylic acid group are likely to dissolve in polar solvents.
Secondly, we focused on the crystallization kinetics of racemic compound of ibuprofen. In this section, we were the first to use 0.02g of the pure enantiomer of S(-)-sodium ibuprofen dihydrate and the homochiral parent acid (S)-(+)-ibuprofen as additives. In addition, we employed electrical conductance in situ monitor the entire crystallization process and to gather thermodynamics (solubility, Gibbs free energy) and kinetics (nucleation and crystal growth) information. The fundamental nucleation and crystal growth parameters were then estimated. This investigational results were very important. Because the presence of different additives could alter the crystallization pathways to produce (1) racemic compound of sodium ibuprofen dihydrate, (2) racemic conglomerate of sodium ibuprofen dehydrate, and (3) pseudoracemic of sodium ibuprofen.
關鍵字(中) ★ 成核
★ 晶體成長
★ 結晶動力學
★ 溶劑篩選
★ 同質異相
★ 外消旋
關鍵字(英) ★ nucleation
★ polymorph
★ solvent screening
★ racemic
★ crystal growth
★ kinetics
論文目次 Table of Contents
摘 要.............................................................................................................................I
Abstract…………………………………………………………………………...…...III
Acknowledgments…………………………………………………………….....……VI
Table of Contents……………………………………………………………......…...VII
List of Figures………………………………………………………………...……....XI
List of Tables……………………………………………………………………….XVII
Chapter 1 Executive Summary…………………………………………………...…...1
1.1 Introduction……………………………………………………..........….…....1
1.2 Brief Introduction of Racemic Compound of Drug…………………......….5
1.3 Conceptual Framework…………………………………………....…........…9
Cited Literatures..…………………………………………........………….....…14
Chapter 2 Analytical Instruments…………………………………………...…...….19
2.1 Introduction…………………………………........……………….….......….19
2.2 Differential Scanning Calorimetry (DSC)…………………………....…....23
2.3 Thermogravimetric Analyzer (TGA)…………………………….…...…....27
2.4 Powder X-ray diffractometry (PXRD)…………………………………......30
2.5 Optical Microscope (OM)……………………………………………..….....34
2.6 Electrical Conductance……………………………………………..…….....38
V II
2.7 Conclusions…………………………………………………………...…...…41
Cited Literatures...………………………………………………..………..……42
Chapter 3 Solubility, Polymorphism, Crystallinity, and Crystal Habit of Racemic
Compound of Ibuprofen by Initial Solvent-Screening ...........................48
3.1. Introduction....................................................................................................48
3.1.1. Solubility...............................................................................................49
3.1.2. Polymorphism.......................................................................................51
3.1.3. Crystallinity...........................................................................................51
3.1.4. Crystal habit..........................................................................................52
3.1.5. Racemic compound of ibuprofen..........................................................52
3.2 Materials .........................................................................................................55
3.2.1. Drug .....................................................................................................55
3.2.2. Organic solvent.....................................................................................59
3.3 Experimental Section......................................................................................63
3.3.1. Crystallization Procedures....................................................................63
3.3.2. Solubility measurement........................................................................64
3.3.3 Instrument analysis................................................................................65
Differential scanning calorimetry (DSC)..............................................65
Powder X-ray diffractometry (PXRD)............................ .....................65
VI II
Optical Microscopy (OM).....................................................................66
3.4. Result and Discussion....................................................................................67
3.4.1. Solubility...............................................................................................67
3.4.2. Polymorphism.......................................................................................72
3.4.3. Crystallinity ..........................................................................................75
3.4.4. Crystal habit of Crystals........................................................................77
3.5. Conclusions.....................................................................................................81
Cited Literatures…………………………………………………………...…....82
Chapter 4 The Effect of the Homochiral Additives of S(+)-Ibuprofen and
S(-)-Sodium Ibuprofen Dihydrate on the Crystallization Kinetic
Mechanism of (R/S)(±)-Sodium Ibuprofen Dihydrate….....…………......90
4.1. Introduction………………...………….......……………………………….90
4.2. Materials………………………...…………………………………...……..96
4.2.1. Racemic sodium ibuprofen digydrate…...………………………..…..96
4.2.2. Organic solvent……………………………………..………………...97
4.2.3. Preparation of enantiomeric S(-)-sodium ibuprofen dehydrate……....98
4.3. Instrument Analytical………………………………...…………………..100
4.3.1. Dfferential Scanning Calorimetry (DSC)…………..……………….100
4.3.2. Thermogravimetric Analysis (TGA)…………………………...……100
IX
4.3.3. Optical Microscopy (OM)…………………………....…...…………101
4.3.4. Electrical Conductance...…………………………….……..……….101
4.4. Experimental Apparatus and Procedure…………...…………....……...103
4.4.1. Concentration Calibration……………………………………...……103
4.4.2. Solubility Measurement…………………………………...…...…....103
4.4.3. Crystallization process………………………...…………...………..105
4.5. Results and Discussion……………………………...…………...………..108
4.5.1. Nucleation Mechanism………...………………….....……………...108
4.5.2. Crystal Growth Mechanism……………………….……...…..….….115
4.5.3. Physico-chemical characterization………………….....…….….…...125
4.5.4. Critical Micelle Concentration (CMC)……………….......…..….….126
4.6. Conclusions……………………………………...………....…….………..131
Notation………………………………………...………………………….133
Cited Literatures………………………………………………..………...134
Chapter 5 Conclusions…………………………………………….………...……....143
5.1. Initial Solvent-screening…………………………………………….........144
5.2. Crystallization Kinetic mechanism of (R/S)(±)-sodium ibuprofen
Dihydrate............................................................................................................145
Summary Literatures.................................................................................................147
參考文獻 Summary Literatures
Chapter 1
1. M. S. Lipsky, MD, and L. K. Sbarp, “From idea to market: the drug approval
process,” JABFP 14(5): 362-367 (2001).
