博碩士論文 93394010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.204.48.199
姓名 黃至瑋(Chih-Wei Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 氧化矽擔載銅觸媒應用於甲醇部分氧化 產製氫氣之研究
(Production of hydrogen via partial oxidation of methanol over Cu/SiO2 catalysts )
相關論文
★ 以離子交換法製備矽-鋁二元氧化物擔體鎳觸媒之研究★ 矽粉對二氧化矽碳熱還原氮化反應影響之研究
★ 稻殼灰分和稻殼灰分- 氧化鋁擔載鎳觸媒特性與反應性之研究★ 氧化鐵粉對二氧化矽碳熱還原氮化反應影響之研究
★ 以稻殼灰分初濕含浸製備擔體銅觸媒之研究★ 以稻殼灰分沈澱固著製備擔體銅觸媒之特性研究
★ 鐵粉對稻殼灰分碳熱還原氮化反應之影響研究★ 矽粉對稻殼灰分碳熱還原氮化反應之影響研究
★ 以稻殼灰分沈澱固著製備擔體銅觸媒 之反應性研究★ 以不同方法製備稻殼灰分-氧化鋁擔載鎳觸媒之研究
★ 氧化鋯擔載奈米金觸媒之製備與應用研究★ 氧化鋁擔載奈米金觸媒之製備與應用研究
★ 稻殼灰分擔載銅觸媒之製備與應用研究★ 氧化鈦擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究
★ 氧化鐵和氧化鐵-金屬氧化物擔載奈米金觸媒之製備與應用研究★ 氧化鋁-金屬氧化物複合擔載奈米金觸媒應用於甲醇部分氧化產製氫氣之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以二氧化矽為擔體,利用沉澱固著法製備成二氧化矽擔載銅觸媒,目的在發展甲醇部分氧化反應(CH3OH + 1/2O2 → 2H2 + CO2)產製氫氣的程序,並以不同銅載量及煅燒溫度等變因深入探討,同時利用感應耦合電漿質譜分析儀(ICP-MS)、熱重分析儀(TGA)、程式升溫還原(TPR)、N2O 分解吸附(dissociative adsorption of nitrous oxide)、X 射線繞射儀(XRD)、穿透式電子顯微鏡(TEM)、掃描式電子顯微鏡(SEM)、X 射線光電子分析儀(XPS)等各項儀器與分析技術,分別對擔體及觸媒進行鑑定,藉以評估觸媒應用於質子交換膜燃料電池的可行性。從化性結果分析,8.7wt% Cu/SiO2 觸媒催化最好,具有高氫氣選擇率和低一氧化碳選擇率,從N2O 分解吸附數據發現,銅粒徑隨著銅金屬載量提高而變大,從1.3nm 增加到3.4nm。TPR 的分析結果發現,氧化銅的還原峰隨著煅燒溫度增加往低溫偏移,經過煅燒程序後銅金屬分散度變大及吸附在擔體上的銅粒子接觸面積變小使擔體效應變小,因此造成Cu/SiO2 觸媒較容易還原;由XPS 的結果中發現,在甲醇部分氧化反應中,銅觸媒中Cu0 金屬銅是反應的活性物種,Cu2+則對甲醇部分氧化反應沒有活性,但是Cu/SiO2 觸媒的擔體二氧化矽具有高比表面積、熱穩定性及高催化活性等優點。經過活性測試後發現,Cu/SiO2 觸媒的活性與金屬銅的表面積成線性關係。當金屬銅的表面積越大時,氫氣選擇率越高;另外進料中氧氣與甲醇的比例也是影響反應的一個因素,當O2/CH3OH = 0.3 時,一氧化碳的產量較低,當增加反應溫度時,甲醇轉化率與氫氣選擇率都會同時增加。反應路徑由連續的甲醇部分氧化轉變成甲醇直接分解與甲醇蒸汽重組反應構成,使一氧化碳選擇率隨反應溫度提高而增加。Cu/SiO2 觸媒擁有高甲醇轉化率與氫氣轉擇率,但是Cu/SiO2 觸媒的一氧化碳選
擇率相對比貴重金屬觸媒的一氧化碳選擇率高,未來仍須進行Cu/SiO2 觸媒改質,以降低一氧化碳選擇率。
摘要(英) In this work silica-support copper catalysts were investigated for partial oxidation of methanol (CH3OH + 1/2O2 → 2H2 + CO2) to produce hydrogen. Cu/SiO2 catalysts prepared by deposition-precipitation method with different loadings were studied in detail. The structural
characteristics of Cu/SiO2 were analysed by ICP-MS, TGA, TPR, N2O,XRD, SEM, TEM, and XPS. This catalysts show high activity for POM.The kinetic results show that the catalyst with 8.7wt%Cu/SiO2 exhibits the highest H2 selectivity and lowest CO selectivity than other catalysts.N2O adsorption chemisorption was used to monitor the surface area and particle size. The size of the copper particles increases from 1.3 nm to 3.4
