博碩士論文 93443013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.239.192.241
姓名 陳慧玲(Hui-ling Chen)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 以擴充RFM模型探討海峽兩岸消費者在網路購物之再購行為研究
(An Augmented RFM Model of the Cross-Strait Consumers’ Repurchase Behavior in Online Shopping)
相關論文
★ 應用結構行動理論探討跨國企業導入供應鏈管理之個案研究-以資訊電子業為例★ 應用調適性結構行動理論探討ERP卅MES系統導入、轉移和整合之個案研究
★ LCD面板製造廠資訊系統商業價值之個案研究★ 應用調適性結構行動理論探討CIM系統的導入 -以TFT-LCD產業為例
★ ERP系統品質Enhancement的實徵研究★ 以資訊處理理論探討出貨管理系統在TFT-LCD產業的導入及影響之個案研究
★ 連接器供應商於中國大陸地區導入出貨管理系統之個案研究★ 以AHP法探討跨國企業評選固網供應商之決策準則
★ 工具機製造業導入協作式接單服務之探討--以沖床製造廠商為例★ 製造業導入先進規劃與排程系統之探討—以筆電領導廠商為例
★ 經銷商管理的再造-台灣知名飲料業的個案研究★ 運用精實六標準差手法改善資料品質─某TFT-LCD業者之個案研究
★ 第三方物流業者之設施規劃與方案評估-以C物流公司為例★ 期望和認知差異對ERP導入專案的影響-以B公司導入SAP為例
★ 使用者主導系統導入時資訊單位的角色-以W公司導入產品資料管理系統為例★ 運用限制理論探討F公司大型資訊服務專案執行之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (全文檔遺失)
請聯絡國立中央大學圖書館資訊系統組 TEL:(03)422-7151轉57422,或E-mail聯絡
摘要(中) 網路購物成長快速早已成為電子商務業者的兵家必爭之地,了解線上消費者的購物行為成為電子商務業者獲利的必要功課。由於增加顧客留住率可以提高獲利,加上開發一位新顧客的成本遠高於留住一位舊顧客的成本,因此若能掌握消費者向同一個賣家再度購買的可能性以及在同一購物平台再購的機率均有助於業者了解消費者行為,進而掌握有價值的顧客,方便推動目標行銷或精準行銷。本研究是以中國最大的電子商務淘寶網以及台灣前兩大之Yahoo!奇摩拍賣及露天拍賣平台為對象,針對網路購物成交最熱絡的商品類別─女裝,進行兩岸電子商務消費者再購行為的比較分析。研究目的在藉由女裝商品的真實交易資料,建構以RFM模型為基礎的賣家再購和平台再購預測模型,並分析兩岸電子商務中消費者再購行為的異同。
再購行為預測模型的預測變數包括最近交易時間間隔、交易次數、交易總金額、平均交易金額,以及買家最近給的評價等五個變數。本研究結果顯示Yahoo!奇摩拍賣的賣家再購比例和平台再購比例在三個平台中均為最高,其次是露天拍賣,淘寶網的再購比例最低。買家的轉換賣家比例由高至低的順序也和平台的再購比例一樣,顯示Yahoo!奇摩拍賣的消費者行為既有最高的賣家忠誠行為,卻也有很高的賣家轉換比例,呈現多忠誠的消費行為。二元羅吉斯迴歸結果顯示,平台的所有預測變數和賣家再購及平台再購均呈現顯著地相關。本研究也以集群分析找出各平台最有價值顧客的特性。本研究發現是基於網路購物平台的真實交易資料,各平台消費者的再購行為及其預測模型,可供平台業者和電子商務賣家作為顧客關係管理和商品行銷的參考。
摘要(英) The fast growing online shopping has turned into a battlefield for many e-commerce (EC) businesses. They must understand their customers’ purchase behavior in order to make a profit. Given the fact that the increase in customer’s retention rate can lead to higher profit and the cost of acquiring a new customer is higher than that of retention of an existing customer, the EC businesses can understand their customers’ behavior and assess customers’ value in order to initiate target marketing or precision marketing by capturing the probability of revisiting the same seller by a customer and repurchase at the same e-marketplace. Taking China’s largest EC platform—Taobao, and Taiwan’s top two platforms—Yahoo Taiwan Auction and Ruten Taiwan Auction as our research targets, and focusing on the most popular trading categories—women’s apparel, we conduct a comparative analysis on the cross-strait EC consumers’ repurchase behavior. The purpose of this research is to establish a RFM-based prediction model of consumers’ seller repurchase and platform repurchase by analyzing the actual transaction data of women’s apparel and to compare the cross-strait EC consumers’ repurchase behavior.
