博碩士論文 93521056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:78 、訪客IP:18.119.132.24
姓名 邱景鴻(Ching-Hung Chiu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於毫米波射頻接收機前端積體電路之研製
(Design and Implementation of RF Receiver Front-end Integrated Circuits for Millimeter-wave Applications)
相關論文
★ 增強型異質結構高速移導率電晶體大信號模型之建立及其在微波放大器之應用★ 空乏型暨增強型Metamorphic HEMT之製作與研究
★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用★ 氧化鋁基板上微波功率放大器之研製
★ 氧化鋁基板上積體化微波降頻器電路之研製★ 順序特徵結構設計研究及其應用在特徵模子去耦合與最小特徵值靈敏度
★ 順序特徵結構設計研究及其應用在最大強健穩定度與最小迴授增益★ LDMOS功率電晶體元件設計、特性分析及其模型之建立
★ CMOS無線通訊接收端模組之設計與實現★ 積體化微波被動元件之研製與2.4GHz射頻電路設計
★ 異質結構高速移導率電晶體模擬、製作與大訊號模型之建立★ 氧化鋁基板微波電路積體化之2.4 GHz接收端模組研製
★ 氧化鋁基板上積體化被動元件及其微波電路設計與研製★ 二維至三維微波被動元件與射頻電路之設計與研製
★ CMOS射頻無線通訊發射端電路設計★ 次微米金氧半場效電晶體高頻大訊號模型及應用於微波積體電路之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文在於討論設計與實現射頻接收機前端之電路,如低雜訊放大器,混波器和壓控振盪器。
我們使用台積電0.18微米金氧半互補式 (CMOS) 製程來研製一個應用於K頻帶的增益可變式之低雜訊放大器。我們使用共平面波導 (CPW) 傳輸線做為匹配元件,以減低損耗性矽基板在高頻下的影響。在電路的高增益模式中,量測到的小訊號增益為8.1 dB,而雜訊指數為6 dB。本增益可變式之低雜訊放大器的增益可變範圍是7.2 dB。
在本論文中也呈現設計了一個應用於3到34 GHz的分散式汲極混波器。這個混波器電路是使用了0.15微米共源單閘極的假型高速電子移動電晶體 (PHEMT) 來組成的一個簡單分散式架構,並且其轉換損耗在3到34 GHz之間均優於6.7 dB。本分散式混波器實現了低功率消耗和高線性度於寬頻的應用上。
之後利用0.18微米CMOS製程技術來設計一個應用於26 GHz低相位雜訊且寬頻率調整範圍的PMOS交越耦合雙推式的壓控振盪器 (VCO)。電路中使用了一個只有PMOS的交越耦合對來降低相位雜訊,而其所量測到於二次諧波輸出端的相位雜訊在1 MHz位移時為-102.86 dBc/Hz。並且這個雙推式的VCO可達到14%的寬頻率調整範圍。另一個應用於50 GHz的雙推式VCO是使用了0.15微米PHEMT的製程技術所製作和使用一段λg/2長的微帶線共振器來達到雙推式振盪。這種類型的雙推式VCO擁有著簡單架構與良好特性的優點。由模擬結果,本VCO具有1.2 GHz的頻率調整範圍和在1 MHz位移時有-111.8 dBc/Hz的相位雜訊。
摘要(英) The thesis investigates the design and implementation of RF receiver front-end circuits, such as low noise amplifier, mixer, and voltage-controlled oscillator.
A K-band variable-gain low noise amplifier (VGLNA) is designed and implemented using TSMC 0.18-μm CMOS technology. Coplanar waveguide (CPW) transmission lines are adopted as matching elements to reduce the effect of lossy silicon substrate at high frequency. In high-gain mode, the measured small signal gain of VGLNA is 8.1 dB and noise figure of 6 dB at 21.7 GHz. The gain control range of the VGLNA is 7.2 dB.
A 3-34 GHz distributed drain mixer using CPW technology is demonstrated in this thesis. This MMIC mixer uses a simple distributed topology that is composed of common-source single-gate 0.15-μm PHEMT, and it shows a conversion loss of better than 6.7 dB from 3 to 34 GHz. This distributed mixer achieves low dc power consumption and high linearity for broadband applications.
