博碩士論文 93521066 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.239.242.55
姓名 許育銓(Yu-Chiuan Hsu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 鍺量子點共振穿隧二極體與電晶體之關鍵製程模組開發與元件特性
(Ge Quantum Dot Resonant Tunneling Diode and Transistor:Key Process Module Develop and Device Characterization)
相關論文
★ 高效能矽鍺互補型電晶體之研製★ 高速低功率P型矽鍺金氧半電晶體之研究
★ 應變型矽鍺通道金氧半電晶體之研製★ 金屬矽化物薄膜與矽/矽鍺界面反應 之研究
★ 矽鍺異質源/汲極結構與pn二極體之研製★ 矽鍺/矽異質接面動態啓始電壓金氧半電晶體之研製
★ 應用於單電子電晶體之矽/鍺量子點研製★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製
★ 選擇性氧化複晶矽鍺形成鍺量子點的光特性與光二極體研製★ 選擇性氧化複晶矽鍺形成鍺量子點及其在金氧半浮點電容之應用
★ 自對準矽奈米線金氧半場效電晶體之研製★ 鍺浮點記憶體之研製
★ 利用選擇性氧化單晶矽鍺形成鍺量子點之物性及電性分析★ 具有自我對準電極鍺量子點單電洞電晶體之製作與物理特性研究
★ 具有自我對準下閘電極鍺量子點單電洞電晶體之研製★ 有機非揮發性記憶體之量測與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著CMOS製程技術進入奈米時代,元件尺寸不可能再毫無限制的縮減,而且許多在過去大尺寸元件不曾出現的問題,也隨著尺寸的縮減逐步浮上檯面,例如短通道效應(short channel effect)所造成的高電場及薄氧化層所造成的漏電流等非理想效應,因此單電子元件已開始倍受矚目。而在單電子元件中,最重要的核心技術在於量子點的製作。為了要與現今CMOS製程技術相容,利用矽材料開發單電子電晶體最為廣泛,一般製作矽基材量子點與單電子電晶體之方式,需要利用超高解析度之電子束微影技術(E-beam lithography)、複雜的蝕刻等製程來縮小量子點的尺寸,但通常伴隨著高成本、製程掌控不易及再現性低等缺點。而本實驗室已成功開發出利用〝矽鍺選擇性氧化法〞形成奈米級的鍺量子點,這是一種簡單且與CMOS製程相容的方法。
本論文之研究重點,利用〝矽鍺選擇性氧化法〞製作鍺量子點共振穿隧二極體。在室溫下,經由光的激發可觀察到明顯的共振震盪、負微分電導現象,並且在實驗上,對通過鍺量子點之暫態電流作研究,在不同的偏壓下,觀察到類似鋸齒狀的電流行為,以及類似正弦波電流行為。並提出相對應的模型解釋所觀察到的實驗現象,此模型是建立在單電子穿隧過量子點和缺陷(trap)彼此間相互影響的觀念上。
摘要(英) As CMOS technology toward to Nano-generation, the reduction of device dimension doesn’t shrink unlimitedly. And many problems would appear as shrinking device dimension which never appear in large dimension devices. For example, short channel effect would induce high electric field and thin gate oxide thickness would induce leakage. So that single-electron device has attracted a lot of attention. The key point of single-electron device is the formation of quantum dots. In order to be compatible with CMOS technology, using Si-based material is the extensive method to develop single-electron device. In general, the methods of developing Si quantum dots and single electron device are using ultra-high resolution of E-beam lithography and complex etching process. But they have high cost, not easy to control and reproduction questions. We have developed “the selectivity oxidation of SiGe ” successively to form Ge quantum dots. It is a simple and CMOS compatible method.
The focal point of this thesis is using “the selectivity oxidation of SiGe ” method to fabricate Ge-QD RTD. We have experimentally studied the time-averaged and transient current of a Ge-QD RTD. The tunneling current not only displays additional peaks but also exhibits enhanced PVCR with NDC under photoexcitation. A model based on the interplay of a trap and single-electron tunneling through a small QD is proposed to explain the observed features of transient current characteristics.
關鍵字(中) ★ 共振穿隧二極體
★ 單電子電晶體
★ 鍺量子點
關鍵字(英) ★ Ge quantum dot
★ single electron transistor
★ resonant tunneling diode
論文目次 第一章 研究動機...........................................1
1-1 前言................................................1
1-2 單電子電晶體的誕生..................................1
1-3 單電子電晶體的運用..................................3
第二章 共振穿隧二極體與單電子電晶體動作原理...............7
2-1共振穿隧二極體與單電子電晶體之Vds動作原理............7
2-2 單電子電晶體之閘極動作原理..........................8
第三章 鍺量子點共振穿隧二極體之製作......................13
3-1 矽鍺選擇性氧化.....................................13
3-2 鍺量子點共振穿隧二極體製作流程.....................14
第四章 鍺量子點共振穿隧二極體電性量測與討論..............21
4-1 I-V特性與理論討論..................................21
4-2暫態電流特性與理論解釋..............................23
第五章 元件關鍵製程開發..................................30
5-1 乾式蝕刻原理與機制.................................30
5-2 SiO2 /Si的選擇比.....................................31
5-3 二氧化矽與氮化矽的蝕刻輪廓.........................33
第六章 總結與未來展望....................................41
參考文獻.................................................42
參考文獻 [1] 劉致為和游李興, “競逐原子世界-奈米技術與產業發展系列 第三輯:奈米電子元件”.
[2] T. A. Fulton and G. J. Dolan, Phys. Rev. Lett., 59, 109, 1987.
[3] L. Zhuang, L. Gui and S. Y. Chou, Appl. Phys. Lett., 72, 1205, 1998.
[4] H. Ishikuro and T. Hiramoto, Appl. Phys. Lett., 71, 3691, 1997.
[5] B. H. Choi, S. W. Hwang, I. G. Kim, H. C. Shin, Y. Kim and E. K. Kim, Appl. Phys. Lett., 73, 3129, 1998.
[6] H. K. Liou, P. Mei, U. Gennser and E. S. Yang, Appl. Phys.Lett., 59, 1200, 1991.
[7] P. W. Li, W. M. Liao, S. W. Lin, P. S. Chen, S. C. Lu and M. J. Tsai, Appl. Phys.Lett., 83, 4628, 2003.
[8] David M. T. Kuo and Yai Chung Chang, Phys. Rev. B 72, 085334, 2005.
[9] P W. Li, David M. T. Kuo, W. M. Liao and W. T. Lai, Appl. Phys. Lett., 88, 213117, 2006.
[10] A. P. Jauho, N. S. Wingreen and Y. Meir, Phys. Rev. B 50, 5528, 1994.
[11] Z. Shi, J.-P. Miéville and M. Dutoit, IEEE Trans. Electron Device 41, 1161, 1994.
[12] 莊達人編著 “VLSI製造技術”, Ch8.
[13] 龍文安編著 “半導體微影技術”, p893.
[14] James D. Plummer, Michael D. Deal and Peter B. Griffin著, 羅正忠, 李嘉平和鄭湘原譯 “半導體工程─先進製程與模擬”, p611.
指導教授 李佩雯(Pei-Wen Li) 審核日期 2006-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明