博碩士論文 93394009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:35.172.217.40
姓名 洪士婷(Shi-ting Hung)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 磺胺噻唑的初始/雞尾酒混合溶劑式篩選和利用多型晶體的耕作方式篩選
(Initial,Cocktail Solvent Screening,and Polymorph Farming of Sulfathiazole)
相關論文
★ 藉由結晶製程製備高水溶性化合物: 十二烷基硫酸鈉(SDS) 以及控制其水合物★ 唑來膦酸三水合物的初始溶劑篩選和在羥基磷灰石之表面吸附行為
★ 乙烯氨酚的結晶研究:溶劑.界面與固態分散的篩選★ 外消旋(R/S)-(+/-)伊普的初始溶劑篩選及伊普鈉鹽結晶動力學
★ 外消旋(R,S)-(±)-伊普鹽二水化合物的介晶質,成核與結晶成長★ 卡爾指數與溶解速率常數的交叉行為關係與混合率的應用:批次對乙醯氨基酚的研究
★ 蔗糖的同質異構型構★ 關於量產路徑之初步鹽類篩選程序:以外消旋布洛芬之兩個不同鹽類為例
★ 卡馬西平的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造★ 西咪替丁的初始溶劑篩選應用在球形結晶技術來做固體藥劑的精益製造
★ 利用超音波結晶法降低小分子有機半導體分子的昇華點 以及藉由蛋殼膜增進AlQ3奈米管的光激發螢光強度★ 仿效生物膽結石的形成:在逐漸演化的(牛磺膽酸鈉-卵磷質-膽固醇)複雜脂質系統中結晶碳酸鈣
★ 蔗糖的多構形多形晶體與乙醯氨酚共溶劑篩選★ 共晶化合物的篩選、製備、鑑定、分子辨認及應用: 胞嘧啶和二羧酸的研究
★ 生命的起源與天門冬氨酸在水中的結晶★ 微調具光學活性聯二萘酚和其二甲亞碸包合物的光激發光性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在這論文中有三個主要的章節(第三章~第五章),首先在第三章的部分中,我們是使用24種溶劑(水、甲醇、乙醇、異丙醇、正丁醇、苯甲醇、丙酮、乙睛、硝基苯、二甲基甲醯胺、二甲基亞楓、丁酮、乙酸乙酯、甲基第三丁基醚、正庚烷、N,N-二甲基苯胺、二甲苯、間二甲苯、甲苯、苯、1,4,-二氧陸圜、四氫呋喃、氯仿和正丙醇)以高低溫的方式進行篩選,研究結果如下: (1)磺胺噻唑會分別溶於丁酮、四氫呋喃、丙酮、苯甲醇、正丙醇、乙睛、二甲基甲醯胺、乙醇、二甲基亞楓、甲醇和水中,然而四氫呋喃是最適合量產時所使用的溶劑,(2)在單一溶劑中,利用差式掃描熱量分析可能誘發出不同的磺胺噻唑同質異構 I,II,IV和V,在單一的溶劑中,這些同質異構的產生可視為一種混合的同質異構,(3)當磺胺噻唑溶於好溶的溶劑後,降溫後大多會產生片狀的晶帽,除了正丙醇溶劑外,(4)溶解度曲線可以讓我們知道不同溶劑在不同溫度點下磺胺噻唑的溶解度,可以提供量產時使用,(5)Solubility sphere可以讓我們知道磺胺噻唑是否會溶解於溶劑中,預測出哪些是好溶劑與壞溶劑,(6)同質異相表可以告知我們哪些溶劑或溶劑組合適合做溶劑篩選用,(7)我們所使用的結晶方法可以與製藥工業和學術做連結。 在第四章的實驗,我們使用混合的溶液(乙睛+正丙醇+水),是利用雞尾酒式的方法,以高低溫方式進行篩選,研究結果如下: (1)磺胺噻唑會溶於不同比例的莫耳比混合溶劑中,其中80:10:10,60:20:20 和 45:10:45 (乙睛:正丙醇:水)的組合是最適合量產的溶劑,和單一溶劑的四氫呋喃比較後,(2)從差式掃描熱量分析顯示下,在雞尾酒溶液中,可以發現不同的磺胺噻唑同質異構I,II,III,IV,V和VI,(3)利用不同比例的雞尾酒式溶劑做篩選,會產生小片狀和大片狀的晶帽,(4)雞尾酒式的溶劑比使用單一溶劑更適合量產用並且可減少環境污染。在第五章的實驗中,我們利用多型晶體耕作方式在晶圓上長晶做篩選,研究結果如下: (1)從板模的影響中,我們可以發現沒有鍛鍊過的幾丁聚醣薄膜會產生磺胺噻唑的同質異構 I,鍛鍊過的幾丁聚醣薄膜會產生磺胺噻唑的同質異構 III,同時也發現幾丁聚醣的–OH 和 –NH2 的官能基會與磺胺噻唑的S=O互相產生影響,發現板模與晶體相互接觸的作用,(2)水珠體積的影響,在不同揮發的路徑下會產生不同的同質異相,在這實驗中濃度和時間也是會隨變化影響,(3)不同溶劑的影響,甲醇的黏稠度比水低,所以在揮發過程中可以快速的從同質異構I轉變為同質異構 III,(4)溫度的影響,在揮發過程中當溫度提升,過飽和度下降時,會傾向較穩定的同質異構 III,因此在揮發的過程中我們只能收集到穩定的同質異構。
摘要(英) There were three important chapters (chapter 3~5) in this study. In chapter 3, we used 24 solvents water, methanol, ethanol, isopropyl alcohol (IPA), n-butyl alcohol, benzyl alcohol, acetone, acetonitrile, nitrobenzene, N,N-Dimethylformamide (DMF), dimethy sulfoxide (DMSO), methyl ethyl ketone (MEK), ethyl acetate, methyl-t- butyl ester (MTBE), n-heptane, n-propanol N,N-dimethylaniline(DMA), xylene, p-xylene, toluene, benzene, 1,4 dioxane, tetrahydrofurn (THF), chloroform, and n-propanol) for initial solvent screening by temperature cooling. Results of investigation were shown as follows: (1) Sulfathiazole was soluble in