nm with increasing loadings. TPR measurements revealed that the reduction temperature of CuO shifts to the lower temperature with increase in the calcination temperature. The position of TPR peak shifts to the lower temperature suggesting the reducibility of CuO was promoted;XPS analyses demonstrated that Cu0 in catalysts is an active specie, but Cu2+ is not during the POM reaction. The activity of the catalyst is
linearly dependent on the metallic copper surface area. All the results conclude that silica-support copper catalysts have highly copper dispersion and metallic copper surface area. The Cu/SiO2 catalysts display great activity for the conversion of methanol to produce hydrogen.
關鍵字(中) ★ 銅觸媒
★ 甲醇部分氧化反應
★ 氫氣
關鍵字(英) ★ hydrogen
★ partial oxidation of methanol
★ depos
論文目次 目錄………………………………………………………………………I
圖索引……………………………………………………………………V
表索引…………………………………………………………………IX
第一章 緒論…………………………………………………1
1.1 前言……………………………………………………………1
1.2 綠色能源–氫能源發展前景…………………………………...2
1.3 氫能源技術開發及應用………………………………………...3
1.4 燃料電池原理………………..……..…………………………...4
1.5 甲醇製氫………………………………………………………...6
1.6 銅觸媒…………………………………………………………...7
1.7 研究內容與論文架構…………………………………………...8
第二章 文獻回顧………………………………………….10
2.1 銅觸媒的發展 ……………………………………………..10
2.2 沉澱固著法製備銅觸媒……………………………………….11
2.3 煅燒與還原程序……………………………………………….13
2.3-1 煅燒程序…………………………………………………..13
2.3-2 還原程序…………………………………………………..14
2.4 擔體效應……………………………………………………….15
2.5 銅觸媒的活性位置…………………………………………….15
2.6 銅觸媒在甲醇產製氫氧的應用….……………………….17
第三章 實驗方法與裝置…………………………..……….19
3.1 銅觸媒的製備…………………………………………….19
3.2 銅觸媒的鑑定分析………………………………………….20
3.2-1 感應耦合電漿質譜儀(ICP-MS)分析………………….….22
3.2-2 熱重分析(TGA)………………………………………….23
3.2-3 程式升溫還原(TPR)…………………………….……….23
3.2-4 銅金屬表面積的量測…………………………………….27
3.2-5 X射線繞射分析(XRD)………………………….……….29
3.2-6 穿透式電子顯微鏡(TEM)……………………………….30
3.2-7 掃描式電子顯微鏡分析(SEM)………………….………32
3.2-8 X射線光電子分析(XPS)……………………….………..34
3.3 觸媒活性測試—甲醇部分氧化反應…………….………….39
3.4 實驗流程與操作變數…………………………….………….41
3.5 數據的計算與實例…………………………………………….41
3.5-1 銅觸媒理論載量的定義與計算……………………………41
3.5-2 轉化率的定義與計算……………………….……………43
3.5-3 選擇率的定義與計算……………………….……………48
3.6 藥品、氣體及儀器設備……………………………………….50
3.6-1 藥品…………………………………………………………50
3.6-2 氣體…………………………………………………………50
3.6-3 儀器設備………………………………….………………51
第四章 結果與討論……………………………………...…53
4.1 物性分析………………………………………….………….53
4.1-1 製備沉澱時間對銅載量的影響…………………..………..53
4.1-2 煅燒條件的選擇…………………………………….……54
4.1-3 程式升溫還原分析(TPR)…………………………………57