The repurchase behavior prediction model consists of five predictors, including the recency, the freguency, the total amount, the average amount, and the consumer’s last rating. The research findings show that in terms of repurchase rate, Yahoo! is the highest, followed by Ruten, and Taobao is the lowest. Interestingly, the consumer’s seller switching rate in descending order is also Yahoo!, Ruten, and Taobao, which indicates the consumers at Yahoo! exhibit multi-loyalty behavior with both high repurchase rate and high seller switching rate. The Logistic regression shows that all the predictors in the seller repurchase and the platform repurchase prediction model of Yahoo!, Ruten, and Taobao are statistically significant. We also use cluster analysis to identify the characteristics of the most valuable customers at the three different platforms. All of our findings are based on actual transaction data of online shopping web sites, the repurchase behavior of online consumers and its prediction model can be used by EC businesses and platform businesses for consumer relationship management and merchandise sales and marketing.
關鍵字(中) ★ 再購行為
★ 賣家再購
★ 平台再購
★ RFM模型
★ 網路購物
關鍵字(英) ★ Repurchase Behavior
★ Seller Repurchase
★ Platform Repurchase
★ RFM Model
★ Online Shopping
論文目次 誌謝…………………………………………………………………………iii
中文摘要……………………………………………………………………..iv
英文摘要.........................................................................................................v
表目錄……………………………………………………………………….ix
圖目錄………………………………………………………………………xi
附錄…………………………………………………………………………..xii
第一章 緒論 1
1-1 研究背景與動機 1
1-2 研究目的與研究問題 4
1-3 論文架構 4
第二章 文獻探討 6
2-1 網路購物與再購 6
2-2 消費者決策模式 9
2-3 RFM模型 12
2-4 評價機制 14
第三章 研究方法 17
3-1 研究模型 17
3-2 研究假說 19
3-2-1再購行為 19
3-2-2 RFM模型 21
3-2-3 評價 22
3-3 研究設計 25
3-4 資料蒐集 26
3-4 資料分析方法 36
第四章 資料分析 38
4-1 資料整理 38
4-1-1 淘寶拍賣平台 38
4-1-2 Yahoo奇摩拍賣平台 39
4-1-3 露天拍賣平台 39
4-2 資料分析與假說檢定 42
4-2-1 描述性統計 42
4-2-2 假說檢定 47
4-2-3 三平台比較分析 54
4-2-4 集群分析 57
4-3 小結 61
第五章 結論與建議 62
5-1 研究結論 62
5-1-1三平台再購行為的比較 62
5-1-2 有價值顧客 65
5-1-3 賣家再購與平台再購之比較 67
5-2 研究貢獻 67
5-2-1 學術意涵 68
5-2-2 管理意涵 69
5-3 研究限制及未來研究方向 69
參考文獻…………………………………………………………….…………71
附錄1 …………………………………………………………………………….77
附錄2…………………………….……………………………………………79
參考文獻 何靖遠、陳慧玲、廖致淵(2014a),線上消費者平台再購行為的RFM預測模型-以Yahoo!奇摩拍賣女裝為例,數據分析,9(1),頁1-23。
何靖遠、陳慧玲、林暐勝、陳志鴻、刑哲源、林旭敏(2014b),以實際交易資料探討露天拍賣線上消費者平台再購行為之相關因素,數據分析,9(5),已接受。
呂彥德(2012),「收藏人氣對線上賣家服務品質與購買人數關係之中介影響-以淘寶網女裝店舖為例」,國立中央大學,碩士論文。
林暐勝(2012),「線上消費者購買行為之RFM分析 – 以”露天拍賣"的流行女裝為例」,國立中央大學,碩士論文。
廖致淵(2012),「 線上消費者再購行為之預測- 以Yahoo!奇摩拍賣女裝上衣為例」,國立中央大學,碩士論文。
Agresti, A. (1996), An Introduction to Categorical Data Analysis. John Wiley and Sons, Inc.