MEK, THF, acetone, benzyl alcohol, n-propanol, acetonitrile, DMF, ethanol, DMSO, methanol, and H2O. The THF was the best solvent for scale-up. (2) The DSC may have induced the various forms of sulfathiazole of Form I, III, IV, and V in the single solvent. The Forms could be produced as a mixture in the solvent. (3) The various kinds of good solvent produced practically plate-like crystals except n-propanol. (4) The solubility curves could supply us the information of the different solubility at various temperature in different solvents and are essential for scale-up. (5) The solubility sphere predicted which solvents were good and which were bad. (6) The Form space could provide the solvents or the solvent combinations suitable for solvent screening. (7) The temperature cooling from 60°C to 25°C in crystallization linked up with industrial application and research.
In chapter 4, we used solvent mixtures (acetonitrile+n-propanol+H2O) for cocktail solvent by temperature cooling. Results of investigation were shown as follows: (1) Sulfathiazole was soluble in various molar ratios of solvent combinations. The 80:10:10, 60:20:20 and 45:10:45 combinations (acetonitrile: n-propanol: H2O) were optimum solvent combinations sulfathiazole Form III crystals for scale-up after comparing with solubility in the THF of the sulfathiazole Form III crystals. (2) The DSC revealed the various kinds of form: Form I, II, III, IV, V and IV of sulfathiazole generated from the cocktail solvents. (3) The various kinds of cocktail solvents produced small plate-like and large plate crystals. (4) The cocktail solvent was more suitable for scale-up than single solvent and it could reduce environmental pollution.
In chapter 5, we used the method of polymorph framing on a chip to screen sulfathiazole’s polymorphism. Results of investigation were shown as follows: (1) The template effect: Form I of sulfathiazole was formed on non-annealed chitosan film. Form III of sulfathiazole was formed on annealed chitosan film. Chitosan’s –OH and –NH2 group interacted with sulfathiazole’s S=O. (2) The volume effect provided different pathways to change the polymorphic outcome, which depended on concentration and time in this case. (3) The solvent effect showed that methanol (0.6 cP) of lower viscosity than water (0.89 cP) influenced molecular mobility affected the transformation rate of Form I to Form III. (4) The temperature effect showed that as the temperature increased and supersaturation decreased that gave rise to preferred the stable Form (G*III > G*I). Thus, we could just only harvested Form III of sulfathiazole in the evaporative process.