Afterward, the 26-GHz PMOS cross-coupled push-push VCO using 0.18-μm CMOS technology is design for low phase noise and wide tuning range. The PMOS-only cross-coupled pair is used to lower the phase noise, and the measured 2nd harmonic phase noise is -102.86 dBc/Hz at 1-MHz offset. The push-push VCO achieves a wide tuning range of 14%. Another 50-GHz push-push VCO uses 0.15-μm PHEMTs technology and the λg/2 microstrip line resonator to form a common resonator for push-push oscillation. This type of push-push VCO has the advantages of simple configuration and good performances. From simulated results, the VCO achieves the frequency tuning range of 1.2 GHz and the phase noise of -111.8 dBc/Hz at 1-MHz offset.
論文目次 Chapter 1 Introduction.....1
1.1 Motivation.....1
1.2 Contributions.....2
1.3 Thesis Outline.....3
Chapter 2 K-band Coplanar Waveguide Variable Gain Low Noise Amplifier.....5
2.1 Introduction to Low Noise Amplifier.....5
2.1.1 K-band Low Noise Amplifier.....5
2.1.2 Variable Gain Low Noise Amplifier.....6
2.2 Fundamentals of Low Noise Amplifier.....7
2.2.1 Noise in MOSFETs.....7
2.2.2 Noise Figure......10
2.2.3 Linearity .....12
2.2.4 Sensitivity and Dynamic Range.....14
2.3 K-band CPW Variable Gain Low Noise Amplifier.....15
2.3.1 Coplanar Waveguides.....16
2.3.2 Circuit Design.....17
2.4 Simulation and Measurement Results.....19
2.4.1 Simulation Results.....19
2.4.2 Measurement Results.....23
2.5 Summary.....30
Chapter 3 Broadband Coplanar Waveguide Distributed Drain Mixer.....32
3.1 Introduction to Mixer.....32
3.1.1 Active FET mixers.....32
3.1.2 Resistive FET mixers.....34
3.1.3 Distributed mixers.....35
3.2 Fundamentals of Mixers.....39
3.2.1 Conversion Gain.....39
3.2.2 Linearity and Isolation.....40
3.2.3 Spurious Signal Response.....41
3.3 3-34 GHz Distributed Drain Mixer.....42
3.3.1 Circuit Analysis.....42
3.3.2 Circuit Design.....46
3.4 Simulation and Measurement Results.....48
3.5 Summary.....54
Chapter 4 Ka- and V-band Push-push Voltage-Controlled Oscillators.....56
4.1 Introduction to Voltage-Controlled Oscillator.....56
4.2 Voltage-Controlled Oscillator Design Theory.....57
4.2.1 Basic Oscillation Theory.....57
4.2.2 Specifications of VCO.....61
4.2.3 Concepts of Push-push VCO.....64
4.3 A Ka-band PMOS Cross-coupled Push-push VCO.....65
4.3.1 Circuit Design.....65
4.3.2 Simulation Results.....66
4.3.3 Measurement Results.....69
4.3.4 Summary.....76
4.4 A V-band Push-push VCO using λg/2 microstrip line resonator.....78
4.4.1 Circuit Design.....78
4.4.2 Simulation Results.....80
4.4.3 Summary.....84
Chapter 5 Conclusions.....85
References.....87
參考文獻 [1] D. Lu, D. Rutledge, M. Kovacevic, and J. Hacker, “A 24-GHz patch array with a power amplifier/low-noise amplifier MMIC,” Int. J. Infrared and Millimeter Waves, vol. 23, pp. 693-704, May 2002.
[2] R. S. Elliott, “Beamwidth and directivity of large scanning arrays, first of two parts,” Microwave J., vol. 6, pp. 53-60, Dec. 1963.
[3] H. Hashemi, X. Guan, and A. Hajimiri, “A fully integrated 24 GHz 8-path phased-array receiver in silicon,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2004.
[4] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Select. Areas Commun., vol. 16, pp. 1451-1458, Oct. 1998.
[5] F. Elliger, “26-42 GHz SOI CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 39, no. 3, pp. 522-528, March 2004.
[6] X. Guan and A. Hajimiri, “A 24-GHz CMOS front end,” IEEE J. Solid-State Circuits, vol. 39, no. 2, pp. 368-373, Feb. 2004.
[7] K.-W. Yu, Y.-L. Lu, D.-C. Chang, Victor Liang, and M. Frank Chang, “K-Band low-noise amplifiers using 0.18 μm CMOS technology,” IEEE Microwave and Wireless Comp. Lett., vol. 14, no. 3, pp. 106-108, March 2004.
