博碩士論文 93444008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:34.205.93.2
姓名 楊晴雯(Chin-Wen Yang)  查詢紙本館藏   畢業系所 產業經濟研究所
論文名稱 能源效率與部門減量成本分析:動態CGE模型的建置與應用
(Energy efficiency and sectoral abatement cost analysis: the establishment and application of a dynamic CGE model)
相關論文
★ 期間利差與經濟衰退之預測模型-理性預期假設之驗證★ 台灣、美國總經月數據與台股股價指數之關聯性
★ 台灣資訊電子產業異質性及利潤率之探討★ 中小企業案件逾期放款之預測
★ 台灣半導體產業經營效率分析-三階段資料包絡分析法之應用★ 台灣車輛產業經濟附加價值之研究-兼論影響信通交通器材公司經濟附加價值之因素
★ 外人直接投資與研發活動之關聯性-台灣電子相關產業之實證研究★ 消費性信用貸款授信評量模式之研究
★ 二順位房貸產品風險預警分析★ 新產品商業化流程之個案研究–以美商3M公司為例
★ 高淨值客戶風險屬性與共同基金投資報酬率之實證研究★ 台灣加權指數與指數股票型基金風險值之歷史模擬法分析
★ 國際油價、匯率與利率之動態關聯—VECM與VECM-GARCH之應用★ 主流記憶體之二十年價格模式研究與驗證
★ 以DEA模型分析桃園郵局之營運績效★ 奢侈稅實施對都會地區房價之衝擊反應分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 多年來受到關注的能源永續發展相關議題,不外乎永續發展與能源安全、能源管理與效率提升、能源價格與市場開放、能源科技與產業發展、總量管制與排放交易等。為尋求經濟成長與溫室氣體排放脫鉤(decoupling),能源效率與總量管制與排放交易機制是各國亟思突破,促使溫室氣體減量工作朝更有效率的方向前進的重要工具。
為評估我國溫室氣體減量策略對於經濟、能源與環境之影響,本研究建構臺灣永續能源發展模型 (Taiwan Sustainable Energy Development, TaiSEND),並運用於多項能源環境政策評析,該模型屬單國動態之可計算一般均衡 (computable general equilibrium, CGE) 模型,其特色在於可充分描述經濟個體互動、能源技術發展以及能源資源限制對經濟發展之影響。
多數國家在制定政策或相關研究在探討能源效率改善所產生之減量效益時,皆以能源密集度 (energy intensity) 或能源生產力 (energy productivity) 做為衡量總體層級的能源效率指標,然而生產力與效率本質上的差異,及單一指標無法離析驅動力來源之問題,使能源生產力不宜用以衡量能源效率變化。為此,本文延伸Feijoo et al. (2002)的方法,提出一個較具優勢的能源效率指標,即以每單位能源用量的實質利潤損失為基準。分析結果顯示,如果以能源生產力做為能源效率的指標,在某些情況下或能適當地反映能源效率的變動情勢,但在某些情況下卻可能帶來不正確的訊息。
其次當排放交易被視為減量策略中成本有效之市場工具時,如何決定參與交易個體之排放許可量,須視其邊際減量成本之相對大小而定。相同的邏輯被運用於為達國家排放目標,國內各部門目標年排放核配量的計算上。目前國內推算部門邊際減量成本之方法,可概分為以個別技術減量成本堆疊而成之邊際減量成本曲線,以及以成本有效方式推估之部門邊際減量成本函數,前者忽略市場性因素造成的減量空間,後者則忽略新興技術的發展帶來的減量潛力。本研究利用TaiSEND模型以成本有效方式推估國內各部門邊際減量成本曲線,再利用技術邊際減量成本資料,進一步檢視當考慮技術減量潛力時,對邊際減量成本之影響。結果發現技術邊際減量成本的納入將造成部門間邊際減量成本曲線的旋轉,例如能源與住宅部門將變得更平緩,其他部門變得更陡峭,進而改變部門之排放核配量比重。
摘要(英) The important issues of energy sustainable development include energy security, energy management and efficiency, energy prices and market liberalization, energy technology and industrial development, cap-and-trade. To decouple economic growth and greenhouse gas emissions, energy efficiency improving and cap-and-trade mechanism are the most important instruments to advanced greenhouse gas abatement.
