博碩士論文 93521063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.141.41.187
姓名 蕭安成(An-Cheng Shiao)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 超高速(>40GHz)低驅動電壓(<2V)雙空乏區消逝波波導行波式致電吸收調制器
(Evanescently-Coupled Dual-Depletion-Region Traveling-Wave Electroabsorption Modulator with High-Speed(>40GHz) and Low-Driving-Voltage(<2V) Performance)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用
★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列
★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射
★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在現今高速的光通信系統中,高速的(>10Gbits/sec) 光電調制器為通信系統中非常關鍵性的一部分。而為了達到高速,元件的電容必須縮小,根據 的公式,為了縮小電容,主動區的面積必須縮小(2μm×75μm),但一再縮小主動區,會遇到以下問題:光偶合損耗(coupling loss)變大、不易於準確劈裂以及難於量測。現在普遍的解決的方法有以再磊晶( re-growth )的方式去製作被動的光波導來增加元件的總長度等,但再磊晶等方法是一種較為複雜的製程。所以我們設計了一種在主動區前加上一個經由設計後的消逝波波導管,它可以將光從波導管中導波至主動區,讓我們直接縮短主動區長度而不會縮短元件總長度,因此不會遇到因縮小主動區時所遇到的問題。而量子井以及雙空乏區的設計,也同時改善了元件對極化的敏感度以及高速與驅動電壓間的扺觸。
實驗結果驗證,我們元件的設計結構確實降低了驅動電壓 (V20dB=1.65V),在穿透係數(S21)的量測中f3dB~60GHz,而電-光響應頻寬大於45 GHz 的表現,經計算後的FOM大於27.19,與近年來光調制器的FOM相比,我們元件的FOM得到極大的改善。
摘要(英) We demonstrate a novel structure of traveling-wave electro-absorption modulator (EAM) at a 1.55um wavelength. By incorporating the epi-layer structure of Dual-Depletion-Region Electro-Absorption Modulator (DDR EAM) with an evanescently-coupled optical waveguide and the traveling-wave electrodes, the demonstrated device can achieve low electrical return loss (-20dB at ~60GHz), wide 3-dB bandwidth (60GHz) of electrical transmission loss, wide electrical-to-optical (EO) bandwidth (45GHz), and low 20dB driving-voltage (V20dB, 1.65V) with extremely low polarization dependency. This new structure can not only achieve excellent figures-of-merit but release the burden imposed on downscaling the core width or length of high-speed/low driving-voltage EAM without using epitaxial re-growth or ion-implantation techniques to isolate the active and passive regions.
關鍵字(中) ★ 致電吸收調制器
★ 調制器
關鍵字(英) ★ electroabsorption modulator
★ modulator
論文目次 目錄. . . . . . . . . . . . . . . . . . . . . . . . . . Ⅰ
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . .Ⅲ
表目錄. . . . . . . . . . . . . . . . . . . . . . . . .Ⅵ
第一章、導論
參考文獻 [1] S. Kodama, T. Yoshimatsu, and H. Ito, “320Gbit/s optical gate monolithically integrating photodiode and electroabsorption modulator,” Electronics Letters, vol. 39, pp.383-385, Feb., 2003.
[2] H.-F. Chou, Y.-J. Chiu, A. Keating, J. E. Bowers, and D. J. Blumenthal,“Photocurrent-assisted wavelength (PAW) conversion with electrical monitoring capability using a traveling-wave electroabsorption modulator,” IEEE Photon. Technol. Lett., vol. 16, pp.530-532, Feb., 2004.
[3] Joseph C. Palais, “Fiber optic communications”, fourth edition,2001.
[4] Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, “30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser,”IEEE Photonics Technol. Lett., vol. 9, pp. 25-27, 1997.
[5] C. H. Henry, “Theory of the linewidth of semiconductor lasers,” IEEE J. Quantum Electron., vol. QE-18, 9, pp. 259-264, 1982.
[6] T. L. Koch and J. Bowers, “Nature of wavelength chirping in directly modulated semiconductor lasers,” IEEE Electron Lett., vol. 20, pp. 1038-1040, 1984.