[8] S.-C. Shin, M.-D. Tsai, R.-C. Liu, K.-Y. Lin, and H. Wang, “A 24-GHz 3.9-dB NF low noise amplifier using 0.18 μm CMOS technology,” IEEE Microwave and Wireless Comp. Lett., vol. 15, no. 7, pp. 448-450, July 2005.
[9] Y. Mimino, M. Hirata, K. Nakamura, K. Sakamoto, Y. Aoki, and S. Kuroda, “High gain-density K-band P-HEMT LNA MMIC for LMDS and satellite communication,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, June 2000, pp. 17-20.
[10] S.-C. Shin, S.-F. Lai, K.-Y. Lin, M.-D. Tsai, H. Wang, C.-S. Chang, Y.-C. Tsai, “18-26 GHz low-noise amplifiers using 130- and 90-nm bulk CMOS technologies,” IEEE Radio Frequency Integrated Circuits Symp. Dig., June 2005, pp. 47-50.
[11] Chieh-Min Lo, “Design and Implementation of CMOS Low Noise Amplifiers for WLAN Frequency-Band Applications,” M.S. thesis, Graduate institute of communication engineering, National Taiwan University, Taipei, Taiwan, R.O.C., 2005.
[12] F. Ellinger, U. Lott, W. Bachtold, “A 5.2 GHz variable gain LNA MMIC for adaptive antenna combining,” IEEE Radio Frequency Integrated Circuits Symp. Dig., June 1999, pp.197-200.
[13] T. K. K. Tsang, and M. N. El-Gamal, “Gain controllable very low voltage (≦ 1 V) 8-9 GHz integrated CMOS LNA’s,” IEEE Radio Frequency Integrated Circuits Symp. Dig., June 2002, pp.205-208.
[14] M.-D. Tsai, R.-C. Liu, C.-S. Lin, and H. Wang, “A low-voltage fully-integrated 4.5-6 GHz CMOS variable gain low noise amplifier,” 2003 European Microwave Conference, vol. 1, Oct. 2003, pp. 13-16.
[15] R. Point, M. Mendes, and W. Foley, “A differential 2.4 GHz switched-gain CMOS LNA for 802.11b and Bluetooth,” IEEE Radio and Wireless Conference, Aug. 2002, pp. 221-224.
[16] M. K. Raja, T. T. C. Boon, K. N. Kumar, and W. S. Jau, “A fully integrated variable gain 5.75-GHz LNA with on chip active balun for WLAN,” IEEE Radio Frequency Integrated Circuits Symp. Dig., June 2003, pp.439-442.
[17] C.-H. Liao, and H.-R. Chuang, “A 5.7-GHz 0.18 μm CMOS gain-controlled differential LNA with current reuse for WLAN receiver,” IEEE Microwave and Wireless Comp. Lett., vol. 13, pp. 526-528, Dec. 2003.
[18] D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, pp. 745-759, June 1997.
[19] T. H. Lee, “The Design of CMOS Radio-Frequency Integrated Circuits,” 2nd edition, Cambridge 2004.
[20] B. Razavi, “RF Microelectronics,” Upper Saddle River, New Jersey: Prentice Hall, 1998.
[21] H. T. Friis, “Noise Figure of Radio Receivers,” Proc. IRE, vol. 32, pp.419-422, July 1944.
[22] C. P. Wen, “Coplanar Waveguide, a Surface Strip Transmission Line Suitable for Nonreciprocal Gyromagnetic Device Applications,” Microwave Symp. Dig., G-MTT International, vol. 69, no. 1, May 1969, pp. 110-115.
[23] T. C. Edwards and M. B. Steer, Foundations of Interconnet and Microstrip Design, 3rd edition. New York Wiley, 2000.
[24] Advanced Design System (ADS), Agilent.
[25] F. Ellinger, H. Jackel, “Low-cost BiCMOS variable gain LNA at Ku-band with ultra-low power consumption,” IEEE Trans. on MTT, vol. 52, pp. 702-708, Feb. 2004.
[26] Q.Chaudhry, R. Alidio, G. Sakamoto, and T. Cisco, “A SiGe MMIC variable gain cascode amplifier,” IEEE Microwave and Wireless Comp. Lett., vol. 12, pp. 424-425, Nov. 2002.