This research established the Taiwan Sustainable Energy Development (TaiSEND) model to assess energy and environmental policies. TaiSEND is a national dynamic computable general equilibrium (CGE) model, which represents the interaction between economic agents, development of energy technologies, and limitation of energy resources.
Energy intensity or energy productivity is the most popular measures of energy efficiency of the country level. But the essentially difference between productivity and efficiency, and without driving force information from a single indicator, make energy productivity inappropriate for energy efficiency. This paper extends the method of Feijoo et al. (2002) and proposes a new energy efficiency indicator, which is calculated from the loss of the energy without allocation and technology efficiency. The results show that the energy productivity would be misleading to present the changes of energy efficiency.
On the other hand, the national and sector level marginal abatement cost curves (MACCs) need to be determined before the allowances and emission trading, which is a cost efficient abatement instrument. In Taiwan, there are two approaches to estimate sector level marginal abatement cost, which are the technology-based and market-based marginal abatement cost curves. The former one ignores the market effects and the latter one does not account the potential CO2 reduction of innovative technologies. This thesis builds up the market-based MACCs with TaiSEND model, then includes the technology-based marginal abatement cost information. The results present that the MACCs will rotate in different ways inter-sectors under considering the technological reduction costs, such as energy and the residential sector will become gentler, the other sectors become more steep. These outcomes will change the allocation of emissions allowance.
關鍵字(中) ★ 部門減量成本
★ 動態CGE模型
★ TaiSEND
★ 能源效率
關鍵字(英) ★ energy efficiency
★ dynamic CGE model
★ TaiSEND
★ sectoral abatement cost
論文目次 頁次
中文摘要 i
英文摘要 iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 ix
一、 緒論 1
1-1 研究背景與動機 1
1-2 研究目的 3
1-3 研究架構與方法 3
二、 臺灣永續能源發展模型 6
2-1 能源模型類別與發展趨勢 6
2-2 臺灣永續能源發展模型架構 10
2-3 模型參數校估與資料來源 25
2-4 本章小結 32
三、 新能源效率指標 34
3-1 能源效率指標之文獻評析 36
3-2 常用能源效率指標與問題 41
3-3 新能源效率指標 46
3-4 本章小結 54
四、 部門邊際減量成本函數 55
4-1 政策背景與目的 55
4-2 邊際減量成本的範疇與內涵 56
4-3 部門邊際減量成本函數推估方法比較 63
4-4 部門邊際減量成本函數推估:TaiSEND模型應用 72
4-5 技術減量潛力對部門邊際減量成本之影響 87
4-6 本章小結 90
五、 總結 92
5-1 研究成果摘述 92
5-2 未來研究方向 94
參考文獻 95
參考文獻 中文文獻
吳世英與林幸樺 (2004),溫室氣體減量潛力及減量成本分析之資料庫建置與理論及評估方式探討,國科會專題研究計畫,國立清華大學經濟係。
吳佩瑛等 (2010),「由APEC區域組織邁入國際社會參與排放交易之結果-對台灣的啟示」,台灣國際研究季刊,第6卷第1期,143-184頁。
李堅明等 (2005),「溫室氣體減量模式、減量情境、減量成本及其影響評估:TAIGEM-III的應用」,台灣經濟論衡,第3卷第2期,1-49頁。
林盈均 (2005) ,「能源使用效率之衡量與溫室氣體減量工具的影響」,碩士論文,清華大學經濟系。
陸怡蕙 (2008) ,「效率改善與能源需求:動態生產模型之定性分析」,,農業經濟叢刊,13:2,81-98。
傅祖壇 Fu, Tsu-Tan (1994) ,「要素固定性、對偶成本邊界函數及生產效率之衡量─台灣毛豬農場之實證」,經濟論文叢刊,22:4,451-475。
單珮玲(2010) ,「能源需求、經濟成長與碳排放之驅動力及效率的實證研究」,,博士論文,政治大學財政系。
黃志典、黃智遠 (2004) ,「台灣地區銀行產業成本效率之實證研究─隨機邊界法之應用」,企銀季刊,27:3,1-28。
黃宗煌、王貴玲 (2002) ,「自來水事業之技術效率與有效供水成本的評估」,,兩岸永續發展研討會論文集,2002年6月5-7日,台北圓山飯店, Taipei。(in Chinese)
鄭秀玲、周群新(1998) ,「調整風險後之銀行效率分析:台灣銀行業的實證研究」,,經濟論文叢刊,26:3,337-366。
鄭秀玲、劉錦添、陳欽奇(1997) ,「台灣中小企業銀行的效率分析(1986-1994年)」,經濟論文,25:1,69-95。
英文文獻
Afriat, S. N. (1972), “Efficiency Estimation of Production Function.” International Economic Review, 13(3): 568-598.