關鍵字(中) ★ 溶劑篩選
★ 多型晶體耕作方式
★ 磺胺噻唑
★ 同質異構
關鍵字(英) ★ polymorph farming
★ solvent screening
★ sulfathiazole
★ polymorph
論文目次 摘要 I
Abstract III
Acknowledgements VI
Table of Contents VIII
List of Figures XIV
List of Tables XXI
Chapter 1 Executive summary 1
1.1. Introduction 1
1.2. Brief introduction of sulfathiazole 3
1.3. Thesis framework 7
References 12
Chapter 2 Instrumental theories and applications 17
2.1. Introduction 17
2.2. Instrument 20
2.2.1. Optical microscopy (OM) 20
2.2.2. Atomic force microscopy (AFM) 23
2.2.3. Differential scanning calorimetry (DSC) 26
2.2.4. Thermogravimetric analysis (TGA) 29
2.2.5. Fourier transform infrared spectroscopy (FT-IR) 31
2.2.6. Spin coating 34
2.3. Conclusions 36
References 37
Chapter 3 The solubility, polymorphism, and crystal habits of sulfathiazole by initial solvent screening 42
3.1. Introduction 42
3.1.1. Solubility 44
3.1.2. Polymorphism 45
3.1.3. Crystal habits 46
3.1.4. Sulfathiazole 47
3.1.5. Hansen parameter 51
3.2. Materials 54
3.2.1. Active pharmaceutical ingredients (APIs) 54
3.2.2. Organic solvents 54
3.3. Experimental Section 56
3.3.1. Screening for twenty-four kinds of pure solvent, and measure solubility include two solvents for calculate Hansen parameter 56
3.3.2. Measure different crystal habits 58
3.3.3. The samples were analyzed by Differential scanning calorimeter (DSC) and Thermogravimetric analysis (TGA) 58
3.3.4. Instrumentation 58
3.3.4.1 Optical microscopy (OM) 58
3.3.4.2 Differential scanning calorimeter (DSC) 59
3.3.4.3 Thermogravimetric analysis (TGA) 59
3.4. Results and Discussion 61
3.4.1. Solubility 61
3.4.2. Polymorph analysis 69
3.4.3. Crystal habits analysis 76
3.4.4. Hansen parameter 80
3.4.5. Compare with experimental method from references and experimental method in this study 84
References 87
Chapter 4 The solubility, polymorphism, and crystal habits of sulfathiazole by cocktail solvent screening 95
4.1. Introduction 95
4.2. Materials 98
4.2.1. Active pharmaceutical ingredient (API) 98
4.2.2. Organic solvents 98
4.3. Experiments Methods 98
4.3.1. Preparation of cocktail solvent and measurements solubility 98
4.3.2. Measure different crystal habits 101
4.3.3. The samples were analyzed by differential scanning calorimeter 101
(DSC) and thermogravimetric analysis (TGA) 101
4.3.4. Instrumentation 102
4.3.4.1 Optical microscopy (OM) 102
4.3.4.2 Differential scanning calorimeter (DSC) 102
4.3.4.3 Thermogravimetric analysis (TGA) 103
4.4. Results and Discussion 104
4.4.1 Solubility 105
4.4.2. Polymorphism 118
4.4.3. Crystal habits 125
4.4.4. Comparison of initial solvent and cocktail solvents 129
Conclusions 131
Acknowledgments 132
References 133
Chapter 5 Polymorphism of sulfathiazole on a chip 137
5.1. Introduction 137
5.2. Materials 142
5.2.1. Active pharmaceutical ingredients (APIs) and others material 142
5.2.2. Organic solvents 143
5.3. Experiments Methods 144
5.3.1. Saturated solution of sulfathiazole 144
5.3.3. Sulfathiazole selection 146
5.3.3.1 Template effect 146
5.3.3.2 Volume effect 146
5.3.3.3 Solvent effect 147
5.3.3.4 Temperature effect 147
5.3.4. Solid dispersion for non-annealed film 147
5.3.5. Instrumentations 149
5.3.5.1 Fourier transform infra-red spectroscopy (FT-IR) 149
5.3.5.2 Optical microscopy (OM) 149
5.3.5.3 Atomic force microscopy (AFM) 150
5.3.5.4 Spin coating 150
5.4. Results and Discussions 151
5.4.1. Template effect 151
5.4.2. Volume effect 158
5.4.3. Solvent effect 163
5.4.4. Temperature effect 164
Conclusions 166
Acknowledgments 167
References 168
Chapter 6 Conclusions and Future works 173
6.1. Initial solvent screening 173
6.2. Cocktail solvent screening 174
6.3. Polymorphism of sulfathiazole on a chip 174
參考文獻 1 E. L. Pual, H. H. Tung, and M. Midler, “Organic Crystallization Process,” Powder Technol., 150(2),133-143 (2005).