2. S. Kraljevic, P. J. Stambrook, and K. Pavelic, “Accelerating drug discovery,”
EMBO reports 5(9): 837-842 (2004).
3. G. W. Caldwell, “Compound optimization in early- and late-phase drug discovery:
acceptable pharmacokinetic properties utilizing combined physicochemical, in
vitro and in vivo screens,” Current Opinion in Drug Discovery & Development 3
(1): 30-41 (2000).
4. J. Wechsler, “Manufacturers face new challenges battling global threats,” Pharm.
Tech. 30(8): 24-32 (2005).
5. L. Yu, S. M. Reutzel and G.. A. Stephenson, “Physical characterization of
polymorphic drugs: an integrated characterization strategy,” PSTT. 1(3): 118-127
(1998).
6. Y. Yoshihashi, E. Yonemochi, amd K. Terada, “Estimation of initial dissolution
rate of drug substance by thermal analysis: application for carbamazepine
hydrate,” Pharm. Devel. Tech. 7(1): 89-95 (2002).
7. D. J. W. Grant, “Theory and origin of polymorphism.”in,” Polymorphism in
pharmaceutical solids.” Edited by H.G. Brittain, Marcel Dekker, New York, pp
1-33 (1999).
8. L. X. Yu, M. S. Furness, A. Raw, K. P. W. Outlaw, N. E. Nashed, E. Ramos, S. P.
F. Miller, R. C. Adams, F. Fang, R. M. Patel, F. O. Holcombe, Jr., Y. Y. Chiu, and
A. S. Hussain, “Scientific considerations of pharmaceutical solid polymorphism
in abbreviated new drug applications,” Pharm. Res. 20(4):531-536 (2003).
147
9. T. L. Threlfall, “Analysis of organic polymorphs a review,” Analyst. 120(10):
2435-2459 (1995).
10. S. L. Morissette, O. Almarsson, M. L. Peterson, J. F. Remenar, M.J. Read, A. V.
Lemmo, S. Ellis, M. J. Cima, C. R. Gardner. “High-throughput crystallization:
polymorphs, salts, co-crystals and solvates of pharmaceutical solids,” Adv. Drug.
Deliv. Rev. 56(3): 275-300 (2004).
11. S. Teychene, J. M. Auertret, and B. Biscans, “Determination of solubility profiles
of eflucimibe polymorphs: experimental and modeling,” J. Pharm. Sci.
95(4):871-882 (2006).
12. R. G. Cantera, M. G. Leza, and C. M. Bachiller, “Solid phases of tenoxicam,” J.
Pharm. Sci. 91(10): 2240-2251 (2002).
13. T. S. Kim, D. H. Kim, H. J. Im, K. Shimada, R. Kawajiri, T. Okubo, and H.
Murata, T. Mitani, “Improved lifetime of an OLED using aluminum (III) tris
(8-hydroxyquinolate),” Science and Technology of Advanced Materials. 5(3):
331–337(2004).
14. A. Chimmalgi, D. J. Hwang, C. P. Grigoropoulos, “Nanoscale rapid melting and
crystallization of semiconductor thin films,” NANO LETTERS. 5(10):1924-1930
(2005).
15. K.J. Kim, H.S. Kim., “Coating of energetic materials using crystallization,”
Chem. Eng. Technol. 28(8): 946 – 951 (2005).
16. T. Threfall, “Crystallization of polymorphs: thermodynamic insight into the role
of solvent,” Org. Process Res. Dev. 4(5): 384-390 (2000).
17. S. Gracin and A. C. Rasmuson, “Solubility of phenylacetic acid,
p-hydroxyphenylacetic acid, p-aminophenylacetic acid, p-hydroxybenzoic acid,
and Ibuprofen in pure solvents,” J. Chem. Eng. Data. 47(6): 1379-1383 (2002).
148
18. M. Fujiwara, Z. K. Nagy, J. W. Chew, and Richard D. Braatz, “First-principles
and direct design approaches for the control of pharmaceutical crystallization,” J.
Process. Control. 15(5): 493-504 (2005).
19. S. Zhang, “Emerging biological materials through molecular self-assembly,”
Biotech. Adv. 20(5): 321-339 (2002).
20. A. Somogyi, F. Bochner and D. Foster, “Inside the isomers: the table of chiral
switches,” Australian. Prescriber. 27(2):47-49 (2004).
21. Z. Jane and D. J. W. Grant, “Relationship between physical properties and crystal
structures of chiral drugs,” J. Pharm. Sci. 86(10):1073-1078 (1997).
22. M. C. Gohel, “Overview on chirality and applications of stereo-selective
dissolution testing in the formulation and development work,” Dissolution.
Technologies. 10(3): 16-20 (2003).
23. G. G. Z. Zhang, S. Y. L. Paspal, R. Suryanarayanan, and D. J. W. Grant,
“Racemic compound of species of sodium ibuprofen: characterization and
polymorphic relationships,” J. Pharm. Sci. 92(7): 1356-1366 (2003).
24. S. Datta, and D. J. W. Grant, “Crystal structures of drugs: advances in
determination, prediction and engineering,” Nature 3(1):42-57 (2004).
25. T. R. Kommuru, M. A. Khan, and I. K. Reddy, “Racemate and enantiomers of
ketoprofen: phase diagram, thermodynamic studies, skin permeability, and use of
chiral permeation enhancers,” J. Pharm. Sci. 87(7): 833-840 (1998).
26. B. J. Armitage, J. F. Lampard, and A. Smith, “Composition of S(-) sodium
ibuprofen,” United States Patent, NO.5696165.
27. H. Potthast, J.B. Dressman, H.E. Junginger, K.K. Midha, H. Oeser, V.P. Shah, H.
Vogelpoel, and D.M. Barends, “Biowaiver monographs for immediate release
solid oral dosage forms: ibuprofen,” J. Pharm. Sci. 94(10): 2121-2131 (2005).