Aigner, et al., (1977), “Formulation and Estimation of Stochastic Frontier Production Function Models.” Journal of Econometrics, 6(1): 21-37.
Aiken, D. V. and C. A. Pasurka Jr. (2003), “Adjusting the Measurement of US Manufacturing Productivity for Air Pollution Emissions Control.” Resource and Energy Economics 25(4): 329-351.
Amann, M., P. Rafaj, and N. Höhne (2009), “GHG Mitigation Potentials in Annex I Countries Comparison of Model Estimates for 2020,” IR-09-034, Interim Reports of International Institute for Applied Systems Analysis, Laxenburg, Austria.
Ang, B. W. (1994), “Decomposition of Industrial Energy Consumption – The Energy Intensity Approach.” Energy Economics 16(3):163-174.
Ang, B. W. and N. Liu (2007), “Energy Decomposition Analysis: IEA Model Versus Other Methods.” Energy Policy 35(3): 1426-1432.
Australian Treasury (2008), Australias Low Population Future – the Economics of Climate Change Mitigation.
Blumstein, C. and S. E. Stoft (1995), “Technical Efficiency, Production Functions and Conservation Supply Curves,” Energy Policy 23(9): 765-768.
Böhringer, C., G. W. Harrison, and T. F. Rutherford (2003), “Sharing the burden of carbon abatement in the European Union,” In Empirical Modeling of the Economy and the Environment, C. Böhringer and A. Löschel, editors, ZEWEconomic Studies, Physica, Heidelberg, 153–182, 2003.
Bor, Y. J. (2008), “Consistent Multi-level Energy Efficiency Indicators and Their Policy Implications.” Energy Economics 30(5): 2401-2419.
Cornwell, C., P. Schmidt and R.c. Sickles (1990), “Production Frontiers with Cross-Sectional and Time-Series Variation in Efficiency Levels.” Journal of Econometrics, 46(1-2): 185-200.
Criqui, P., S. Mima and L. Viguier (1999), “Marginal Abatement Costs of CO2 Emission Reductions, Geographical Flexibility and Concrete Ceilings: an Assessment Using the POLES Model,” Energy Policy 27: 585-601.
Difiglio, C. and K. G. Duleep (1990), “Cost Effectiveness of Future Fuel Economy Improvements,” Energy Journal 11(1): 65-85.
Ellerman, A. D. and A. Decaux (1998), “Analysis of Post-Kyoto CO2 Emissions Trading Using Marginal Abatement Costs,” working paper, http://dspace.mit.edu/ bitstream/handle/1721.1/3608/MITJPSPGC_Rpt40.pdf?sequence=1.
Eyckmans, J., J. Cornillie and D. van Regemorter (2002), “Efficiency and Equity of the EU Burden Sharing Agreement,” working paper series 2000-2, Energy, Transport and Environment Unit, Center for Economic Studies, Department of Economics, Catholic University Leuven.
Färe, R., S. Grosskopf, D. W. Noh and W. Weber (2005), “Characteristics of a Polluting Technology: Theory and Practice,” Journal of Econometrics 126(2): 469-492.