[27] I. D. Robertson, and S. Lucyszyn, “RFIC and MMIC design and technology,” The Institution of Electrical Engineers, London, United Kingdom, 2001.
[28] M. Fairburn, B. J. Minnes, and J. Neale, "A novel monolithic distributed mixer design", Microwave and Millimetre Wave Monolithic Integrated Circuits, IEE Colloquium on, pp. 13/1-13/6, 11 Nov 1988.
[29] S. A. Maas, "A GaAs MESFET Mixer with Very Low Intermodulation," Microwave Theory and Techniques, IEEE Transactions on vol. 35, no. 4, pp. 425 - 429, Apr 1987.
[30] O. S. A. Tang, C. S. Atchison, "A Practical Microwave Travelling-Wave MESFET Gate Mixer," Microwave Symp. Dig., MTT-S International vol. 85, no. 1, Jun. 1985, pp. 605-608.
[31] On San A. Tang, C. S. Aitchison, “A very wide-band microwave MESFET mixer using the distributed mixer principle,” IEEE Trans. on Microwave Theory and Tech., vol. 33, no. 12, pp. 1470-1478, Dec., 1985.
[32] R. Majidi-Ahy, C. Nishimoto, J. Russell, W. Ou, S. Bandy, and G. Zdasiuk, “23-40 GHz InP HEMT MMIC distributed mixer, “ 1992 International IEEE MTT-S Symp. Dig., vol. 2, June, 1992, pp. 1063-1066.
[33] D. Hollmann, R. Heilig, and G. Baumann, “A monolithic broadband 10-50 GHz distributed HEMT mixer including active LO-RF combiner,” 1994 GaAs IC Symp. Dig., Oct. 1994, pp. 100-103.
[34] K. Deng and H. Wang, “A 3-33 GHz PHEMT MMIC Distributed Drain Mixer,” 2002 IEEE Radio Frequency Integrated Circuits Symp. Dig., June 2002, pp. 151-154.
[35] A. H. Darsinooieh, O. Palamutcuoglu, "On the theory and design of subharmonically drain pumped microwave MESFET distributed mixers," Electrotechnical Conference, 1996. MELECON '96, 8th Mediterranean vol. 1, May 1996, pp. 595-598.
[36] M. Lacon, K. Nakano, and G. S. Dow, “A wide band distributed dual gate HEMT mixer,” 1988 GaAs IC Symp. Dig., Oct. 1988, pp. 173-176.
[37] W. Titus, M. Miller, "2-26 GHz MMIC frequency converter," GaAs IC Symp., 1988. Technical Digest 1988, 10th Annual IEEE, Nov. 1988, pp. 181-184.
[38] T. S. Howard, A. M. Pavio, "A Distributed 1-12 GHz Dual-Gate FET Mixer," Microwave Symp. Dig., MTT-S International vol. 86, no. 1, June, 1986, pp. 329-332.
[39] K. S. Ang and I. D. Robertson, “Multiple-FET mixer analysis with applications to the cascode distributed mixer,” 1999 High Frequency Postgraduate Student Colloquium, Sept. 1999, pp. 22-27.
[40] I. D. Robertson, A. H. Aghvami, "A novel 1 to 14 GHz monolithic matrix distributed FET mixer," Proceeding of the 21st European microwave conference, Sept. 1991, pp. 489-494.
[41] W. Titus, Y. Tajima, R. A. Pucel, A. Morris, “Distributed monolithic image rejection mixer,” 1986 GaAs IC Symp. Dig., pp. 191-194.
[42] Won Ko and Youngwoo Kwon, “A GaAs-Based 3-40 GHz Distributed Mixer with Cascode FET Cells,” 2004 IEEE Radio Frequency Integrated Circuits Symp. Dig., June, 2004, pp. 413-416.
[43] K. S. Ang, S. Nam, and I. D. Robertson, “A 2 to 18 GHz monolithic resistive distributed mixer,” Proceedings of European Microwave Conference, Munich, Germany, 1999, pp. 222-225.
[44] I. D. Robertson, A. H. Aghvami, “A practical distributed FET mixer for MMIC applications,” Microwave Symp. Dig., 1989., IEEE MTT-S International vol.3, June, 1989, pp. 1031-1032.
[45] J. B. Beyer and S. N. Prasad, “MESFET Distributed Amplifier Design Guidelines,” IEEE Trans. On Microwave Theory and Tech., Vol. MTT-32, No.3, pp. 268-275, March 1984.
