博碩士論文 93521002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:34.231.247.139
姓名 伍振龍(Chen-Lung Wu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 全數位任意責任週期之同步映射延遲電路
(All-Digital Arbitrary Duty-Cycle Synchronous Mirror Delay Circuits)
相關論文
★ 一種應用於觸控液晶顯示器的新型嵌入式開關★ 多重相位之延遲鎖定迴路倍頻器設計與分析
★ 2.5Gbps串列收發器設計★ 具低抖動與可適應式頻寬之自我偏壓鎖相迴路設計
★ 應用於串列傳輸之2.5GB/s CMOS 超取樣資料回復電路★ 全數位式互補金屬氧化半導自我取樣延遲線電路用於時脈抖動量測
★ 500MHz,30個相位輸出之鎖相迴路應用於三倍超取樣時脈回復系統★ 設計於90奈米製程輸出頻率為100MHz-1GHz之具可適應性頻寬鎖相迴路
★ 高解析度可變動責任週期之同步複製延遲電路★ 奈米CMOS晶片內序列傳輸之接收器
★ 奈米CMOS晶片內序列傳輸之送器★ 基於鎖相迴路之多重相位脈波產生器
★ 低能量時脈儲存元件之分析、設計與量測★ 具有預先增強器之Gbps串列連結傳送器及全數位超取樣資料回復器
★ 應用於10Gbps晶片系統傳輸鏈之低抖動自我校準鎖相迴路設計★ 使用高精準度電流偵測技巧之高轉換效能同步互補式金氧半降壓切換式穩壓器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 有鑒於現今的單晶片系統設計,在晶片中,彙整大量的電路以及包含整個時脈訊號的分佈網絡,因此同步系統時脈將是一個重要的考量。鎖相迴路(Phase-Locked Loop,PLL)以及延遲鎖定迴路(Delay- Locked Loop,DLL)已經普遍地被應用在許多同步時脈相依的電路系統之中,以抑制時脈偏斜的情況發生。然而兩者的閉迴路特性,需要冗長的鎖定時間,在相位捕獲的過程時,需要大量的standby current,而產生較多的功率消耗。
本論文提出了兩種快速時脈同步電路,分別為任意責任週期之同步映射延遲電路以及高解析度之任意責任週期之同步映射延遲電路。我們也已驗證並證實其可行性,結果顯示此電路較過去相似之架構具相當之改善,並對那些具有高速同步需求之電路具相當之實用性。
因此,本論文所提出之電路除了能夠廣泛的被應用於記憶體時脈同步模組中,亦可整合應用在針對ASIC設計的高速時脈同步電路模組裡。
摘要(英) In view of the current SOC systems, a great deal of circuits is integrated on a chip and the clock signal is entirely distributed. The clock synchronization, therefore, becomes truly an important issue on it. Phase-locked loop (PLLs) and delay-locked loop (DLLs) are often applied in many synchronization- dependent systems in order to suppress the clock skew. However, both PLLs and DLLs are the feedback systems and hence requiring a long locking time. During the lock-in frequency acquisition process, it results in a large standby current, which causes lots of power dissipation.
In this study, two fast synchronization circuits have been proposed, an arbitrary duty-cycle synchronous mirror delay and a high-resolution arbitrary duty-cycle synchronous mirror delay. We have already verified and demonstrated their workability. The results show an excellent improvement over the prior works and also states that they are quite useful to that has great urgency for the higher-speed synchronization devices. Thus, the proposed arbitrary duty-cycle SMD can be not only widely applied in the memory synchronous chip module but also applied in the high speed synchronous chip module for current ASIC design.
關鍵字(中) ★ 同步映射延遲電路 關鍵字(英) ★ Synchronous Mirror Delay
論文目次 CHAPTER 1
1.1 Motivation 1
1.2 Thesis Overview 4
CHAPTER 2
2.1 Conventional Synchronous Mirror Delay Circuit 6
2.2 Interleaved Synchronous Mirror Delay Circuit 9
2.3 Direct-Skew-Detect Synchronous Mirror Delay Circuit 11
CHAPTER 3
3.1 Introduction 13
3.2 Operation and Architecture of the proposed SMD 14
3.2.1 Architecture of the proposed SMD 14
3.2.2 The Architecture and Operation of the proposed MMCC 15
3.2.3 Operation of the proposed SMD 16
3.2.4 Principle of the Operation Frequency Range 19
3.3 Simulation and comparison result 20
3.3.1 The comparison of mirror control circuit 20
3.3.2 The performance evaluation 23
3.4 Experimental Results 25
3.5 Summary 31
CHAPTER 4
4.1 Introduction 33
4.2 Behavior Description and Circuit Architecture of the proposed High-Resolution Arbitrary Duty-Cycle SMD 36
4.2.1 Coarse tuning step 36
4.2.2 Fine tuning step 40
4.3 Performance Evaluation 46
4.4 Experimental Results 55
4.5 Summary 62
CHAPTER 5
Bibliography 66
Publication List
參考文獻 [1]T. Saeki, Y. Nakaoka, M. Fujita, A. Tanaka, K. Nagata, K. Sakakibara, T. Matano, Y. Hoshino, K. Miyano, S. Isa, S. Nakazawa, E. Kakehashi, J. M. Drynan, M. Komuro, T. Fukase, H. Iwasaki, M. Takenaka, J. Sekine, M. Igeta, N. Nakanishi, T. Itani, K. Yoshida, H. Yoshino, S. Hashimoto, T. Yoshii, M. Ichinose, T. Imura, M. Uziie, S. Kikuchi, K. Koyama, Y. Fukuzo, and T. Okuda, “A 2.5-ns clock access, 250MHz, 256Mb SDRAM with synchronous mirror delay,” in ISSCC1996 Dig.Tech. Papers, pp. 374–375, Feb. 1996.