[7] T. L. Koch and R. A. Linke, “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Appl. Phys. Lett., vol. 48, pp. 613-615, 1986.
[8] M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers-an overview,” IEEE J. Quantum Electron., vol. QE-23, pp. 9-29, 1987.
[9] F. Koyama and K. Iga, “Frequency chirping in external modulators,” J. Lightwave technol., vol. 6, pp. 87-93, 1988.
[10] D. C. Hutchings, M. Sheik-Bahae, D. J. Hagan, and E. W. van Stryland, “Kramers-Kronig relations in nonlinear optics,” Opt. Quantum Electron., vol. 24, pp. 1-30, 1992.
[11] F. Dorgeuille and F. Devaux, “On the transmission performances and the chirp parameter of a multiple-quantum-well electroabsorption modulator,” IEEE J. Quantum Electron., vol. 30, pp. 2565-2572, 1994.
[12] L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits. New York: John Wiley & Sons, Inc., p. 209, 1995.
[13] K. Wakita, K. Yoshino, I. Kotaka, S. Kondo, and Y. Noguchi, “High speed, high efficiency modulator module with polarization insensitivity and very low chirp,” IEEE Electron Lett., vol. 31, pp. 2041-2042, 1995.
[14] K. Yamada, K. Nakamura, Y. Matsui, T. Kunii, and Y. Ogawa, “Negative-chirp electroabsorption modulator using low-wavelength detuning,” IEEE Photonics Technol. Lett., vol. 7, pp. 1157-1158, 1995.
[15] Shengzhong Zhang, “Traveling-wave electroabsorption modulators,” University of California, Santa Barbara, Ph. D. Dissertation, 1999.
[16] J. G. Mendoza-Alvarez, L. A. Coldren, A. Alping, R. H. Yan, T. Hausken, K. Lee, and K. Pedrotti, “Analysis of depletion edge translation lightwave modulators,” J. Lightwave technol., vol. 6, pp. 793-808, 1988.
[17] R. G. Walker, “High-speed III-V semiconductor intensity modulators,” IEEE J. Quantum Electron., vol. 27, pp. 654-667, 1991.
[18] O. Mitomi, K. Noguchi, and H. Miyazawa, “Broadband and low driving-voltage LiNbo3 optical modulators,” IEE Proc., Optoelectron., vol. 145, pp. 360-364, 1998.
[19] D. Chen, D. Bhattacharya, A. Udupa, B. Tsap, H.R. Fetterman, C. Antao, L. Sang-Shin, C. Jinghong, W. H. Steier, and L. R. Dalton, “High-frequency polymer modulators with integrated finline transitions and low Vpi ,” IEEE Photonics Technol. Lett., vol. 11, pp. 54-56, 1999.
[20] C. Rolland, “InGaAsP-based Mach-Zehnder modulators for high- speed transmission system,” OSA OFC’98, San Jose, CA, pp. 283-284, 1998.
[21] H. R. Khazaei, E. Berolo, and F. Ghannouchi, “High-speed slow-wave coplanar strip GaAs/AlGaAs electro-optic laser modulator,” Microw. Opt. Technol. Lett., vol. 19, pp. 184-186, 1998.
[22] K. Wakita, I. Kotaka, and H. Asai, “High-speed InGaAlAs/InAlAs multiple quantum well electrooptic phase modulators with bandwidth in excess of 20 GHz,” IEEE Photonics Technol. Lett., vol. 4, pp. 29-31, 1992.
[23] T. Ido, S. Tanaka, M. Suzuki, M. Koizumi, H. Sano, and H. Inoue, “Ultra-High-speed multiple-quantum-well electro-absorption optical modulators with integrate waveguides,” J. Lightwave Technol., vol. 14, pp. 2026-2034, 1996.
[24] F. Devaux, J. C. Harmand, I. F. L. Dias, T. Guettler, O. Krebs, and P. Voisin, “High power saturation, polarization insensitive electroabsorption modulator with spiked shallow wells,” Electron. Lett., vol. 33, pp. 161-163, 1997.
[25] K. Kawano, M. Kohtoku, M. Ueki, T. Ito, S. Kondoh, Y. Noguchi, and Y. Hasumi, “Polarization- insensitive traveling-wave electrode electroabsorption(TW-EA) modulator with bandwidth,” J. Lightwave Technol., vol. 14, pp. 2026-2034, 1996.