149
28. S. L. Morissette, Ö. Almarsson, M. L. Peterson, J. F. Remenar, M. J. Read, A. V.
Lemmo, S. Ellis, M. J. Cima, C. R. Gardner, “High-throughput crystallization:
polymorphs, salts, co-crystals and solvates of pharmaceutical solids,” Adv. Drug.
Deli. Rev. 56(3): 275-300 (2004).
29. G. L. Perlovich, S. V. Kurkov, L. K. Hansen, and A. Baure-Brandl,
“Thermodynamics of sublimation, crystal lattice energies, and crystal structures
of racemates and enantiomers: (+)- and (+/-)-ibuprofen,” J. Pharm. Sci.
93(3):654-666 (2004).
30. Y. Zhang, and D. J. W. Grant, “Similarity in structures of racemic and
enantiomeric ibuprofen sodium dihydrates,” Acta Crystallogr., Sect. C. C61(Pt 9):
m435-m438 (2005).
31. S. Byrn, K. Morris, and S. Comella, “Reducing time to market with a
science-based product management strategy,” Pharm. Tech. pp. 46-56 (2005).
32. L. X. Yu, R. A. Lionberger, A. S. Raw, R. D’Costa, H. Wu, and A. S. Hussain,
“Applications of process analytical technology to crystallization processes,” Adv.
Drug. Del. Rev. 56(3):349-369 (2004).
Chapter 2
1. A. K. Tiwary, “Modification of crystal habit and its role in dosage form
performance,” Drug. Dev. Ind. Pharm. 27(7): 699-709 (2001).
2. L. Yu, S. M. Reutzel and G.. A. Stephenson, “Physical characterization of
polymorphic drugs: an integrated characterization strategy,” PSTT 1(3): 118-127
(1998).
3. Y. Yoshihashi, E. Yonemochi, amd K. Terada, “Estimation of initial dissolution
rate of drug substance by thermal analysis: application for carbamazepine
150
hydrate,” Pharm. Devel. Tech. 7(1): 89-95 (2002).
4. D. J. W. Grant, “Theory and origin of polymorphism,” in H.G. Brittain,”
Polymorphism in pharmaceutical solids,” Marcel Dekker, New York, pp 1-33
(1999).
5. T. L. Threlfall, “Analysis of organic polymorphs. A review,” Analyst
120(10):2435-2460 (1995).
6. V. Koradia, G. Chawla, and A. K. Bansal, “Qualitative and quantitative analysis
of clopidogrel bisulphate polymorphs,” Acta Pharm. 54(3): 193–204(2004).
7. T. Hosokawa, S. Datta, A. R. Sheth and D. J. W. Grant, “Relationships between
crystal structures and thermodynamic properties of phenylbutazone solvates,”
Cryst. Eng. Comm. 6(44): 243-249 (2004).
8. G. Chawla and A. K. Bansal, “Challenges in polymorphism of pharmaceuticals,”
CRIPS 5(1): 9-12 (2004).
9. S. Mirza, I. Miroshnyk, J. Heinämäki, L. Christiansen, M Karjalainen, and J.
Yliruusi, “Infiuence of solvents on the variety of crystalline forms of
erythromycin,” AAPS Pharm. Sci. 5(3): 1-9 (2003).
10. A. R. Sheth and D. J. W. Grant, “Relationship between the structure and
properties of pharmaceutical crystals,” KONA (23): 36-48 (2005).
11. A. S. Raw, M. S. Furness, D. S. Gill, R. C. Adams, F. O. H. Jr, and L. X. Yu,
“Regulatory considerations of pharmaceutical solid polymorphism in abbreviated
new drug applications (ANDAs),” Adv. Drug Deliv. Rev. 56(3): 397-414 (2004)
12. R. Storey, R. Docherty, P. Higginson, C. Dallman, C. Gilmore, G. Barr and W.
Dong, “Automation of solid form screening procedures in the pharmaceutical
industry – How to avoid the bottlenecks,” Crystallography Reviews. 10(1): 45-56
(2004).
151
13. H. G. Brittain, “ Spectral methods for the characterization of polymorphs and
solvates,” J. Pharm. Sci. 86(4): 405-412 (1997).
14. K. Kimura, F. Hirayama, and K. Uekama, “Characterization of tolbutamide
polymorphs (Burger’s forms II and IV) and polymorphic transition behavior,” J.
Pharm. Sci. 88(4): 385-391 (1999).
15. S. Ito, M. Nishimura, Y. Kobayashi, S. Itai, K. Yamamoto, “Characterization of
polymorphs and hydrates of GK-128, a serotonin3 receptor antagonist,” Int. J.
Pharm. 151(2): 133-143 (1997).
16. T. J. Difeo, “Drug product development: a technical review of chemistry,
manufacturing, and controls information for the support of pharmaceutical
compound licensing activities,” Drug Dev. Ind. Pharm.29(9): 939-958 (2003).
17. B. Shah, V. K. Kakumanu, and A.K. Bansal, “Analystical techniques for
quantification of amorphous/crystalline phase in pharmaceutical solids,” J.
Pharm. Sci. 95(8): 1641-1665 (2006).
18. D. Giron, “Application of thermal analysis and coupled techniques in
pharmaceutical industry,” J. Therm. Anal. Calorim. 68(2): 335-357 (2001).
19. D. Giron, “Thermal analysis and calorimetric methods in the characterisation of
polymorphs and solvates,” Thermochim. Acta. 248(2):1-59 (1999).
20. X. Pan, T. Julian, and L. Augsburger, “Quantitative measurement of
indomethacin crystallinity in indomethacin-silica gel binary system using
differential scanning calorimetry and x-ray powder diffractometry,” Pharm. Sci.