4.1-4 觸媒銅金屬表面積測定……………..……………………62
4.1-5 X 射線繞射分析(XRD)……………………..……………67
4.1-6 穿透式電子顯微鏡分析(TEM)………………………….69
4.1-7 掃描式電子顯微鏡(SEM)……………………………….72
4-1-8 X 射線光電子分析(XPS)……….……………………….74
4.2 化性分析…………………………………………….……….78
4.2-1 銅載量對觸媒活性的影響……………………….………82
4.2-2 煅燒溫度對觸媒活性的影響………………………………87
4.2-3 進料比例對觸媒活性的影響……………………………..92
4.2-4 反應溫度對觸媒活性的影響………………………….…95
4.2-5 Cu/SiO2 觸媒與文獻上甲醇產氫之分析結果比較............101
第五章  結論……………………………………………………104
參考文獻……………………………………………………107
參考文獻 Alejo, L., Lago, R, Pena, M. A. and Fierro, J. L. G., “Partial oxidation of
methanol to produce hydrogen over Cu-Zn based catalysts”, Appl. Catal.
A, 162, 281 (1997).
Agrell, J., G. Germani, S. G. Jaras and M. Boutonnet, “ Production of
hydrogen by partial oxidation of methanol over ZnO-cupported palladium
catalysts prepared by microemulsion technique”, Appl. Cata l. A, 242,
233 (2003a).
Agrell, J., M. Boutonnet, and J. L. G. Fierro, “ Production of hydrogen
from methanol over binary Cu/ZnO catalysts :Part II catalytic activity and
reaction pathways”, Appl. Catal. A, 253, 213 (2003b).
Agrell, J., K. Hasselbo, K. Jansson, G. Sven and J. M. Boutonnet,
“ Production of hydrogen by partial oxidation of methanol over Cu/ZnO
catalysts prepared by microemulsion technique”, Appl. Catal. A, 211, 239
(2001).
Batyrev, E.D., J.C. van den Heuvel, J. Beckers, W.P.A. Jansen and H.L.
Castricum, “The effect of the reduction temperature on the structure of
Cu/ZnO/SiO2 catalysts for methanol synthesis”, J. Catal., 229, 136
(2005).
Bond, G. C., and S. N. Namijo, “An improved procedure for estimating
the metal surface area of supported copper catalysts” , J. Catal., 118, 507
(1989).
Clement, M., Y. Zhang, D.S. Brands, E.K. Poels, and A. Bliek, Stud. Surf.
Sci. Catal.,130, 2123 (2000).
Chang, H. F., M. A. Saleque, W. S. Hsu and W. Lin, “Characterization
and dehydrogenation activity of Cu/Al2O3 catalysts prepared by
electroless plating technique” J. Mol. Catal. 109, 249 (1996).
Cubeiro, M. L. and J. L. G. Fierro, “Partial oxidation of methanol over
supported palladium catalysts” Appl. Catal. A, 168, 307 (1998).
Chen, H. W., J. M. White, and J. G. Ekerdt, “Electronic effect of supports
on copper catalysts” , J. Catal., 99, 293 (1986).
Chen, G., Q. Yuan, H. Li., and S. Li, “CO selective oxidation in a
microchannel reactor for PEM fuel cell” Chem. Engineering J., 101, 101
(2004).