Ariely, D. and Norton, M. I. (2007), “How actions create - not just reveal - preferences,” TRENDS in Cognitive Sciences, 12(1), 13-16.
Anderson, R. E. and Srinivasan, S. S. (2003), “E-satisfaction and e-loyalty: a contingency framework,” Psychology and Marketing, 20(2), 123-138.
Ba, S. and Pavlou, P. A. (2002), “Evidence of the effect of trust in electronic markets: Price premiums and buyer behavior,” MIS Quarterly, 26(3), 243-268.
Bauer, C. L. (1988), “A direct mail customer purchase model,” Journal of Direct Marketing, 2(3), 16-24.
Bapna, R., Goes, P. and Gupta, A. (2001), “Insights and analyses of online auctions,” Communications of the ACM, 44(11), 42-50.
Beam, C., and Segev, A., (1998), “Auctions on the Internet: a field study,” Unpublished Manuscript, Haas School of Business University of California, Berkeley.
Benlian, A, Titah, R, Thomas, H., (2012), “Differential effects of provider recommendations and consumer reviews in e-commerce transactions: an experimental study,” Journal of Management Information Systems, 29(1), 237-272.
Brian F. B., Kimberly A. N. and Colin M. V. (2003), “Innovativeness and variety of Internet shopping,” Internet Research, 13(3), 156-169.
Brynjolfsson, E. and Smith, M.D. (2000),” Frictionless commerce? a comparison of internet and conventional retailers,” Management Science, 46(4), 563-585.
Buckinx, W., & Van den Poel, D. (2005). Customer base analysis: partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting. European Journal of Operational Research, 164(1), 252-268.
Caruana, A. (2002), “Service loyalty: the effects of service quality and the mediating role of customer satisfaction,” European Journal of Marketing, 36(7/8), 811-828.
Chiou, J. S., Wu, L. Y. and Sung, Y. P. (2009), “Buyer satisfaction and loyalty intention in online auctions,” Journal of Service Management, 20(5), 521-543.
Chiu, C. Y., Lin, Z. P., Chen P. C. and Kuo, I. T. (2009), “Applying RFM model to evaluate the e-loyalty for information-based wsebsite,” International Journal of Electronic Business Management, 7(4), 278-285.
Cullinan, G. J. (1978), Picking them by their batting averages: recency-requency-monetary method of control-ling circulation, manual release, New York: Direct Mail/Marketing Association.
Engel, J.F., Kollat, D.T. and Blackwell, R.D. (2001), Consumer Behavior, 7th ed, New York; The Dryden Press.
Fader, P. S., Hardie, B. G. S., & Lee, K. L. (2005). " Counting your customers the easy way: an alternative to the Pareto/NBD Model.” Marketing Science, 275-284.
Fang, Y., Qureshi, I., Sun, H., McCole, P. Ramsey, E. and Lim, K.H. (2014), “Trust, satisfaction, and online repurchase intention: the moderating role of perceived effectiveness of e-commerce institutional mechanisms,” MIS Quarterly, 38(2), 407-427.
Gilkeson, J. H. and Reynolds, K. (2003), “Determinants of internet auction success and closing price: an exploratory study,” Psychology & Marketing, 20(6), 537-566.
Gommans, M., Krishman, K. S. and Scheffold, K. B. (2001), “From brand loyalty to e-loyalty: a conceptual framework,” Journal of Economic and Social Research, 3(1), 43-59.