Tech. 7 (1): E1-E7 (2006).
21. M. D. Ticehurst, R. A. Storey, and C. Watt, “Application of slurry bridging
experiments at controlled water activities to predict the solid-state conversion
152
between anhydrous and hydrated forms using theophylline as a model drug,” Int.
J. Pharm. 247(2): 1-10 (2001).
22. H. G. M. Edwards, E. Lawson, M. Matas, L. Shields, and P. York,
“Metamorphosis of caffeine hydrate and anhydrous caffeine,” J. Chem. Soc.
Perkin transactions, 2(10): 1985-1990 (1997).
23. H. Zhu, J. Xu, P. Varlashkin, S. Long, and C. Kidd, “Dehydration, Hydration
behavior, and structural analysis of Fenoprofen Calcium,” J. Pharm. Sci. 90(7):
845-859 (2001).
24. S. Agatonovic-Kustrin, V. Wu, T. Rades, D. Saville, and I.G. Tucker, “Powder
diffractometric assay of two polymorphic forms of ranitidine hydrochloride,” Int.
J. Pharm. 184(1): 107-114 (1999).
25. M. Otsuka, F. Kato, and Y. Matsuda, “Comparative evaluation of the degree of
indomethacin crystallinity by chemoinfometrical Fourie-Transformed
Near-Infrared Spectroscopy and conventional Powder X-ray Diffractiometry,”
Pharm. Sci. 2(1): 1-8 (2000).
26. Y. Hiramatsu, H. Suzuki, A. Kuchiki, H. Nakagawa, and S. Fujii, “X-ray
structure studies of lomeridine dihydrochloride polymorphs,” J. Pharm. Sci.
85(7): 761-766 (1996).
27. http://micro.magnet.fsu.edu/optics/lightandcolor/lenses.htm, “Introduction to
lenses.”
28. S. Amelinckx, D. V. Dyck, J. V. Landuyt, and G. V. Tendeloo, “Handbook of
microscopy,” Weinheim. New York. pp: 293-320 (1997).
29. O. Flint, “Chemical Aspects of food microscopy,” Anal. Pro. 29(3):106 (1992).
30. N. Rasenack, and B. W. Müller, “Crystal habit and tableting behavior,” Int. J.
Pharm. 244(1-2): 45-57 (2002).
153
31. J. Haleblian, and W. McCrone, “Pharmaceutical applications of polymorphism,”
J. Pharm. Sci. 58(8):911-929 (1969).
32. S. Mirza, I. Miroshnyk, J. Heinämäki, L. Christiansen, M. Karjalainen, and J.
Yliruusi, “Influence of solvents on the variety of crystalline forms of
Erythromycin,” AAPS. Pharm. Sci. 5(2): 1-8 (2003).
33. A. V. Bonsdorff-Nikander, J. Rantance, L. Christiansen, and J. Yliruusi,
“Optimizing the crystal size and habit of β-sitosterol in suspension,” AAPS
Pharm. Sci. Tech. 4(3): 1-8 (2003).
34. H. Cano, N. Gabas, J. P. Canselier, “Experimental study on the ibuprofen crystal
growth morphology in solution,” J. Crys. Grow. 224(7): 335-341 (2001).
35. P. A. Corrigan, V. E. Lyons, G. D. Baranes, and F. G. Hall, “Conductivity
measurements monitor waste streams,” Envir. Sci. Tech. 4(2): 116-121 (1970).
36. S. L. Wang, Y. J. Fu, W. C. Zhang, X. Sun, and Z. S. Gao, “In-line bulk
concentration measurement by method of conductivity in industrial KDP crystal
growth form aqueous solution,” Cryst. Res. Technol. 35(9): 1027-1034 (2000).
37. O. D. Linnikov, “spontaneous crystallization of potassium chloride from aqueous
and aqueous-ethanol solutions & Part I: Kinetics and mechanism of the
crystallization process,” Cryst. Res. Technol. 39(6): 516-528 (2004).
38. I. Kabdasli, S. A. Parsons, and O. Tünay, “Effect of major ions on induction time
of struvite precipitation,” CCACAA. 79(2): 243-251 (2006).
39. O. D. Linnikov, “Spontaneous crystallization of sodium chloride from aqueous
and aqueous-ethanol solutions & Part I: kinetics and mechanism of the
crystallization process,” Cryst. Res. Technol. 41(1): 10-17 (2006).
40. M. L. Balboni, “Process analytical technology,” Pharm. Tech. 27(10):54-61 (2003).
154
Chapter 3
1. K. J. Roberts, R. Docherty, P. Bennema, and L . A. M J Jetten, “The importance
of considering growth-induced conformational change in predicting the crystal
habit of benzophenone,” J. Phys. D:Appl. Phys. 26(B8): B7-B21 (1993).
2. R. Hiremath, S. W. Varney, and J. A. Swift, “Selective growth of less stable
polymorph of 2-iodo-4-nitroaniline on a self-assembled monolayer template,”
Chem. Commun. 7(23): 2676-267 (2004).
3. J. Aizenberg, “Crystallization in Patterns : A bio-inspired approach,” Adv. Mater.
16(15): 1295-1302 (2004).
4. S. P. Duddu, F. K.Y. Fung, and D. J. W. Grant, “Effect of doping with the
opposite enantiomer on the thermodynamic properties of (-)-ephedrinium
2-naphthalen -esulphonate crystals,” J. Phys. D:Appl. Phys. 26(B8): B41-B47
(1993).
5. T. S. Kim, D. H. Kim, H. J. Im, K. Shimada, R. Kawajiri, T. Okubo, H. Murata,
and T. Mitani, “Improved lifetime of an OLED using aluminum (III) tris
(8-hydroxyquinolate),” Sci. Tech. Adv. Matt. 5(3): 331–337 (2004).