2 K. Sato, “Polymorphic Transformations in Crystal Growth,” J. Phys. D: Appl. Phys., 26(8), B77-B84 (1993).
3 P. Barrett, B. Smith, J. Worlitschek, V. Bracken, B. O’Sullivan, and D. O’Grady, “Areview of the Use of Process Analytical Technology for the Understanding and Optimization of Production Batch Crystallization Process,” Org. Process Res. Dev., 9(3), 348-355 (2005).
4 A. Chimmalgi, D. J. Hwang, and C. P. Grigoropoulos, “Nanoscale Rapid Melting and Crystallization of Semiconductor Thin Films,” Nanoletters, 5(10), 1924-1930 (2005).
5 K. J. Kim, and H. S. Kim, “Coating of Energetic Materials Using Crystallization,” Chem. Eng. Technol., 28(8), 946 -951 (2005).
6 T. Threlfall, “Crystallization of Polymorphs: Thermodynamic Insight into the Role of Solvent,” Org. Process Res. Dev., 4(5), 384-390 (2000).
7 J. Aizenberg, “Crystallization in Patterns: A Bio-Inspired Approach,” Bell. Labs.
Tech. J., 16(15), 1295-1302 (2004).
8 A. Y. Lee, A. Ulman, and A. S. Myerson, “Crystallization of Amino Acids on Self-Assembled Monolayers of Rigid Thiols on Gold,” Langmuir, 18(15), 5886-5898 (2002).
9 S. L. Morissette, Ö. Almarsson, M. L. Peterson, J. F. Remenar, M. J. Read, A. V. Lemmo, S. Ellis, M. J. Cima, and C. R. Gardner, “High-throughput Crystallization: Polymorphs, Salts, Co-crystals and Solvates of Pharmaceutical Solids,” Adv. Drug Delivery Rev., 56(3), 275-300 (2004).
10 M. Lang, A. L. Grzesiak, and A. J. Matzger, “The Use of Polymer Heteronuclei for Crystalline Polymorph Selection,” J. Am. Chem. Soc., 124(50), 14834-14835 (2002).
11 R. Murai, S. Nakata, M. Kashii, H.Adachi, A. Niino, K. Takano, H. Mastumura, S. Murakami, T. Inoue, Y. Mori, and T. Sasaki, “Cooling-rate Screening System for Determining Protein Crystal Growth Conditions,” J. Cryst. Growth, 292(2), 433-436 (2006).
12 T. L. Threlfall, “Analysis of Organic Polymorphs a Review,” Analyst, 120(3), 2435-2460 (1995).
13 J. W. Mullin, “Crystal Habit Modification,” chapter 7 in crystallization, 3rd Ed., Butterworth-Heinemann, Oxford, p93, and pp.248-250 (1997).
14 C. Gu, V. Y. Jr, and D. J. W. Grant, “Polymorph Screening: Influence of Solvents on the Rate of Solvent-Mediated Polymorphic Transformation,” J. Pharm. Sci., 90(11), 1878-1890 (2001).
15 R. Hilfiker, “Thermodynamics of Polymorphism” chapter 2 in Polymorphism, 1st Ed., WILEY-VCH, Weinheim, pp.21-40 (2006).
16 J. Berstein, R. J. Davey, and Jan-Olav Henck, “Concomitant Polymorphs,” Angew.
Chem. Int. Ed., 38(23), 3440-3461 (1999).
17 S. R. Chemburkar, J. Bauer, K. Deming, H. Spiwek, K. Patel, J. Morris, R. Henry, S. Spanton, W. Dziki, W. Porter, J. Quick, P. Bauer, J. Donaubauer, B. A. Narayanan, M. Soldani, D. Riley, and K. McFarland,
“Dealing with the Impact of Ritonavir Polymorphs on the Late Stages of Bulk Drug Process Development,” Org. Res. Des. Dev., 4(5), 413-417 (2000).
18 S. Byran, K. Morris, and S. Comella, “Reducing Time to Market with a Science-Based Produce Management Strategy,” Pharm. Technol., 29(8), 46-56 (2005).
19 J. W. Mullin, “Crystal habit modification,” chapter 6 in crystallization,3rd Ed., Butterworth-Heinemann, Oxford , pp248-250 (1997).
