博碩士論文 93521034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:20 、訪客IP:3.94.196.192
姓名 李建賢(Chien-Hsien Lee)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 高解析度可變動責任週期之同步複製延遲電路
(A High-Resolution Arbitrary Duty-Cycle Synchronous Mirror Delay Circuit)
相關論文
★ 一種應用於觸控液晶顯示器的新型嵌入式開關★ 多重相位之延遲鎖定迴路倍頻器設計與分析
★ 2.5Gbps串列收發器設計★ 具低抖動與可適應式頻寬之自我偏壓鎖相迴路設計
★ 應用於串列傳輸之2.5GB/s CMOS 超取樣資料回復電路★ 全數位任意責任週期之同步映射延遲電路
★ 全數位式互補金屬氧化半導自我取樣延遲線電路用於時脈抖動量測★ 500MHz,30個相位輸出之鎖相迴路應用於三倍超取樣時脈回復系統
★ 設計於90奈米製程輸出頻率為100MHz-1GHz之具可適應性頻寬鎖相迴路★ 奈米CMOS晶片內序列傳輸之接收器
★ 奈米CMOS晶片內序列傳輸之送器★ 基於鎖相迴路之多重相位脈波產生器
★ 低能量時脈儲存元件之分析、設計與量測★ 具有預先增強器之Gbps串列連結傳送器及全數位超取樣資料回復器
★ 應用於10Gbps晶片系統傳輸鏈之低抖動自我校準鎖相迴路設計★ 使用高精準度電流偵測技巧之高轉換效能同步互補式金氧半降壓切換式穩壓器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 現在的晶片設計,對於訊號同步電路越來越重視,所以在混和訊號電路裡有鎖相迴路(Phase-Locked Loop, PLL)和延遲迴路(Delay-Locked Loop, DLL)被廣範的運在晶片設計裡,但這兩種電路需要考慮幾個問題,第一點因為是閉迴路系統,所以有頻寬問題,需要設計電容來增加電路的穩定性,第二點在需要花幾十個時脈週期以上才能鎖定,在這過程中需要較大的功率消耗,有鑒於此,我們設計同步複製延遲電路。
傳統的同步複製延遲電路有兩個主要的缺點,第一點是輸入訊號責任週期受到限制,第二點是是靜態相位誤差太大,使得傳統的同步延遲電路只能廣範地運用在記憶體模組裡,為了讓同步延遲電路能運用在更廣的範圍,我們會針對這兩個缺點作改善,本篇論文後有量測結果,以證明的確可以改善這兩個缺點。
摘要(英) With the evolution of CMOS process technology, the clock synchronization becomes truly an important issue. Phase-Locked loop (PLL) and delay-locked loop (DLL) are often applied in many synchronization-dependent systems in order to suppress the clock skew. There are two issues to solve in the two circuits. First, both PLL and DLL are the feedback systems which are bandwidth issue. These circuit needs to design capacitance in order to increase stability. Second, during the lock-in frequency acquisition process, it results in a large standby current, which causes lots of power dissipation. Therefore, we design digital synchronous mirror delay circuit.
There are major two issues in conventional synchronous mirror delay circuit. First, the input signal clock is not arbitrary duty cycle. Second, the static phase error is much larger. Therefore, conventional synchronous mirror delay circuit often applied in many memory modules. In order to apply in large range, we improve the two disadvantages. The proposed SMD which measure result list final chapter can solve the two issues.