6. A. Chimmalgi, D. J. Hwang, and C. P. Grigoropoulos, “Nanoscale rapid melting
and crystallization of semiconductor thin films,” Nanoletters 5(10): 1924-1930
(2005).
7. K.J. Kim, H.S. Kim, “Coating of energetic materials using crystallization,” Chem.
Eng. Technol. 28(8): 946 – 951 (2005).
8. T. Threfall, “Crystallization of polymorphs: thermodynamic insight into the role
of solvent,” Org. Process Res. Dev. 4(5): 384-390 (2000).
9. S. Gracin, and A. C. Rasmuson, “Solubility of phenylacetic acid,
p-hydroxyphenylacetic acid, p-aminophenylacetic acid, p-hydroxybenzoic acid,
155
and ibuprofen in pure solvents,” J. Chem. Eng. Data. 47(6): 1379-1383 (2002).
10. C. K. Chen, and A. K. Singh, “A “Bottom-Up” Approach to process development:
application of physicochemical properties of reaction products toward the
development of direct-drop processes,” Org. Process Res. Dev. 5(5): 508-513
(2001).
11. J. L. Hilden, C. E. Ryeyes, M. J. Kelm, j. S. Tan, J. G. Stowell, and K. R. Morris,
“Capillary precipitation of a highly polymorphic organic compound,” Cryst.
Growth. Des. 3(6): 921-926 (2003).
12. W. W. Wang, and Y. J. Zhu, “Synthesis of PbCrO4 and Pb2CrO5 rods via a
microwace-assisted ionic liquid methods,” Cryst. Growth. Des., 5(2): 505-507
(2005).
13. D. Braga, and F. Grepioni, “Making crystals from crystals: a green route to
crystal engineering and polymorphism,” Chem. Commun. 7(29): 3635–3645
(2005).
14. J. E. Aber, S. Arnold, and B. A. Garetz, “Strong dc electric field applied to
supersaturated aqueous glycine solution induces nucleation of the γ polymorph,”
Phys. Rev. Lett. 94(14): 145503 (2005).
15. M. Lang, A. L. Grzesiak, and A. J. Matzgar, “The Use of polymer heteronuclei
for crystalline polymorph selection,” J. Am. Chem. Soc. 124(50): 14834-14835
(2002).
16. A. M. Garcia, and E. S. Ghaly, “Preliminary spherical agglomerates of water
soluble drug using natural polymer and cross-linking technique,” J. Control.
Relea. 40(3): 179-186 (1996).
17. K. Sato, “Polymorphic transformations in crystal growth” J. Phys. D: Appl. Phys.
26(8B): B77-B84 (1993).
156
18. S. Kim, B. Lotz, M. Lindrud, K. Girard, T. Moore, K. Nagarajan, M. Alvarez, T.
Lee, F. Nikfar, M. Davidovich, S. Srivastava, and S. Kiang, “Control of the
particle properties of a drug substance by crystallization engineering and the
effect on drug product formulation,” Org. Pro. Res. Dev. 9(6):911-922 (2005).
19. L. Yu, and K. Ng, “Glycine crystallization during spray drying: The PH effect on
salt and polymorphic forms,” J. Pharm. Sci. 91(11): 2367-2375 (2002).
20. C. Wibowo, W. Chang, and K.M. Ng, “Design of integrated crystallization
systems,” AIChE. J. 47(11): 2474-2492 (2001).
21. W. I. Cross, N. Blagden, and R. J. Davey, “A whole output strategy for
polymorph screening: combining crystal structure prediction, graph set analysis,
and targeted crystallization experiments in the case of diflunisal,” Cryst. Growth.
Des. 3(2):151 -158 (2003).
22. L. C. Garzόn, and F. Martínez, “Temperature dependence of solubility for
ibuprofen in some organic and aqueous solvents,” J. Sol. Chem. 33(11):
1379-1395 (2004).
23. T. L. Therlfall, “Analysis of organic polymorphs a review,” Analyst 120:
2435-2460 (1995).
24. L. Yu, S. M. reutzel, and G. A. Stephenson, “Physical characterizationof
polymorphic drugs: an integrated characterization strategy,” PSTT. 1(3):118-217
(1998).
25. S. Datta, and D. J. W. Grant, “Crystal structures of drugs: advances in
determination, prediction and engineering,” Nat. Rev. Drug. Discov. 3(1): 42-57
(2004).
26. R. Hilfiker, J. Berghausen, F. Blatter, A. Burkhard, S. M. D. Paul, B. Freiermuth,
A. Geoffroy, U. Hofmeier, C. Marcolli, B. Siebenhaar, M. Szelagiewicz, A. Vit,
157
and M. V. Raumer, “Polymorphism-integrated approach from high-throughput
screening to crystallization optimization,” J. Therm. Anal. Calorim. 73(2):
429-440 (2003).
27. S. L. Morissette, O. Almarsson, M. L. Peterson, J. F. Remenar, M.J. Read, A. V.
Lemmo, S. Ellis, M. J. Cima, and C. R. Gardner. “High-throughput
crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical
solids,” Adv. Drug. Deliv. Rev. 56(3): 275-300 (2004).
28. D. Gao, and J. H. Raytting, “Use of solution calorimetry to determine the extent
of crystallinity of drugs and excipients,” Int. J. Pharm. 151(2): 183-192 (1997).
29. C. R. Navarro, and E. Dehne, “Salt weathering: influence of evaporation rate
supersaturation and crystallization pattern,” Earth Surf. Process. Landforms.
24(3): 191-209 (1999).
30. A. K. Tiwary, “Modification of crystal habit and its role in dosage from
performance,” Drug Dev. Ind. Pharm. 27(7): 699-709 (2001).
31. M. Lahav, and L. Leiserowitz, “The effect of solvent on crystal growth and
crystal habit,” Chem. Eng. Sci. 56(7): 2245-2253 (2001).
