博碩士論文 93521114 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:35.170.81.210
姓名 吳漢哲(Han-Tiet Goh)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 口腔核磁共振影像的分割與三維灰階值內插
(Segmentation and 3D Grey-Level Interpolation for Oral Magnetic Resonance Images)
相關論文
★ 獨立成份分析法於真實環境中聲音訊號分離之探討★ 數位式氣喘尖峰氣流量監測系統設計
★ 結合人工電子耳與助聽器對中文語音辨識率的影響★ 人工電子耳進階結合編碼策略的中文語音辨識成效模擬--結合助聽器之分析
★ 中文發聲之神經關聯性的腦功能磁振造影研究★ 利用有限元素法建構3維的舌頭力學模型
★ 以磁振造影為基礎的立體舌頭圖譜之建構★ 腎小管之草酸鈣濃度變化與草酸鈣結石關係之模擬研究
★ 口腔磁振影像舌頭構造之自動分割★ 微波輸出窗電性匹配之研究
★ 以軟體為基準的助聽器模擬平台之發展-噪音消除★ 以軟體為基準的助聽器模擬平台之發展-回饋音消除
★ 模擬人工電子耳頻道數、刺激速率與雙耳聽對噪音環境下中文語音辨識率之影響★ 用類神經網路研究中文語音聲調產生之神經關聯性
★ 教學用電腦模擬生理系統之建構★ 以軟體為基準的助聽器模擬平台之發展-方向性麥克風
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 一般而言,重建三維的醫學影像,通常會經由雜訊濾除、分割和三維內插等主要的步驟。本論文的重點是利用分割法和三維灰階值內插法於口腔核磁共振(magnetic resonance, MR)影像。
本論文的主要目的是利用改良的灰階值內插法由口腔核磁共振影像來重建三維的舌頭影像。我們首先利用蛇分割法(snake)來取得口腔MR影像內的舌頭組織,並提出了三種方法即形態灰階值內插法(morphology-based grey level interpolation,mb)、非修正侵蝕形態灰階值內插法(morphology-based non-correctional erosion grey level interpolation, mbnc)和修正的侵蝕灰階值內插法(morphology-based correctional grey level interpolation, mbc)來獲取新的內插影像。
我們的作法是先將兩張原始的二維影像提升到三維影像後重疊在一起,分出影像中物體的重疊,非重疊和背景區域後,再用膨脹距離轉換(dilation-based distance transform),對這重疊後的三維影像距離轉換。然後對兩物體的重疊輪廓經由三種不同的侵蝕法而得到三種不同的輪廓,最後把三維的距離值轉為二維的灰階值便可完成影像外形和像素灰階值內插。另外,我們利用均方差值(mean squared difference,msd),點位置不正確的數目(number of site of disagreement,nsd),最大灰階值差異(largest difference of grey level,ldiff),和正誤差(false positive)與負誤差(false negative)的總和即位置落差(location displacement,dispmt)等方法與與傳統的外形灰階內插和線性灰階內插法作比較。
雖然我們的結果(主要為mbnc)在msd (185.61)、nsd( 393638)和ldiff (120.67)等值比外形灰階值內插法稍微大(三值分別為181.75、 373661和 112.67)。但我們的結果具有最低的dispmt值,相較之下會有更平滑的外形。而此結果也符合我們重建三維舌頭MR影像及模型時,需要有較好的外形的要求。
摘要(英) General speaking, steps of noise removing, segmentation, and interpolation are often needed for the reconstruction of three-dimensional (3D) medical image. This study focuses on steps of segmentation and interpolation of our oral magnetic resonance (MR) images.
The main purpose of this study is to reconstruct a 3D tongue from our oral MR images. We used snake algorithm to segment tongue tissues from oral MR images. Then we proposed morphology-based interpolation methods, namely, (1) morphology-based grey level interpolation method, (2) morphology based non-correctional erosion grey level interpolation, and (3) morphology-based correctional erosion grey level interpolation for the interpolated new images.