[46] B.Razavi, “Design of Analog CMOS Integrated Circuits,” McGraw, Inc. 2001.
[47] R.-C. Liu, H.-Y. Chang, C.-H. Wang, and H. Wang, “A 63-GHz VCO using a standard 0.25-μm CMOS process,” in IEEE Int. Solid-State Circuit Conf. Dig. Tech. Papers, pp. 372-373, 2004.
[48] K. W. Kobayashi, A. K. Oki, L. T. Tran, J. C. Cowles, A. Gutierrez-Aitken, F. Yamada, T. R. Block, D. C. Streit, “A 108-GHz InP-HBT monolithic push-push VCO with low phase noise and wide tuning bandwidth,” IEEE J. Solid-State Circuits, vol. 34, pp. 1225-1232, Sept. 1999.
[49] D. M. Pozar, “Microwave Engineering,” 3rd edition, John Wiley & Sons. 2005.
[50] A. Hajimiri, and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, pp. 179-194, Feb. 1998.
[51] D. B. Leeson, “A Simple Model of Feedback Oscillator Noise Spectrum,” Proc. IEEE, vol. 54, Feb. 1966, pp. 329-330.
[52] Yi-Hsien Cho, “Design of Microwave and Millimeter-wave CMOS VCOs,” M.S. thesis, Graduate institute of communication engineering, National Taiwan University, Taipei, Taiwan, R.O.C., 2005.
[53] R. G. Freitag, “A unified analysis of MMIC power amplifier stability,” in IEEE MTT-S International Microwave Symp. Dig., June 1992, pp. 297-300.
[54] R. G. Freitag, S. H. Lee, D. M. Krafcsik, D. E. Dawson, J. E. Degenford, “Stability and improved circuit modeling considerations for high power MMIC amplifiers,” Microwave and Millimeter-Wave Monolithic Circuits Symposium, May 1988, pp. 125-128.
[55] Y.-H. Cho, M.-D. Tsai, H.-Y. Chang, C.-C. Chang, and H. Wang, “A low phase noise 52-GHz push-push VCO in 0.18-μm bulk CMOS technologies,” in IEEE Radio Frequency integrated Circuits Symp. Dig. June 2005, pp. 131-134.
[56] A. Scuderi, and G. Palmisano, “A Low-Phase-Noise Voltage-Controlled Oscillator for 17-GHz Applications,” IEEE Microwave and Wireless Comp. Lett. vol. 16, no. 4, pp. 191-193, April 2006.
[57] C.-M. Hung, L. Shi, I. Laguado, and K. K. O, “A 25.9-GHz voltage-controlled oscillator fabricated in a CMOS process,” Symp. VLSI Circuits Dig. Tech. Papers. June 2000, pp.100-101.
[58] J. P. Carr, and B. M. Frank, “A 38 GHz accumulation MOS differentially tuned VCO design in 0.18-μm CMOS,” Silicon Monolithic Integrated Circuits in RF Systems, Dig. of Papers. Jan. 2006, pp. 170-173.
[59] J.-O. Plouchart, J. Kim, N. Zamdmer, M. Sherony, Y. Tan, M. Yoon, M. Talbi, A. Ray, and L. Wagner, “A 31 GHz CML ring VCO with 5.4 ps delay in a 0.12-μm SOI CMOS technology,” IEEE European Solid-State Conf., Sep. 2003. pp. 357-360.
[60] J.-H. C. Zhan, J. S. Duster, and K. T. Kornegay, “A 25-GHz emitter degenerated LC VCO,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 2062-2064, Nov. 2004.
[61] N. Saniei, H. Djahanshahi, C. A. T. Salama, “25 GHz inductorless VCO in a 45 GHz SiGe technology,” in IEEE Radio Frequency Integrated Circuits Symp. Dig. June 2003, pp. 269-272.
[62] W. L. Chan, H. Veenstra, J. R. Long, “A 32 GHz quadrature LC-VCO in 0.25-μm SiGe BiCMOS technology,” International Solid-State Circuits Conf. Dig. Tech. Papers, vol. 1, Feb. 2005, pp. 538-616.
[63] Hai Xiao, T. Tanaka, and M. Aikawa, “Push-push oscillator with simplified circuit structure,” Electronics Lett. vol. 38, no. 24, pp. 1545-1547, Nov. 2002.
指導教授 詹益仁(Yi-Jen Chan) 審核日期 2006-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明