博碩士論文 93521006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:18.220.106.241
姓名 黃展緯(Chan-Wei Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 全數位式互補金屬氧化半導自我取樣延遲線電路用於時脈抖動量測
(All Digital CMOS Self-sample Vernier Delay Line Circuit for Clock Jitter Measurement)
相關論文
★ 一種應用於觸控液晶顯示器的新型嵌入式開關★ 多重相位之延遲鎖定迴路倍頻器設計與分析
★ 2.5Gbps串列收發器設計★ 具低抖動與可適應式頻寬之自我偏壓鎖相迴路設計
★ 應用於串列傳輸之2.5GB/s CMOS 超取樣資料回復電路★ 全數位任意責任週期之同步映射延遲電路
★ 500MHz,30個相位輸出之鎖相迴路應用於三倍超取樣時脈回復系統★ 設計於90奈米製程輸出頻率為100MHz-1GHz之具可適應性頻寬鎖相迴路
★ 高解析度可變動責任週期之同步複製延遲電路★ 奈米CMOS晶片內序列傳輸之接收器
★ 奈米CMOS晶片內序列傳輸之送器★ 基於鎖相迴路之多重相位脈波產生器
★ 低能量時脈儲存元件之分析、設計與量測★ 具有預先增強器之Gbps串列連結傳送器及全數位超取樣資料回復器
★ 應用於10Gbps晶片系統傳輸鏈之低抖動自我校準鎖相迴路設計★ 使用高精準度電流偵測技巧之高轉換效能同步互補式金氧半降壓切換式穩壓器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著半導體製程的進步,積體電路發展已朝向系統整合方式發展,當許多的系統整合在一個晶片中,各電路的時序的掌控必須是要很準確,要是產生時脈歪曲就可能造成電路動作錯誤。所以在系統中,時脈訊號關係整個電路的效能,而鎖相迴路電路就為一個重要時脈訊號建構單元。
在鎖相迴路電路(PLL)中,輸出時脈抖動(jitter)的大小深深影響著鎖相迴路的效能,以往抖動的量測都是依靠著外部儀器來觀察其變化,但是,近年來,由於鎖相迴路操作頻率的一直提升,想要依靠外部儀器來量測抖動,必須要付出相當高的成本,來購買所需的儀器。加上外部儀器的雜訊,也會讓量測結果受到干擾。也因為上述這些原因,內建自我測試電路因而產生。利用內建量測電路來量測鎖相迴路的抖動,不僅可以減少測試成本,更可以加速抖動的量測,以及減少雜訊對量測結果的影響。
以往的尺規延遲線電路,雖然可以產生出高解析度的電路,相對的會在電路硬體上消耗非常多,而此次設計的此次設計的全數位式互補金屬氧化半導體自我取樣尺規延遲線電路,則是採用兩階段的尺規延遲線,分別為one-period-delay circuit 跟jitter-measurement circuit,電路動作方式為首先利用One-period-delay circuit 快速延遲時脈到達需要量測的時間點,之後利用Jitter Measurement circuit製造出極高的解析度來量測抖動,如此一來,便可準確的量測鎖相迴路的抖動,又可以節省電路在硬體上的消耗。
本次電路設計是使用TSMC 0.35um 2P4M的製程,one-period-delay circuit的電路解析度為300ps而jitter-measurement circuit的電路解析度為 15ps,電路所能量測的頻率範圍為100MHz~400MHz。
摘要(英) As the improvement of semiconductor technology, VLSI circuits has developed into System-On-a-Chip(SoC). When many systems integrated into a chip, the sequence of clock of every circuit must be accurate. In the system, clock skew will affect the performance of the system. The Phase-Locked Loop (PLL) is recognized as one of the important components for clock recovery.
In PLL circuits, the value of output clock jitter effect the performance of PLL. In the past, the jitter is measured by the external equipment. But, with the increased operating frequency, it will have a high cost on jitter measuring by external equipments. Sometimes probes of external equipments will be induced noise. The measurement result will be different. Because this reason, the built-in clock jitter measurement circuits are proposed. Using built-in clock jitter measurement circuits to measure the clock jitter that can reduce testing cost, decrease the effect of noise, and speeding up the jitter measurement.
In the past, the vernier delay line circuit has high circuit resolution but high chip area. In this all digital CMOS self-sample vernier delay line circuit has two stages. One is one-period-delay circuit, the other is jitter measurement circuit. In this circuit, the one-period-delay circuit is used to delay the clock to measurement point quickly and the jitter measurement circuit created high circuit resolution to measure the jitter. In this way, the circuit can measure the clock jitter quickly and accurately and reduce the chip area.
The proposed circuit is designed in TSMC 0.35um 2P4M CMOS process. The resolution of one-period-delay circuit is 300ps and that of jitter measurement circuit is 15ps. The measured frequency of the proposed circuit is 100MHz to 400MHz.