32. H. Cao, N. Gabas, and J. P. Canselier, “Experimental study on the ibuprofen
crystal growth crystal habit in solvent,” J. Cryst. Growth. 224(3-4): 335-341
( 2001).
33. H. A. Garekani, F. Sadeghi, A. Badiee, S. A. Mostafa, and A. R. ajabi-Siahboomi,
“Crystal habit modifications of ibuprofen and their physico-mechanical
characteristics,” Drug. Dev. Ind. Pharm. 27(8): 803-809 (2001).
34. 1 G. M. Khan, and Z. Jiabi, “Preparation, characterization, and evaluation of
physicochemical properties of different crystalline forms of ibuprofen,” Drug
158
Dev. Ind. Pharm. 24(5): 463-471 (1998).
35. P. D. Martino, M. Beccerica, E. Joiris, G.. F. Palmieri, A. Gayot, and S. Martelli,
“Influence of crystal habit on the compression and densification mechanism of
ibuprofen,” J. Cryst. Growth. 243(2): 345-355 (2002).
36. N. Rasenack, and B. W. Muller, “Properties of ibuprofen crystallization under
various conditions: a comparative study,” Drug Dev. Ind. Pharm. 28(9):
1077-1089 (2002).
37. V. Labhasetear, S. V. Deshmukh, and A. K. Dorle. “Studies on some crystalline
forms of ibuprofen,” Drug Dev. Ind. Pharm. 19(6): 631-641 (1993).
38. Z. Jane, and D. J. W. Grant, “Relationship between physical properties and
crystal structures of chiral drugs,” J. Pharm. Sci. 86(10): 1073-1078 (1997).
39. A. Somogyi, F. Bochner and D. Foster, “Inside the isomers: the table of chiral
switches,” Australian. Prescriber. 27(2): 47-49 (2004).
40. G. L. Perlovich, S. V. Kurkov, L. K. Hansen, and A. Baure-Brandl,
“Thermodynamics of sublimation, crystal lattice energies, and crystal structures
of racemates and enantiomers: (+)- and (+/-)-ibuprofen,” J. Pharm. Sci. 93(3):
654-666 (2004).
41. Y. Yi, D. Hatziavramidis, and A. S. Myerson, “Development of a Small-scale
automated solubility measurement apparatus,” Ind. Eng. Chem. Res. 44(15):
5427-5433 (2005).
42. R. Mohan, H. Lorenz, and A. S. Myerson, “Solubility measurement using
differential scanning calorimetry,” Ind. Eng. Chem. Res. 41(19): 4854-4862
(2002).
43. K. Park, J. M. B. Evans, and A. S. Myerson, “Determination of Solubility of
Polymorphs Using Differential Scanning Calorimetry,” Cryst. Growth Des. 3(6):
159
991-995 (2003).
44. J. S. Drury, “Miscibility of organic solvents,” Ind. Eng. Chem. 44(11): 2744
(1952).
45. N. Rasenack, and B. W. Muller, “Crystal habit and tableting behavior,” Int. J.
Pharm. 244(1-2): 45-57 (2002).
46. S. Lee, K. Nam, M. S. Kim, S. W. Jun, J. S. Park, J.S. Woo, and S. J. Hwang,
“Preparation and characterization of solid dispersions itraconazole by using
aerosol solvent extraction system improvement in drug solubility and
bioavailability,” Arch. Pharm. Res. 28(7): 866-874 (2005).
47. A.Pawar, A. Paradkar, S. Kadam, and K. Mahadik, “Agglomeration of ibuprofen
with talc by novel crystallo-co-agglomeration technique,” AAPS. PharmSciTech.
5 (4): 1-6 (2004).
48. J. M. E. Buyan, N. Shankland and D. B. Sheen, “Solvent effects on the crystal
habit of ibuprofen,” J. Pharm. Sci. 58: 1505-1509 (1969).
49. A. H. NaDa, S. M. Saleh, and B. W. Muller, “Crystal modification for improving
the physical and chemical properties of ibuprofen,” Pharm. Technol. 29(11):
90-101 (2005).
Chapter 4
1. K.J. Kim, H.S. Kim., ”Coating of Energetic Materials using Crystallization”
Chem. Eng. Technol. 28(8): 946 – 951 (2005).
2. T. Threfall, “Crystallization of polymorphs: thermodynamic insight into the role
of solvent,” Org. Process Res. Dev. 4(5): 384-390 (2000).
3. A. Chimmalgi, D. J. Hwang, and C. P. Grigoropoulos. “Nanoscale rapid melting
160
and crystallization of semiconductor thin films,” NANO LETTERS
5(10):1924-1930 (2005).
4. T. S. Kim, D.H. Kim, H.J. Im, K. Shimada, R. Kawajiri, T. Okubo, H. Murata,
and T. Mitani, “Improved lifetime of an OLED using aluminum (III) tris
(8-hydroxyquinolate),” Science and Technology of Advanced Materials. 5(3):
331–337 (2004).
5. S. Gracin, and A. C. Rasmuson, “ Solubility of phenylacetic acid,
p-hydroxyphenylacetic acid, p-aminophenylacetic acid, p-hydroxybenzoic acid,
and ibuprofen in pure solvents,” J. Chem. Eng. Data. 47(6): 1379-1383 (2002).
6. E. A. Abdel-Aal, M. M. Rashad, and H. El-Shall, “Crystallization of calcium
sulfate dihydrate at different supersaturation ratios and different free sulfate
concentrations,” Cryst. Res. Technol. 39(4): 313-321 (2004).
7. C. J. Price, “Take some solid steps to improve crystallization,” Chem. Eng. Prog.
93(9): 34-43 (1997).
8. A. S. Myerson and R. Ginde in “Handbook of industrial crystallization,” edited
by A. S. Myerson (Butterworths, Montvale, MA, ) pp 18-20 (1992).