Farrell, M. J. (1957), “The Measurement of Productive Efficiency.” Journal of the Royal Statistical Society, Series A (General), 120(3): 253-290.
Feijoo, M. L., J. F. Franco, and J. M. Hernández (2002), “Global Warming and the Energy Efficiency of Spanish Industry.” Energy Economics 24(4): 405-423.
Halsnæs, K., P. Shukla, D. Ahuja, G. Akumu, R. Beale, J. Edmonds, C. Gollier, A. Grübler, M. Haduong, A. Markandza, M. McFarland, E. Nikitina, T. Sugizama, A. Villavicencio, J. You (2007), Framing Issues. In Climate Change 2007Ö Mitigation. Contribution of Working Group III to the Forth Assessment Report of the Intergovernmental Panel on Climate Change [B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, L. A. Meyer (eds)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Honma, S and J. L. Hu (2008), “Total-factor Energy Efficiency of Regions in Japan.” Energy Policy 36(2): 821-833.
Hu, J. L. and S. C. Wang (2006), “Total-factor Energy Efficiency of Regions in China.” Energy Policy 34(17): 3206-3217.
Jaccard, M. and W. D. Montgomery (1996), “Costs of Reducing Greenhouse Gas Emissions in the USA and Canada,” Energy Policy 24: 889-898.
Jackson, T. (1991), “Least-Cost Greenhouse Planning Supply Curves for Global Warming Abatement,” Energy Policy 19(1): 35-46.
Kiuila, O. and T. F. Rutherford (2011), “Approximation of Marginal Abatement Cost Curve.” Working papers No. 12/2011(52), Faculty of Economic Science, University of Warsaw.
Kiuila, O. and T. F. Rutherford (2012), “The Cost of Reducing CO2 Emissions: Integrating Abatement Technologies into Economic Modelling.” , working paper from http://www.cer.ethz.ch/sured_2012/programme/SURED-12_186_Kiuila_Rutherford.pdf.
Klepper, G. and S. Peterson (2004), “Marginal Abatement Cost Curves in General Equilibrium: the Influence of World Energy Prices,” NOTA DI LAVORO 136.2004, CCMP – Climate Change Modelling and Policy, working paper of Fondazione Eni Enrico Mattei.
Klepper, G. and S. Peterson (2006), “Marginal Abatement Cost Curves in General Equilibrium: the Influence of World Energy Prices,” Resource and Energy Economics 28: 1-23.
Kopp, R.J. and W.E. Diewert (1982), “The Decomposition of Frontier Cost Function Deviations into Measures of Technical and Allocative Efficiency.” Journal of Econometrics, 19(2-3): 319-31.
Lee, C. C. and Chang, C. P. (2008), “Energy Consumption and Economic Growth in Asian Economies: a More Comprehensive Analysis Using Panel Data.” Resource and Energy Economics, 30(1): 50-65.
Liu, X.Q., B.W. Ang, and H.L. Ong (1992), “The Application of the Divisia Index to the Decomposition of Changes in Industrial Energy Consumption.” Energy Journal, 13(4): 161-177.
Mairet, N. and F. Decellas (2009), “Determinants of Energy Demand in the French Service Sector: A Decomposition Analysis.” Energy Policy 37(7): 2734-2744.
Maradan, D. and A. Vassiliev (2005), “Marginal Costs of Carbon Dioxide Abatement: Empirical Evidence from Cross-Country Analysis,” Swiss Journal of Economics and Statistics, 141(3): 377-410.
McKinsey&Company (2009), “Pathway to a Low-Carbon Economy – Version 2 of the Global Greenhouse Gas Abatement Cost Curve.”
McKinsey&Company (2010), “Impact of the Financial Crisis on Carbon Economics: Version 2.1 of the Global Greenhouse Gas Abatement Cost Curve.”
Meier, A. K. (1982), Supply Curves of Conserved Energy, Lawrence Berkeley Laboratory, Berkeley, University of California, PhD: 110.