關鍵字(中) ★ 同步複製延遲電路 關鍵字(英) ★ Synchronous Mirror Delay Circuit
論文目次 Abstract Ⅱ
Contents Ⅲ
Figures Captions Ⅴ
Tables Captions Ⅶ
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Goals and Applications 2
1.3 Thesis Organization 3
Chapter 2 Review and Analysis of Conventional Clocking Circuit 4
2.1 Phase Alignment Circuits 4
2.2 Conventional Synchronous Mirror Delay 5
2.3 Interleaved Synchronous Mirror Delay 8
2.4 Area Reduce Interleaved SMD 10
2.5 Direct-Skew-Detect Synchronous Mirror Delay 12
2.6 Mixed-mode Synchronous Mirror Delay 13
2.7 Successive Approximation Register SMD 14
2.8 Summary 16
Chapter 3 The Proposed High-Resolution Arbitrary Duty-Cycle SMD Circuit 17
3.1 Proposed SMD circuit structure 17
3.2 The phase detector and phase shifter 19
3.2.1 The phase detector circuit of the proposed SMD 19
3.2.2 The phase detector circuit analysis 20
3.2.3 The phase shifter circuit of the proposed SMD 21
3.2.4 The phase selector and phase shifter circuit 24
3.3 The fine delay and a Mux 8:1 circuit 25
3.3.1 The blender delay circuit of the proposed SMD 25
3.3.2 The fine delay circuit of the proposed SMD 26
3.3.3 The fine delay circuit analysis 27
3.3.4 The fine delay and a Mux 8:1 circuit 28
3.3.5 The Limited operation frequency range 29
3.4 Waste power dissipation 33
3.5 Summary 34
Chapter 4 Chip Implementation 35
4.1 Introduction 35
4.2 The Concept of Signal Integrity 35
4.3 Termination 36
4.4 The Input Interface of Driver 38
4.5 The Output Interface of Driver 39
4.6 Measurement Instrument 41
4.7 Experimental Results 43
4.8 Summary 52
Chapter 5 Conclusions and Future Work 53
5.1 Conclusions 53
5.2 Future Work 54
Reference 56
參考文獻 [1] T. Saeki, Y. Nakaoka, M. Fujita, A. Tanaka, K. Nagata, K. Sakakibara, T. Matano, Y. Hoshino, K. Miyano, S. Isa, E. Kakehashi, J.M. Drynan, M. Komuro, T. Fukase, H. Iwasaki, J. Sekine, M. Igeta, N. Nakanishi, T. Itani, K. Yoshida, and Yoshi, “A 2.5 ns Clock Access 250 MHz 256 Mb SDRAM with A Synchronous Mirror Delay,” in IEEE ISSCC Dig. Tech. Paper, pp. 374-375, Feb. 1996
[2] T. Saeki, Y. Nakaoka, M. Fujita, A. Tanaka, K. Nagata, K. Sakakibara, T. Matano, Y. Hoshino, K. Miyano, S. Isa, S. Nakazawa, E. Kakehashi, J.M. Drynan, M. Komuro, T. Fukase, H. Iwasaki, M. Takenaka, J. Sekine, M. Igeta, and N. Nakanishi, “A 2.5-ns Clock Access, 250-MHz, 256-Mb SDRAM with Synchronous Mirror Delay,” IEEE J. Solid-State Circuits, vol. 31, no 11, pp. 1656-1668, Nov. 1996.
[3] T. Saeki, H. Nakamura, and J. Shimizu, “A 10ps Jitter 2 Clock Cycle Lock Time Cmos Digital Clock Generator Based on An Interleaved Synchronous Mirror Delay Scheme,” in VLSI Circuits, Dig. Tech. Paper, pp. 109-110, Jun. 1997
[4] T. Saeki, K. Minami, H. Yoshida, and H. Suzuki, “The Direct Skew Detect Synchronous Mirror Delay (Direct SMD) for ASICs,” Custom Integrated Circuits Conference, pp. 511-514, May. 1998.
[5] T. Saeki, K. Minami, H. Yoshida, and H. Suzuki, “A Direct-kew-detect Synchronous Mirror Delay for Application-specific Integrated Circuits,” IEEE J. Solid-State Circuits, vol. 34, no 3, pp. 372-379, Mar. 1999.
[6] Kihyuk Sung, Byung-Do Yang, and Lee-Sup Kim, “Low Power Clock Generator Based on An Area-reduced Interleaved Synchronous Mirror Delay Scheme,” ISCAS, Vol. 3, pp. 671-674 May. 2002.