9. J. W. Mullin, “Crystallization 3rd,” Butterworths Heinemann, London, pp
172-201 (1993).
10. L. Bromberg, J. Reshba-Step, and Terrence Scott, “Insulin particle formation in
supersaturated aqueous solutions of poly(ethylene glycol),” Biophy. J.
89(5):3424-3433 (2005).
11. A. S. Myerson and R. Ginde in “Handbook of industrial crystallization,” edited
by A. S. Myerson (Butterworths, Montvale, MA,) pp 43-51 (1992).
12. J. B. Rawlings, S. M. Miller, and W. R. Witkowski, “Model identification and
control of solution crystallization processes: a review,” Ind. Eng. Chem. Res.
161
32(7):1275-1296 (1993).
13. X.Y. Liu, “A new kinetic model for three-dimensional heterogenous nucleation,”
J. Chem. Phys. 11(4):1628-1635 (1999).
14. K. V. R. Prasad, R. I. Ristic, D. B. Sheen, and J. N. Sherwood, “Crystallization of
paracetamol from solution in the presence and absence of impurity,” Int. J.
Pharm. 215(1-2): 29-44 (2001).
15. K. Sangwal, and T. Pałczyńska, “On the supersaturation and impurity
concentration dependence of segregation coefficient in crystals grow from
solutions,” J. Cryst. Grow. 212(3-4): 522-531 (2000).
16. H. Qu, M. Louhi-Kultanen, and J. Kallas, “In-line image analysis on the effects
of additives in batch cooling crystallization,” J. Cryst. Grow. 289(2): 286-294
(2006).
17. W. Beckmann, “Seeding the desired polymorph: background, possibilities,
limitations, and case studies,” Org. Process. Res. Dev. 4(5): 372-383 (2000).
18. M. M. Rashad, M. H. H. Mahmound, I. A. Ibrahim, and E. A. Abdel-Aal, “Effect
of citric acid and 1,2-dihydroxybenzene 3,5-disulfonic acid on crystallization of
calcium sulfate dihydrate under simulated conition of phosphoric acid
production,” Cryst. Res. Technol. 40(8): 741-747 (2005).
19. S. Datta, and D. J. W. Grant, “Crystal structures of drugs: advances in
determination, prediction and engineering,” Nature 3(1):42-57 (2004).
20. Z. J. Li, M. T. Zell, E. J. Munsin, and D. J. W. Grant, “Characterization of
racemic species of chiral drugs using thermal analysis, thermodynamic
calculation, and structural studies,” J. Pharm. Sci. 88(3): 337-346 (1999).
21. T. Buhse, D. K. Kondepudi, and B. Hoskins, “Kinetics of chiral resolution in
stirred crystallization of D/L-glutamic acid,” Chirallity 11(4): 343-348 (1999).
162
22. L. Addadi, S. Weinstein, E. Gati, I. Weissbuch, and M. Lahav, “Resolution of
conglomerates with the assistance of tailor-made impurities. Generality and
mechanistic aspects of the “rule of reversal,” J. Am. Chem. Soc. 104(17):
4610-4617 (1982).
23. S. P. Duddu, F. K.Y. Fung, and D. J. W. Grant, “Effect of doping with the
opposite enantiomer on the thermodynamic properties of (-)-ephedrinium
2-naphthalenesulphonate crystals,” J. Phys. D: Appl. Phys. 26(8B): B41-B47
(1993).
24. S. P. Duddu, F. K. Y. Fung, D. J. W. Grant, “Effects of crystallization in the
presence of the opposite enantiomer on the crystal properties of
(SS)-(+)-pseudoephedrinium salicylate,” Int. J. Pharm. 127(1): 53-63 (1996).
25. Z. J. Li, and D. J. W. Grant, “Effects of excess enantiomer on the crystal
properties of a racemic compound: ephedrinium 2-naphthalenesulfonate,” Int. J.
Pharm. 137(1): 21-31 (1996).
26. M. C.Gohel,” Overview on chirality and applications of stereo-selective
dissolution testing in the formulation and development work,” Dissolution
Technologies 10(3):16-20 (2003).
27. J. F. Remenar, J. M. MacPhee, B. K. Larson, V.A. Tyagi, J. H. Ho, D. A. McIlroy,
M. B. Hickey, P. B. Shaw, and Ö. Almarsson, “Salt Selection and Simultaneous
Polymorphism Assessment via High-Throughput Crystallization: The Case of
Sertraline.,” Org. Proc. Res. Dev., 7 (6):990 -996 (2003).
28. S. L. Morissette, Ö. Almarsson, M. L. Peterson, J. F. Remenar, M. J. Read, A. V.
Lemmo, S. Ellis, M. J. Cima, C. R. Gardner,” High-throughput crystallization:
polymorphs, salts, co-crystals and solvates of pharmaceutical solids.,” Adv. Drug.
163
Deliv. Rev., 56(3):275-300 (2004).
29. A. Ridell, H. Evertsson , S. Nilsson, and L. Sundelöf, “Amphiphilic association
of ibuprofen and two nonionic cellulose derivatives in aqueous solution.,” J.
Pharm. Sci. 88(11): 1175-1181 (2000).
30. J. Israelachvili, “Intermolecular and Surface Forces, 6th” Academic Press, New
York.(1997).
31. P. Barrett, B. Smith, J. Worlitschek, V. Bracken, B. O’Sulliven, and D. O’Grady,
“A review of the use of process analytical technology for the understanding and
optimization of production batch crystallization processes,” Org. Pro. Res. Dev.
9(3): 348-355 (2005).
32. M. Birch, S. J. Fussel, P. D. Higginson, N. McDowall, and I. Marziano,
“Towards a PAT-Base strategy for crystallization development,” Org. Pro. Res.
Dev. 9(3): 360-364 (2005).