Mill, E., D. Wilson and T. B. Johansson (1991), “Getting Started: No-Regrets Strategies for Reducing Greenhouse Gas Emissions,” Energy Policy 19(6): 526-542.
Mishra, V., S. Sharma, and R. Smyth (2009), “Are Fluctuations in Energy Consumption per Capita Transitory? Evidence from a Panel of Pacific Island Countries.” Energy Policy, 37(6): 2318-2326.
Morris, J., S. Paltsev and J. Reilly (2008), “Marginal Abatement Costs and Marginal Welfare Costs for Greenhouse Gas Emissions Reductions: Results from the EPPA Model,” Report No. 164, MIT Joint Program on the Science and Policy of Global Change, MIT.
Mukherjee, K. (2008), “Energy Use Efficiency in U.S. Manufacturing: A Nonparametric Analysis.” Energy Economics 30(1): 76-96.
OECD (2009), “The Economics of Climate Change Mitigation: Policies and Options for Global Action beyond 2012,” OECD, Paris, France.
Patterson, M.G. (1996), “What Is Energy Efficiency?: Concepts, Indicators and Methodological Issues.” Energy Policy, 24(5): 377-390.
Rentz, O., H. D. Haasis, A. Jattke, P. Ru, M. Wietschel and M. Amann, 1994, “Influence of Energy-Supply Structure on Emission-Reduction Costs,” Energy 19(6): 641-51.
Richmond, J. (1974), “Estimating the Efficiency of Production.” International Economic Review, 15(2): 515-521.
Rosenfeld, A., C. Atkinson, J. Koomey, A. Meier, R. J. Mowris and L. Price (1993), “Conserved Energy Supply Curves for U.S. Building,” Contemporary Economic Policy 11(1): 45-68.
Saleem, S., A. Glenn and R. Michal (2002), “Direct and Indirect Shadow Price and Cost Estimates of Nitrogen Pollution Abatement,” Journal of Agricultural Resource Economics 27(2): 420-432.
Schmidt, P. and C.A.K. Lovell (1979), "Estimation Technical and Allocative Inefficiency Relative of Stochastic Production and Cost Frontier," Journal of Econometrics 9(3): 343-366.
Schmidt, P. and R.C. Sickles (1984), ”Production Frontiers and Panel Data.” Journal of Business and Economic Statistics, 2(4): 367-74.
Shinji, K., H. Fujii, N. Sawazu and R. Fujikura (2010), “Financial Allocation Strategy for the Regional Polution Abatement Cost of Reducing Sulfur Dioxide Emissions in the Thermal Power Sector in China,” Energy Policy 38: 2131-2141.
Sitnicki, S., K. Budzinski, J. Juda, J. Michna and A. Szpilewicz (1991), “Opportunities for Carbon Emissions Control in Poland,” Energy Policy 19(10): 995-1002.
Sivak, M. and O. Tsimhoni (2009), “Fuel Efficiency of Vehicles on US Roads: 1923-2006.” Energy Policy 37(8): 3168-3170.
Tanaka, K. (2008), “Assessment of Energy Efficiency Performance Measures in Industry and Their Application for Policy.” Energy Policy 36(8): 2887-2902.
Wei, Y. M., H. Liao, and Y. Fan (2007), “An Empirical Analysis of Energy Efficiency in China’s Iron and Steel Sector.” Energy 32(12): 2262-2270.
Willemé, P. (2003), “A Statistical Approach to Conservation Supply Curves,” Energy Economics, 25(5): 553-64.
Yang, Chin-Wen and Chung-Huang Huang (2009), “Measurement of Energy Efficiency in Taiwan and Its Relevance to CO2 Decoupling.” Invited paper presented at the Workshop on Innovations in Energy Efficiency. Stanford University, California, February 17-18, 2009.
Zhou, P. and B. W. Ang (2008), “Linear Programming Models for Measuring Economy-wide Energy Efficiency Performance.” Energy Policy 36(8): 2911-2916.
指導教授 黃宗煌、陳忠榮(Chung-Huang Huang) 審核日期 2012-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明