Goodman, J. (1992), “Leveraging the customer database to your com-petitive advantage,” Direct Marketing, 55(8), 26–27.
Gregg, D. G. and Walczak, S. (2008), “Dressing your online auction business for Success: An experiment comparing two eBay businesses,” MIS Quarterly, 32(3), 653-670.
Hair, J. F., Black, W. C., Babin, B. J. and Anderson, R. E. (2010), Multivariate data analysis, New Jersey: PEARSON.
Hayne, S. C., Smith, C. A. P. and Vijayasarathy, L. R. (2003), “Who wins on eBay? an analysis of bidders and their bid behaviours,” Electronic Markets, 13(4), 282-293.
Heider, F. (1958), The psychology of interpersonal relations, New Jersey: Wiley.
Hosmer, D. and Stanley, L. (1989), Applied Logistic Regression. John Wiley and Sons, Inc.
Hughes, A. M. (2005). Strategic database marketing: McGraw-Hill Companies.
Jiang, Z., Chan, J., Tan, B. and Chua, W. (2010), “Effects of interactivity on website involvement and purchase intention,” Journal of the Association for Information Systems, 11(1), 34-59.
Kamakura, W. A., Mittal, V., de Rosa, F. and Mazzon, J. A. (2002), “Assessing the service-profit chain,” Marketing Science, 21(3), 294–317.
Kim, D.J. (2012), “An investigation of the effect of online consumer trust on expectation, satisfaction, and post-expectation,” Information Systems & e-Business Management, 10, 219-240.
Kim, D. J., Ferrin, D. L. and Rao, H. R. (2009), “Trust and satisfaction, two stepping stones for successful e-commerce relationships: a longitudinal exploration,” Information Systems Research, 20(2), 237-257.
Koo, D. M. (2006), “The fundamental reasons of e-consumers loyalty to an online store,” Electronic Commerce Research and Applications, 5(2), 117-130.
Kuttner, R. (1998), “The net: a market too perfect for profits,” Business Week, 3577, 20.
Li, X., Hitt, L.M., and Zhang, Z.J. (2011), “Product reviews and competition in markets for repeat purchase products,” Journal of Management Information Systems, 27(4), 9-41.
Malhotra, N. K., Kim, S. S. and Agarwal, J. (2004), “Internet users’ information privacy concerns (IUIPC): The construct, the scale, and a causal model,” Information Systems Research, 15(4), 336-355.
Marcus, C. (1998), “A practical yet meaningful approach to customer segmentation,” Journal of consumer marketing, 15(5), 494-504.
Menard, S. (1995), Applied Logistic Regression Analysis. Sage Publications.Series: Quantitative Applications in the Social Sciences, No. 106.
Mittal, V. and Kamakura, W. A. (2001), “Satisfaction, repurchase intent, and repurchase behavior: Investigating the moderating effect of customer characteristics,” Journal of Marketing Research, 38(1), 131-142.
Nath R., Akmanligil, M., Hjelm, K., Sakaguchi, T., & Schultz, M.(1998), “Electronic commerce and the Internet: Issues, problems, and perspectives,” International Journal of Information Management, 18(2), 91-101.
Neal, W. D. (1999), “Satisfaction is nice but value drives loyalty - the most satisfied customer may not necessarily be the most loyal,” Marketing Research, 11(1), 21-23.
Oliver, R. L. (1997), Customer satisfaction: a behavioral perspective on the consumer, New York: McGraw-Hill.
Oliver, R. L. (1999), “Whence consumer loyalty?” Journal of Marketing, 63(4), 33-44.
Pavlou, P. A., Liang, H. and Xue, Y. (2007), “Understanding and mitigating uncertainty in online exchange relationships: a principal-agent perspective,” MIS Quarterly, 31(1), 105-136.
Pfeifer, P. (2005), “The optimal ratio of acquisition and retention costs,” Journal of Targeting, Measurement and Analysis for Marketing, 13(2), 179-188.