關鍵字(中) ★ 尺規延遲線
★ 自我取樣
★ 抖動量測
關鍵字(英) ★ jitter measurement
★ vernier delay line
★ self-sample
論文目次 Abstract..................................................................ii
List of Table.............................................................v
List of Figure...........................................................vi
Chapter 1 Introduction.............................................1
1.1 Motivation.....................................................................................................1
1.2 Organization of Thesis..................................................................................2
Chapter 2 Preview Work.........................................4
2.1 Jitter Definition...........................................................................................4
2.1.1 Cycle-to-Cycle jitter...........................................................................4
2.1.2 Period Jitter........................................................................................6
2.1.3 Long-Term Jitter I..............................................................................7
2.1.4 Long-Term Jitter II.............................................................................8
2.2 Jitter Histogram...........................................................................................8
Chapter 3 Jitter Measurement Technology...........11
3.1 Off-chip Jitter Measurement.....................................................................11
3.2 On Chip Jitter Measurement.....................................................................12
3.3 Operation of BIJM Circuits......................................................................14
3.4 Traditional Methodology..........................................................................15
3.5 Delay Chain Circuit..................................................................................16
3.5.1 Operation of Delay Chain Circuit..................................................16
3.5.2 Jitter Measurement of Delay Chain Circuit...................................17
3.5.3 Characteristic of Delay Chain Circuit............................................18
3.6 Delay Loop Circuit...................................................................................18
3.6.1 Operation of Delay Loop Circuit.....................................................18
3.6.2 Jitter Measurement of Delay Chain Circuit...................................19
3.6.3 Characteristic of Delay Chain Circuit............................................19
3.7 Vernier Delay Line Circuit........................................................................20
3.7.1 Operation of Vernier Delay Line Circuit..........................................20
3.7.2 Jitter Measurement of Vernier Delay Line Circuit...........................21
3.7.3 Characteristic of Vernier Delay Line Circuit...................................22
Chapter 4 Proposed BIJM Circuit..........................23
4.1 Structure of the Proposed BIJM Circuit....................................................23
4.2 Proposed Methodology.............................................................................24
4.3 One-period-delay Circuit..........................................................................25
4.3.1 Structure of One-period-delay Circuit.............................................25
4.3.2 Operation of One-period-delay Circuit............................................26
4.3.3 Design of One-period-delay Circuit.................................................27
4.4 Jitter-measurement Circuit..........................................................................28
4.4.1 Structure of Jitter-measurement Circuit...........................................28
4.4.2 Operation of Jitter-measurement Circuit..........................................29
4.4.3 Design of Jitter-measurement Circuit..............................................29
4.4.4 Control Logic Circuit.......................................................................30
4.5 Operating Principle...................................................................................31
Chapter 5 Chip implementation.............................33
iv
5.1 Simulation of the proposed circuit............................................................34
5.1.1 Consideration of Simulation............................................................35
5.1.2 Simulation of One-period-delay Circuit..........................................35
5.1.3 Simulation of Jitter-measurement Circuit........................................36
5.1.4 Simulation of Control Logic Circuit................................................37
5.2 Layout of the Proposed Circuit.................................................................38
5.3 Measurement Result..................................................................................39
5.3.1 Concept of Measurement.................................................................39
5.3.2 Chip Measurement...........................................................................40
5.3.3 Measurement Result.........................................................................41
5.3.4 Specification of Circuit....................................................................44
Chapter 6 Conclusion and Future Work................45
6.1 Conclusion................................................................................................45
6.2 Future Work..............................................................................................45
Reference material................................................46
參考文獻 Reference material
[1] C.C. Tsai, On-Chip jitter measurement for phase-locked loop. MSc. Thesis, National Chiao Tung University, Taiwan, 2002.
[2] M. M. Gourary, S. G. Rusakov, S. L. Ulyanov, M. M. Zharov, K. K. Gullapalli, and B. J.Mulvaney, “A new approach for computation of timing jitter in phase locked loop,” Proc.of Design, Automation and Test in Europe and Exhibition 2000, pp. 345-349, 2000.
[3] F. Azais, M. Renovell, Y. Bertrand, A. Ivanova, and S. Tabatabaei, “A unified digital test technique for PLLs: catastrophic faults covered,” Proc. of Int. Mixed Signal Testing Workshop, pp. 269-292, June 1999.
[4] Bell Research Laboratories, “SONET transport systems: Common criteria network
element architecture features,” GR-253-core, Issue 1, pp. 5-81, Dec. 1994.
[5] W. Dalal and D. Rosenthal, “Measuring jitter of high speed data channels using
under-sampling technique,” Proc. of Int. Test Conf., pp. 814-818, 1998.
[6] Nelson Soo, “Jitter measurement techniques,” Pericom Application Brief AB36, Nov.2000.
[7] K. A. Jenkins and J. P. Eckhardt, “Measuring jitter phase error in microprocessor
phase-locked loop,” IEEE Design & Test of computers, vol.17, pp. 86-93, Apr-Jun 2000.
[9] Bozena Kaminska, “BIST means more measurement options for designers,” EDN
Magazine, Dec. 2000.
[10] M. Frisch Arnold and H. Thomas Rinderknecht, “Jitter Measurement System and
Method”. US Patent # 6,295,315 assigned to Frisch, et al. Sep. 2001.
[11] S. Tabatabaei and A. Ivanov, “Embedded timing analysis: A SoC infrastructure” IEEEDesign & Test of Computers, vol. 19, pp. 22-34, May-June 2002.
[12] S. Stephen and R. Audin, “BIST for Phase-Locked Loops in Digital Applications” Proc.
of Int. Test Conf., pp. 532-540, Sep 1999.
[13] A. H. Chan and G.W. Roberts, “A synthesizable, fast and high-resolution timing
measurement device using a component-invariant vernier delay line” Proc. of Int. Test
Conf., pp. 858-867, Nov 2001.
[14] T. Lin, K. L. Luo, Y. J. Chang and W.C. Wu, “A testable design of on-chip jitter measurement,” VLSI Design/CAD Symposium, Taidong, Taiwan, Aug 2002, pages 182-185
[15] Antonio H. Chan and Gordon W. Roberts, “A Jitter Characterization System Using a Component-Invariant Vernier Delay Line” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on Volume 12, Issue 1, Jan. 2004 Page(s):79 - 95
指導教授 鄭國興(Kuo-Hsing Cheng) 審核日期 2006-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明