[2]Guang-Kaai Dehng, June-Ming Hsu, Ching-Yuan Yang and Shen-Iuan Liu, “Clock-deskew buffer using a SAR-controlled delaylocked loop,” IEEE J. Solid-State Circuits, vol. 35, pp. 1128–1136, Aug. 2000.
[3]B. Razavi, ”Design of Analog CMOS Integrated Circuit,” New York: McGraw-Hill, 2001.
[4]Sei Hyung Jang, “A new synchronous mirror delay with an auto-skew-generation circuit,” IEEE ISCAS, Vol. 5, pp. 397-400, May. 2003.
[5]Kihyuk Sung, Byung-Do Yang, and Lee-Sup Kim, “Low power clock generator based on an area-reduced interleaved synchronous mirror delay scheme,” in Proc. IEEE Int. Symp. Circuits and Systems, Vol. 3, pp. 671–674, May. 2002.
[6]T. Seaeki, H. Nakamura, and J. Shimizu, “A 10 ps jitter 2 clock cycle lock time CMOS digital clock generator based on an interleaved synchronous mirror delay scheme,” in Symp. VLSI Circuits Dig. Tech. Papers, pp. 109–110, Jun. 1997.
[7]T. Saeli, K. Minami, H. Yoshida, and H. Suzuki, “A direct-skew-detect synchronous mirror delay for application-specific integrated circuits,”IEEE J. Solid-State Circuits, vol. 34, no 3, pp. 372–379, Mar. 1999.
[8]Yi-Ming Wang, Jinn-Shyan Wang, “A low-power half-delay-line fast skew-compensation circuit,”IEEE J. Solid-State Circuits, vol. 39, pp. 906–918, Jun. 2004.
[9]Kuo-Hsing Cheng, Chen-Lung Wu, Yu-Lung Lo and Chia-Wei Su, “A Phase-Detect Synchronous Mirror Delay for Clock Skew-Compensation Circuits” IEEE ISCAS, Vol. 2, pp. 1070-1073, May. 2005.
[10]Daeyun Shim, Dong-Yun Lee, Sanghun Jung, Chang-Hyun Kim, and Wonchan Kim, “An analog synchronous mirror delay for high-speed DRAM application,” IEEE J. Solid-State Circuits, vol. 34, no 4, pp. 484-493, Apr. 1999.
[11]Daeyun Shim, Yeon-Jae Jung, Seung-Wook Lee, and Wonchan Kim, “Fast locking clock generator using analog synchronous mirror delay technique with feedback control,” Solid-State and Integrated-Circuits Technology, vol. 2, pp. 1125-1127, Oct. 2001.
[12]Seong-Jin Jang, Young-Hyun Jun, Jae-Goo Lee, and Bai-Sun Kon, “ASMD with duty cycle correction scheme for high-speed DRAM,” Electronics Letters, Vol. 37, no.16, pp. 1004-1006, Aug. 2001
[13]Kihyuk Sung and Lee-Sup Kim, “A High-Resolution Synchronous Mirror Delay Using Successive Approximation Register” IEEE J. Solid-State Circuits, vol. 39, no 11, pp. 1997–2004, Nov. 1999.
[14]B. Garlepp et al., “A portable digital DLL for high-speed CMOS interface circuit,” IEEE J. Solid-State Circuits, vol. 34, pp. 632–643, May. 1999.
[15]A. Rossi and G. Fucilli, “Nonredundant successive approximation register for A/D converters,” Electron. Lett., vol. 32, no. 12, p. 1055–1057, June 1996.
[16]K. Minami, M. Fukaishi, M. Mizuno, H. Onishi, K. Noda, K. Imai, T. Horiuchi, H. Yamaguchi, T. Sato, K. Nakamura, M. Yamashina, “A 0.10 μm CMOS, 1.2 V, 2 GHz phase-locked loop with gain compensation VCO,” IEEE Int. Custom Circuits Conf., pp. 213-216, May 2001.
[17]R. Holzer, “A 1 V CMOS PLL designed in high-leakage CMOS process operating at 10-700 MHz,” IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, vol. 2, pp. 220-482, Feb. 2002.
[18]Tae-Sung Kim, Sung-Ho Wang, and Beomsup Kim, “A low jitter, fast locking delay locked loop using measure and control scheme,” Mixed-Signal Design, SSMSD, Southwest Symposium on, pp. 45-50, Feb. 2001
[19]Jeong-Seok Chae, Daejeong Kim, and Dong Myeong Kim, “Wide range single-way-pumping synchronous mirror delay,” Electronics Letters, Vol. 36, no.11, pp. 939-940, May. 2000
[20]Kuo-Hsing Cheng, Chia-Wei Su, Chen-Lung Wu and Yu-Lung Lo, “A Phase-Locked PulseWidth Control Loop with Programmable Duty Cycle,” IEEE ASIA-PACIFIC Conference on ASIC, pp. 84-87, Aug. 2004.
指導教授 鄭國興(Kuo-Hsing Cheng) 審核日期 2006-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明