20 A. K. Tiwary, “Modification of Crystal Habit and its Role in Dosage From Performance,” Drug Dev. Ind. Pharm., 27(7), 699-709 (2001).
21 N. Rasenack, and B. W. Muller, “Crystal Habit and Tableting Behavior,” Int. J. Pharm., 244(1-2), 45-57 (2002).
22 P. D. Martino, M. Beccerica, E. Joiris, G. F. Palmieri, A. G.ayot, and S. Martelli, “Influence of Crystal Habit on the Compression and Densification Mechanism of Ibuprofen,” J. Cryst. Growth, 243(2), 345-355 (2002).
23 H. Cano, N. Gabas, and J. P. Canselier, “Experimental Study on the Ibuprofen Crystal Growth Morphology in Solution,” J. Cryst. Growth, 224(3-4), 35-341 (2001).
24 R. Hilfiker, “Light Microscopy” chapter 7 in Polymorphism, 1st Ed., WILEY-VCH, Weinheim, pp.189-194 (2006).
25 R. J. Roberts, and R. C. Row, “Influence of Polymorphism on the Young’s modulus and Yield Stress of Carbmazepine, Sulfathiazole and Sulfanilamide,” Int. J. Pharm., 129(16), 79-94 (1996).
26 D. C. Apperley , R. A. Fletton , R. K. Harris , R. W. Lancaster , S. Tavener , and T. L. Threlfall , “Sulfathiazole Polymorphism Studied by Magic-Angle Spinning NMR,” J. Pharm. Sci., 88(12), 1275-1280 (2000).
27 F. C. Chan, J. Anwar, R. Cernik, P. Barnes, and R. M. Wilson, “Ab Initio Structure Determination of Sulfathiazole Polymorph V Form Synchrotron X-Ray Powder Diffraction Data,” J. Appl. Cryst., 32(3), 436-441(1999).
28 G. J. Kruger, and G. Gafner, “The Crystal Structure of Sulphathiazole II,” Acta Cryst., B27(2), 326-333 (1971).
29 J. Anwar, S. E. Tarling, and P. Barnes, “Polymorphism of Sulfathiazole,” J. Pharm. Sci., 78(4), 337-342 (1989).
30 D. S. Hughes, M. B. Hursthoush, T. Threlfall, and S. Tavener, “A New Polymorph of Sulfathiazole,” Acta Cryst., C55(11),1831-1833 (1999).
31 J. E. Anderson, S. Moore, F. Tarczynski, and D. Walker, “Determination of the Onset of Crystallizayion of N1-2-(thiazolyl)sulfaniliamide (sulfathiazole) by UV-V is and Calorimetry Using an Automated Reaction Platform; Subsequent Characterization of Polymorphic Forms Using Dispersive Raman Spectroscopy,” Spect. Acta Part A., 57(4), 1793-1808 (2001).
32 A. Kordikowski, T. Shekunov, and P. York, “Polymorph Control of Sulfathiazole in Supercritical CO2,” Pharm. Res., 18(5), 682-688 (2001).
33 K. Shirotani, E. Suzuki, and K. Sekiguchi, “Solvate Formation of Sulfathiazole with Acetone, 2-Butanone, 2-Pentanone and Dioxane, and Its Application to Particle Size Reduction,” Chem. Pharm. Bull., 31(6), 2085-2093 (1983).
34 A. L. Bingham, D. S. Hughes, M. B. Hursthouse, R. W. Lancaster, S. Tavener, and T. L. Threfall, “Over One Hundred Solvates of Sulfathiazole,” Chem. Commun., 7, 603-604 (2001).
35 M. A. Mikhailenko, T. N. Drebushchak, V. A. Drebushchak, E. V. Boldyreva, and V. V. Boldyrev, “Synthesis and Characterization of Sulfathiazole-Pyridine Solvate Polymorphs,” J. Cryst. Growth, 274 (3-4), 569-572 (2005).
36 A. F. M. Barton, “Handbook and Solubility Parameters and Other Cohesion Parameters,” 2nd Ed., CRC Press, Perth, pp. 422-429 (1991).
37 W. Archer, “Hansen Solubility Parameters for Selected Cellulose Ether Derivatives and their Use in the Pharmaceutical Industry,” Drug Dev. Ind. Pharm., 18(5), 599-616 (1992).