[26] S. Z. Zhang, Yi-Jen Chiu, P. Abrabam, and John E. Bowers, “25 GHz polarization-insensitive electroabsorption modulators with traveling-wave electrodes ,” IEEE Photon. Technol. Lett., vol. 11, pp. 191-193, 1999.
[27] F. Devaux, S. Chelles, A. Ougazzaden, A. Mircea, and J. C. Harmand, “Electroabsorption modulators for high-bit-rate optical communications: a comparison of strained InGaAs/InAlAs and InGaAsP/ InGaAsP MQW,” Semicond. Sci. Technol., vol. 10, pp. 887-901, 1995.
[28] H. Fukano, T. Yamanaka, M. Tamura, Y. Konodo, and T. Saitoh, “Very lowdriving-voltage InGaAlAs/InAlAs electroabsorption modulators operating at 40 Gbit/s,” Electronic Letters, vol. 41, Feb., 2005.
[29] M. Tamura, T. Yamanaka, H. Fukano, Y. Akage, Y. Konodo, and T. Saitoh,“High-speed electroabsorption modulators buried with ruthenium-doped SI-InP,” IEEE Photon. Technol. Lett., vol. 16, pp.2613-2615, Dec., 2004.
[30] Hideki Fukano, Takayuki Yamanaka, Munehisa Tamura, and Yasuhiro Kondo,“Very-low-driving-voltage electroabsorption modulators operating at 40 Gb/s,” J. Lightwave Technol.,vol. 24, pp.2219-2224, May, 2006.
[31] Pallab Bhattacharya, “Semiconductor Optoelectronic Devices,” 2nd., Prentice Hall, pp.79-82, 1997
[32] J.-W. Shi, C.-A. Hsieh, A.-C. Shiao, Y.-S. Wu, F.-H. Huang, S.-H. Chen, Y.-T. Tsai, and J.-I. Chyi, “demonstration of a dual-depletion-region electroabsorption modulator at 1.55-μm wavelength for high-speed and low-driving-voltage performance, ”IEEE Photon. Technol. Lett., Vol. 17, 2068-2070, Oct 2005
[33] H. Nie, K. A. Anselm, C. Lenox, P. Yuan, C. Hu, G. Kinsey, B. G. Streetman, and J. C. Campbell, “Resonant-cavity separate absorption, charge and multiplication avalanche photodiodes with high-speed and high gain-bandwidth product,” IEEE Photon. Technol. Lett., vol. 10, pp. 409-411, Mar., 1998.
[34] T. Nakata, T. Takeuchi, I. Watanabe, K. Makita, and T. Torikai, “10Gbit/s high sensitivity, low-voltage-operation avalanche photodiodes with thin InAlAs multiplication layer and waveguide structure,” Electron. Lett., vol. 36, pp.2033-2034, Nov., 2000.
[35] M. Tamura, T. Yamanaka, H. Fukano, Y. Akage, Y. Konodo, and T. Saitoh,“High-speed electroabsorption modulators buried with ruthenium-doped SI-InP,” IEEE Photon. Technol. Lett., vol. 16, pp.2613-2615, Dec., 2004.
[36] Larry A. Coldren, Scott W. Corzine,” Diode lasers and photonic integrated circuits,” Wiley Interscience,pp533-535, 1995.
[37]Jasprit Singh, “Electronic and optoelectronic properties of semiconductor structures”, Cambridge University Press,2003
[38] T. Hatta, T. Miyahara, M. Ishizaki, N. Okada, S. Zaizen, K. Motoshima, and K. Kasahara, “Inductance-controlled electroabsorption modulator modules using the flip-chip bonding technique,” IEEE/OSA J. of Lightwave Technol., vol. 23, pp.582-587, Feb., 2005.
[39] T. Y. Chang, “Design optimization of low-impedance high-speed optical modulators for digital performance,” J. of Lightwave Technol.,vol. 23,pp4321 - 4331,Dec.,2005
指導教授 許晉瑋(J.-W. Shi) 審核日期 2007-1-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明