Choudhary, T. V., and D. W. Goodman, “CO-free fuel processing for fuel
cell applications” Catal. Today., 77, 65 (2002).
Dow Wei-Ping, Yu-Piao Wang, and Ta-Jen Huang, “Yttria-stabilized
zirconia supported copper oxide catalysy” , J. Catal., 160, 155 (1996)
de Jong, K. P., J. W. Geus, and J. Joziasse, “An infrared spectroscopic
study of the adsorption of carbon monoxide on silica-supported copper
oxide” , J. Catal., 65, 437 (1980).
Evans, J. W., M. S. Winwright, A. J. Bridgewater, and D. J. Young, “On
the determination of copper surface area by reaction with nitrous oxide” ,
Appl. Catal., 7, 75 (1983).
Eswaramoorthi, I., V. Sundaramurthy, and A. K. Dalai, “Partial oxidation
of methanol for hydrogen production over carbon nanotubes supported
Cu-Zn catalysts” , Appl. Catal. A, 313, 22 (2006).
Fleisch, T. H., and R. L. Mieville, “Studies on the chemical state of Cu
during methanol synthesis” , J. Catal., 90, 165 (1984).
Fde Jong, K. P., J. W. Geus, and J. Joziasse, “An infrared spectroscopic
study of the adsorption of carbon monoxide on silica-supported copper
oxide” , J. Catal., 90, 165 (1984).
Guerriro-Ruiz, A., I. Rodriguez-Ramos, and J. L. G. Fierro, Appl. Catal.,
72, 119 (1991).
Guerreiro, E. D., O. F. Gorriz, G. Larsen and L.A. Arrua, “Cu/SiO2
catalysts for methanol to methyl formata dehydrogenation a comparative
study using different preparation techniques”, Appl. Catal. A, 204, 33
(2000).
Gil. A., A. Diaz., L. M. Gandia, and M. Montes, “Influence of the
preparation method and the nature of the support on the stability of nickel
catalysts”, Appl. Catal. A, 109, 167 (1994).
Huang, T. J. and S. Chren, “Kinetics of partial oxidation of methanol over
a copper-zinc catalyst”, Appl. Catal. A, 40, 43 (1986a).
Huang, T. J. and S. W. Wang, Appl. Catal. 24, 287 (1986b).
Jackson, S. D., F. J. Robertson, and J. Willis, “A study of copper/silica
catalysts: Reduction, Adsorption and Reaction” , J. Mol. Catal., 63, 255
(1990).
Jeon S. G., Chung J. S. “Preperation and characterization of
silica-supported copper catalysts for the dehydrogenation of cyclehexanol
to cyclohxanone” , Appl. Catal A., 115, 29 (1994)
Kumar, R., S. Ahmed and M. Kruplet, K. M. Myles, Argone National
Laboratory, Report ANL-92/31, Argone, IL, USA,1992.
Kohler, M. A., H. E. Curry-Hyde, A. E. Hughes, B. A. Sexton, and N. W.
Cant, “The structure of Cu/SiO2 catalysts prepared by the ion- exchange
technique” , J. Catal., 108, 323 (1987).
Marchi, A. J., J. L. G. Fierro, J. Santamara, and A. Monz ó n,
“Dehydrogenation of isopropylic alcohol on Cu/SiO2 catalyst: a study of
the activity evolution and reactivation of the catalyst” , Appl. Catal. A,
142, 375 (1996).
Navarro, R. M., Pena, M. A., Fierro, and J. L. G., ”Production of
hydrogen by partial oxidation of methanol over a Cu/ZnO/Al2O3
catalysts”, J. Catal., 212, 112 (2002).
Newson, E., P. Mizsey, T. Truong and P. Hottinger, Stud. Surf. Sci.
Catal.,130, 695 (2000).
Shimokawabe, M., N. Takezawa, and H. Kobayashi, “Temperature
programmed reduction of copper-silica catalysts prepared by ion
exchange” Bull. Chem. Soc. Jpn., 56 1337(1983).