38 J. Burke , “Solubility Parameter: Theory and Application,” AIC Book and Paper Group Annual, 3, 13-58 (1984).
39 K. M. Watson , “Prediction of critical temperatures and heats of vaporization” Ind. Engng. Chem., 23(4), 360-366 (1931).
40 B. A. Miller-Chou, and J. L. Koenig, “A Review of Polymer Dissolution,” Prog. Polym. Sci. 28 (8), 1223–1270 (2003).
41 W. I. Cross, N. Blagden, and R. J. Davey, “A Whole Output Strategy for Polymorph Screening: Combining Crystal Structure Prediction, Graph Set Analysis, and Targeted Crystallization Experiments in the Case of Diflunisal,” Cryst. Growth Des. 3(2), 151 -158 (2003).
42 S. Mirza, I. Miroshnyk, J. Heinni, L. Christansen, M. Karjalainen, and J. Yliruusi, “Influence of Solvent on the Variety of Crystalline Forms of Erythromycin,” AAPS Pharm. Sci., 5(2), 1-9 (2003).
43 J. Anwar, S. E. Tarling, and P. Barnes, “Polymorphism of Sulfathiazole,” J. Pharm. Sci., 78(4), 337-342 (1989).
44 A. Burer and R. D. Dialer, “Neue Untersuchungsergebnisse Zur Polymorphie von Sulfathiazole,” Pharm. Acta Helv., 58(3), 72-78 (1983).
45 T. Threlfall, “ Crystallisation of Polymorphs: Thermodynamic Insight into the Role of Solvent,” Org. Proc. Res. Dev., 4 (5), 384 -390, (2000).
46 R. J. Davey, K. Allen, N. Blagden, W. I. Cross, H. F. Lieberman, M. J. Quayle, S. Righini, L. Seton, and G. J. T. Tiddy, “Crystal Engineering – Nucleation, the Key Step,” Cryst. Eng. Comm., 4(47), 257-264 (2002).
47 N. Blagden, R. J. Davey, H. F. Lieberman, L. Williams, R. Payne, R. Roberts, R. Rowe, and R. Docherty, “Crystal Chemistry and Solvent Effects in Polymorphic Systems Sulfathiazole,” J. Chem. Soc., Faraday Trans., 94(8), 1035-1044 (1998).
48 R. J. Davey, K. Allen, N. Blagden, W. I. Cross, H. F. Lieberman, M. J. Quayle, S. Righini, L. Seton, and G. J. T. Tiddy, “Crystal Engineering – Nucleation, the Key Step,” Cryst. Eng. Comm., 4(47), 257-264 (2002).
49 G. J. Kruger, and G. Gafner, “The Crystal Structure of Sulphathiazole II,” Acta Cryst., B27(2), 326-333 (1971).
50 J. E. Anderson, S. Moore, F. Tarczynski, and D. Walker, “Determination of the Onset of Crystallizayion of N1-2-(thiazolyl)sulfaniliamide (sulfathiazole) by UV-V is and Calorimetry Using an Automated Reaction PlatForm; Subsequent Characterization of Polymorphic Forms Using Dispersive Raman spectroscopy,” Spect. Acta Part A., 57(4), 1793-1808 (2001).
51 J. M. E. Buyan, N. Shankland, and D. B. Sheen, “Solvent Effects on the Crystal Habit of Ibuprofen,” J. Pharm. Sci., 58, 1505-1509 (1969).
52 J. M. E. Bunyan, N. Shankland, and D. B. Sheen, “Solvent Effect on the Morphology of Ibuprofen,” Particle Design via Crystallization AIChE System. Series, 87(284), 44-57 (1991).
53 F. Gharagheizi, and M. T. Angaji, “A New Improved Method for Estimating Hansen Solubility Parameters of Polymers,” J. Macromol. Sci.,45(2), 285-290 (2006).
54 F. Gharagheizi, M. Sattari, and M. T. Angaji, “Effect of Caculation Method on Values of Hansen Solubility Parameter of Polymers,” Polym. Bull., 57(3), 377-384
(2006).
55 T. C. Frank, J. R. Downey, and S. K. Gupta, “Quickly Screen Solvents for Organic
Solids,” Chem. Eng. Prog., 95(12), 41-61 (1999).
56 F. Gharagheizi, “New Procedure to Calculate the Hansen Solubility Parameters of Polymers,” J. Appl. Polym. Sci., 103(1), 31-36 (2007).
指導教授 李度(Tu Lee) 審核日期 2007-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明