[7] Kihyuk Sung, Byung-Do Yang, and Lee-Sup Kim, “Low Power Clock Generator Based on Area-reduced Interleaved Synchronous Mirror Delay,” Electronics Letters, Vol. 38, no.9, pp. 399-400, Apr. 2002
[8] Daeyun Shim, Dong-Yun Lee, Sanghun Jung, Chang-Hyun Kim, and Wonchan Kim, “An Analog Synchronous Mirror Delay for High-speed DRAM Application,” IEEE J. Solid-State Circuits, vol. 34, no 4, pp. 484-493, Apr. 1999.
[9] Daeyun Shim, Yeon-Jae Jung, Seung-Wook Lee, and Wonchan Kim, “Fast Locking Clock Generator Using Analog Synchronous Mirror Delay Technique with Feedback Control,” Solid-State and Integrated-Circuits Technology, vol. 2, pp. 1125-1127, Oct. 2001.
[10] Seong-Jin Jang, Young-Hyun Jun, Jae-Goo Lee, and Bai-Sun Kon, “ASMD With Duty Cycle Correction Scheme for High-Speed DRAM,” Electronics Letters, Vol. 37, no.16, pp. 1004-1006, Aug. 2001
[11] Sei Hyung Jang, “A New Synchronous Mirror Delay With An Auto-Skew-Generation circuit,” ISCAS, Vol. 5, pp. 397-400, May. 2003
[12] Tae-Sung Kim, Sung-Ho Wang, and Beomsup Kim, “A Low Jitter, Fast Locking Delay Locked Loop Using Measure And Control Scheme,” Mixed-Signal Design, SSMSD, Southwest Symposium on, pp. 45-50, Feb. 2001
[13] Jeong-Seok Chae, Daejeong Kim, and Dong Myeong Kim, “Wide Range Single-Way-Pumping Synchronous Mirror Delay,” Electronics Letters, Vol. 36, no.11, pp. 939-940, May. 2000
[14] Kihyuk Sung and Lee-Sup Kim, “A High-resolution Synchronous Mirror Delay Using Successive Approximation Register,” IEEE J. Solid-State Circuits, vol. 39, no 11, pp. 1997-2004, Nov. 2004.
[15] Yong Jin Yoon, Hyuck In Kwon, Jong Duk Lee, Byung Gook Park, Nam Seog Kim, Uk Rae Cho, and Hyun Guen Byun, “Synchronous Mirror Delay For Multiphase Locking,” IEEE J. Solid-State Circuits, vol. 39, no 1, pp. 150-156, Jan. 2004.
[16] Chih-Hao Sun and Shen-Iuan Liu, "A Mixed-Mode Synchronous Mirror Delay Insensitive To Supply And Load Variations", Journal Of Analog Integrated Circuits And Signal Processings, vol. 39, pp. 75-80, April 2004
[17] Yi-Ming Wang and Jinn-Shyan Wang, "A Low-power Half-Delay-Line Fast Skew-Compensation Circuit", IEEE J. Solid-State Circuits, vol. 39, no 6, pp. 906-918, June. 2004.
[18] Kihyuk Sung and Lee-Sup Kim, "A High-Resolution Synchronous Mirror Delay Using Successive Approximation Register", IEEE J. Solid-State Circuits, vol. 39, no 11, pp. 1997-2004, Nov. 2004.
[19] Kuo-Hsing Cheng, Chen-Lung Wu, Yu-Lung Lo and Chia-Wei Su, "A Phase-Detect Synchronous Mirror Delay For Skew-Compensation Circuit", IEEE ISCAS,. Vol.2, pp. 1070-1073, May. 2005.
[20] Kuo-Hsing Cheng, Chen-Lung Wu, Chia-Wei Su and Yu-Lung Lo "A Phase-Locked Pulse Width Control Loop With Programmable Duty Cycle", IEEE ASIA-PACIFIC Conference on ASIC, pp. 84-87, Aug. 2004
指導教授 鄭國興(Kuo-Hsing Cheng) 審核日期 2006-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明