Shimokawabe, M., N. Takezawa, and H. Kobayashi, “Characterization of
copper-silica catalysts prepared by ion exchange” , Appl. Catal., 2, 379
(1982).
Shen, G.C., Fujita, S.i., S. Matsumoto, and N. Takezawa, J. Mol. Catal. A,
124, 123 (1997).
Takezawa, N., and N. Iwasa, “Steam reforming and dehydrogenation of
methanol: Difference in the catalytic functions of copper and group VIII
metala”, Catal. Today , 36, 45 (1997).
Traxel, B. E., and Hohn, K. L., “Partial oxidation of methanol at
millisecond contact times”, Appl. Catal. A., 244, 129 (2003).
Toupance, T., M. Kermarec, and C. Louis, “Metal particles size in
silica-supported copper catalysts influence condition of preperation and
of thermal pretreatments”,J. Phys. Chem.B, 104, 965(2000)
Tu, Y. J., Y. W. Chen, and C. Li, “Characterization of unsupported
copper-chromium catalysts for ethanol dehydrogenation” , J. Mol. Catal.,
89, 179 (1994).
van den Oetelaar, L. C. A., A. Partridge, P. J. A. Stapel, C. F. J. Flipse,
and H. H. Brongersma, “A surface science study of model catalysts. 1.
quantitative surface analysis of wet-chemically prepared Cu/SiO2 model
catalysts” , J. Phys. Chem. B, 102, 9532 (1998).
van der Grift, C. J. G., A. Mulder and J. W. Geus, “Characterization of
silica-supported copper catalysts by means of temperature- programmed
reduction”, Appl. Catal., 60, 181 (1990a).
van der Grift, C. J. G., A. F. H. Wielers, A. Mulder, and J. W. Geus, “The
reduction behaviour of silica-supported copper catalysts prepared by
deposition-precipitation” , Thermochimica Acta, 171, 95 (1990b).
van der Grift, C. J. G., P. A. Elberse, A. Mulder, and J. W. Geus,
“Preparation of silica-supported copper catalysts by means of
deposition-precipitation” , Appl. Catal., 59, 275 (1990c).
van der Grift, C. J. G., A. F. H. Wielers, B. P. J. Joghi, J. Van Beijnum, M.
de Boer, M. Versluijs-Helder, and J. W. Geus, “Effect of the reduction
treatment on the structure and reactivity of silica-supported copper
particles” , J. Catal., 131, 178 (1991).
van Dillen, A. J., G. W. Geus, L. A. M. Hermans, and J. van der Meijden,
in “Proceedings, 6th International Congress on Catalysis, London, 1976” ,
Chemical Society, London, 677 (1977).
Velu, S., K. Suzuki, and T. Osaki, “Selective production of hydrogen by
partial oxidation of methanol over catalysts derived from CuZnAl-layered
double hydroxides”, Catal. Letters., 62, 159 (1999).
Wang, Zhenlu, Q. Liu, J. Yu, T. Wu, and G. Wang, “Surface structure and
catalytic behavior of silica-supported copper catalysts prepared by
impregnation and sol-gel methods”, Appl. Catal. A, 239, 87 (2003a).
Wang, Z., W. Wang, and G. Lu, “Studies on the active species and on
dispersion of Cu in Cu/SiO2 for hydrogen production via methanol
partial oxidation”, Int. J. Hydrogen Energy. 28, 151 (2003b).
Wang, Z., Xi, J., Wang, W. and Lu, G. “Selective production of hydrogen
by partial oxidation of methanol over Cu/Cr catalysts” J. Mol. Catal.
191, 123 (2003c).
Yahiro, H., K. Nakaya, T. Yamamoto, K. Saiki and H. Yamaura, “Effect
of calcination temperature on the catatic activity of copper supported on
γ-alumina for the water-gas-shift reaction ”, Catal. Comm., 7, 228 (2006).
指導教授 張奉文(Feg-Wen Chang) 審核日期 2007-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明