Posselt, T. and Gerstner, E. (2005), “Pre-sales vs. post-sale e-satisfaction: impact on repurchase intention and overall satisfaction,” Journal of Interactive Marketing, 19(4), 35-47.
Qu, Z., Zhang, H. and Li, H. (2008), “Determinants of online merchant rating: content analysis of consumer comments about Yahoo merchants,” Decision Support Systems, 46(1), 440-449.
Reichheld, F. F.(1996), “Learning from customer defections,” Harvard Business Review, 74(2), 56-67.
Reichheld, F. F. and Schefter, P. (2000), “E-loyalty: Your secret weapon on the Web,” Harvard Business Review, July-August, 105-113.
Shankar, V. S., Smith, A. K. and Rangaswamy, A. (2003), “Customer satisfaction and loyalty in online and offline environments,” International Journal of Research in Marketing, 20(2), 153-175.
Sheth, J.N., Mittal, B. and Newman, B. (1999), Customer behavior: consumer behavior and beyond, Texas: Dryden Press.
Srinivasan, S. S., Anderson, R. and Ponnavolu, K. (2002), “Customer loyalty in e-commerce: an exploration of its antecedents and consequences,” Journal of Retailing, 78(1), 41-50.
Tabachnick , B. & Linda F. (1996), Using Multivariate Statistics, Third edition. Harper Collins.
Van Slyke, C., Shim, J. T., Johnson, R. and Jiang, J. J. (2006), “Concern for information privacy and online consumer purchasing,” Journal of the Association for Information Systems, 7(6), 415-443.
Wei, J. T., Lin, S. Y. and Wu, H. H. (2010), “A review of the application of RFM model,” African Journal of Business Management, 4(19), 4199-4206.
Weinberg, B. D. and Davis, L. (2005), “Exploring the WOW in online-auction feedback,” Journal of Business Research, 58(11), 1609-1621.
Wu, L. L. and Lin, J. Y. (2006), “The quality of consumers’ decision-making in the environment of e-commerce,” Psychology and Marketing, 23(4), 297-311.
Yang, Z., & Peterson, R. T.(2004), “Customer perceived value, satisfaction, and loyalty: The role of switching costs,” Psychology & Marketing, 21(10), 799-22.
Yen, C. H. and Lu, H. P. (2008a), “Factors influencing online auction repurchase intention,” Internet Research, 18(1), 7-25.
中國互聯網絡信息中心(CNNIC)(2014),2014年7月6日取自http://www.cnnic.net.cn/hlwfzyj/hlwxzbg/hlwtjbg/201403/P020140305346585959798.pdf。
艾瑞咨詢集團(iResearch)(2013年11月4日)。2013Q3中國網路購物市場數據。2014年7月5日取自http://www.iresearch.com.cn/View/217734.html
艾瑞咨詢集團(iResearch)(2014年6月25日)。網路購物使用者習慣逐漸深化,女性仍然是網購的主力。2014年7月5日取自http://www.iresearch.com.cn/View/233248.html
創市際市場研究顧問(2011年12月1日)。創市際2011年10月份月刊報告書。取自http://news.ixresearch.com/?p=4806。
財團法人台灣網路資訊中心(2011年 1 月)。2011 年臺灣寬頻網路使用調查報告【新聞群組】。2011 年 3 月 15 日取自http://www.twnic.net.tw/download/200307/1101d.pdf
團法人台灣網路資訊中心(2014年 7 月)。2013年台灣無線網路使用調查報告,取自http://statistics.twnic.net.tw/cgi/login.cgi
資策會(FIND)(2012年11月13日)。2012年台灣電子商務B2C網路商店調查報告。2014年7月6日取自http://www.digitimes.com.tw/tw/dt/n/shwnws.asp?CnlID=10&cat=35&id=0000311367_T0K2IX977MRJAV6U3NZ3U&ct=1。
指導教授 何靖遠(Chin-yuan Ho) 審核日期 2014-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明