33. L. X. Yu, R. A. Lionberger, A. S. Raw, R. D’Costa, H. Wu, and A. S. Hussain,
“Applications of process analytical technology to crystallization processes,” Adv.
Drug. Del. Rev. 56(3):349-369 (2004).
34. Y Zhang and D. J. W. Grant, “Similarity in structures of racemic and
enantiomeric ibu profen sodium dihydrates.,” Acta Cryst. C61:m435-m438
(2005).
35. B. J. Armitage, J. F. Lampard, A. Smith, “Composition of S(-) Sodium
Ibuprofen.,” US Patent 6242000 (1997).
36. B. J. Armitage, J. F. Lampard, A. Smith, “Composition of S(-) Sodium
Ibuprofen.,” US Patent 5696165 (1997).
37. R. Hilfiker, S. M. D. Paul, and M. Szelagiewicz in “Polymorphism,” edited by R.
Holfiker (Wiley-Vch GmbH & Co. KGaA,) pp 287-308 (2006).
164
38. D. Winn, M. F. Doherty, “Anew technique for predicting the shape of
solution-grown organic crystals,” AIChE 44(11): 2501-2514 (1998).
39. B. R. Spong, C. P. Price, A. Jayasankar, A. J. Matzger, and N. R. Hornedo,
“General principles of pharmaceutical solid polymorphism: a supramolecular
perspective,” Adv. Drug. Del. Rev. 56(3): 241-274 (2004).
40. R. Boistelle, and J. P. Astier, “Crystallizatiom mechanisms solution,” J. Crys.
Grow. 90(1-3): 14-30 (1988).
41. D. K. Kondepudi, and K. E. Crook, “Theory of conglomerate crystallization in
the presence of chiral impurities,” Crys. Grow. Des. 5(6):2173-2179 (2005).
42. M. Kitamura, “Controlling factor of polymorphism in crystallization process,” J.
Cryst. Growth. 237–239(3): 2205–2214 (2002).
43. A. Lancia, D. Musmarra, and M. Prisciandaro, “Measure induction period for
calcium sulfate dihydrate precipition,” AIChE J. 45(2): 390-397 (1999).
44. B. Biscans, and C. Laguerie, “Determination of induction time of lysozyme
crystals by laser diffraction,” J. Phys. D: Appl. Phys. 26(8B): 118-122 (1993).
45. H. Hu, T. Hale, X. Yang, and L. J. Wilson, “A spectrophotometer-based method
for crystallization induction time period measurement,” J. Cryst. Grow. 232(1):
86-92 (2001).
46. B. K. Paul, and M. S. Joshi, “The effect of supersaturation on the induction
period of potassium dihydrogen phosphate crystals grown from aqueous
solution,” J. Phys. D: Appl. Phys. 9(8): 1253-1256 (1976).
47. N. Kubota, “Effect of impurities on the growth kinetics of crystals,” Cryst. Res.
Technol. 36(8-10): 749-769 (2001).
48. R. Siddheswaran, R. Sankar, M. Rathnakumari, R. Jayavel, P. Murugakoothan,
and P. Sureshkemar, “Nucleation, growth and characterization studies of a
165
nonlinear optical crystal-tris allylthiourea cadmium chloride (ATCC),” Laser
Phys. Lett. 3(12): 588-593 (2006).
49. R. A. Granberg, and Ǻ.C. Rasmuson, “Crystal growth rates of paracetamol in
mixtures of water + acetone + toluene,” AIChE J. 51(9): 2441-2456 (2005).
50. H. E. L. Madsen, “Crystal growth kinetics of copper phosphate from acit solution
at 37 °C,” J. Cryst. Grow. 275(1): e191-e196 (2005).
51. T. Kanagasekaran, M. Gunasekaran, P. Srinivasan, D. Jayaraman, R.
Gopalakrishnan, and P. Ramasamy, “Studies on growth, induction period,
interfacial energy and metastable zonewidth of m-nitroaniline,” Cryst. Res.
Technol. 40(12): 1128-1133 (2005).
52. W. Wu, and G.. H. Nancollas, “The relationship between surface free-energy and
kinetics in the mineralization and demineralization of dental hard tissue,” Adv.
Dent. Res. 11(4): 566-575 (1997).
53. J.W. Mullin, “Crystallization, 3rd” Butterworth-Heinemann, Oxford, Great
Britain, pp. 202-263 (1993)
54. G. Arunmozhi, E. D. M. Gomes, and S. Gansamorrthy, “Growth kinetics of
zinc(tris)thiourea sulphate (ZTS) crystals,” Cryst. Res. Technol. 39(5): 408-413
(2004).
55. P. Pantaraks, and A. E. Flood, “Effect of growth rate history on current crystal
growth: a second look at surface effects on crystal growth rates,” Cryst. Growth.
Des. 5(1): 365-371 (2005).
56. Z. J. Li, and D. J. W. Grant, “Relationship between physical properties and
crystal structures of chiral drugs,” J. Pharm. Sci. 86(10): 1073-1078 (1997).
57. G. G.Z. Zhang, S. Y.L. Paspal, R. S.Anarayanan, and D. J.W. Grand, “Racemic
species of sodium ibuprofen: characterization and polymorphic relationships,” J.
166
Pharm. Sci. 92(7): 1356-1365 (2003).
58. F. Han, J. Huang , B. Zheng, and Z. Li,” Surface properties of bolaamphiphiles in
ethanol/water mixed solutions.,” Colloids Surf., A. 242(1-3): 115-122 (2004)
59. Y. Zhang, and D. J. W. Grant, “Similarity in structures of racemic and
enantiomeric ibuprofen sodium dihydrates,” Acta Crystallogr., Sect. C. C61(Pt
9): m435-m438 (2005).
167
指導教授 李度(Tu Lee) 審核日期 2007-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明