Our method adopted grey-level interpolation to lift up 2D images to 3D images, and mark the overlap, non-overlap, and background regions. Then morphological inflation and erosion was adopted to interpolate the shape of objects (included mb, mbnc and mbc). After we finished distance code operation, the 3D images were collapsed to 2D images to complete image interpolation. In addition, we utilized mean squared difference (msd), number of site of disagreement (nsd), largest difference of grey level (ldiff), and the location displacement (dispmt) which is sum of false positive and false negative to compare our proposed methods with the linear grey level and shape-based grey level interpolation methods.
Our results showed that mb methods have mixed performance in terms of values of msd, nsd, ldiff, and dispmt. Although the values of msd (185.61), nsd (393638), ldiff (120.67) of our method (mbnc) were slightly larger than those of the shape-based grey level interpolation (181.75, 373661, and 112.67, respectively), the objects which were interpolated by mbnc (which had the lowest dispmt value) had the best smoother contours among all methods. The smoothness of contours of the interpolated objects is the major concern of our application which is the construction of a tongue model that is based on the reconstruction tongue of our MRI data.
關鍵字(中) ★ 分割法
★ 距離轉換
★ 形態灰階內插法
★ 外形灰階內插法
★ 三維內插法
★ 蛇
關鍵字(英) ★ 3D interpolation
★ shape-based grey level interpolation
★ segmentation
★ snake
★ distance transform
★ morphology-based grey level interpolation
論文目次 Abstract………………………………………………………………………………...I
Table of Contents……………………………………………………………………. III
List of Figures………………………………………………………………………...V
List of Tables………………………………………………………………….…....VIII
Chapter 1 Introduction……………………………………………………………...…1
1.1 Motivation………….……………………………………………………..……...1
1.2 Imaging Techniques……………………………………………………………...1
1.3 Literature Review…………………………………………………….................. 4
1.3.1 Segmentation………………………………………...………………………...4
1.3.2 Interpolation ……………………………………...…………………………...6
1.4 Organization of This Thesis……......……………………………………………...9
Chapter 2 Segmentation and Other Interpolation Methods..…………...….…………11
2.1 Segmentation……………………………………………………………………..11
2.2 A Brief Description of the Interpolation Methods Chosen for Comparison……..14
Chapter 3 Methods…………...………………………………………………………18
3.1 Introduction …...…………..….………...………………………………………..18
3.2 Data Description………………………………………..………………………..19
3.2.1 Subjects………………………………………………………………………...19
3.2.2 MR Image Protocols……..…………………………………………………….19
3.2.3 Hardware and Software of Implementation……………………………...…….20
3.3 Morphology-Based Grey Level Interpolation…………………………………...21
3.3.1 Lifting up………………………………………………………………………21
3.3.2 Merge and Sign the Regions…….……………………………………………..22
3.3.3 Distance Transform……………………………………….……………………23
3.3.4 Simple Erosion……………………………………………………….………...25
3.3.5 Convert the 3D Distance Codes to 2D Grey Levels………………………….27
Chapter 4 Correction of Erosion………………………………………………...30
4.1 Morphology-based Non-Correctional Erosion Grey Level Interpolation………..31
4.2 Morphology-based Correctional Erosion Grey Level Interpolation……………..33
3.4 Methods of Evaluation…………………………………………………………...36
Chapter 5 Results and Discussion…………………………….……………………...39
5.1 The Results of MB, MBNC, and MBC………………………………….……….39
5.2 Evaluation of Interpolation Methods…………...……………………….………..47
5.3 Discussion ...………………………………………………………………...…...55
5.3.1 Linear Grey Level Interpolation………………………………………………..55
5.3.2 Shape-Based Grey Level Interpolation ……………………….……………….56
5.3.3 Morphology-Based Grey Level Interpolation.....………………………………58
Chapter 6 Conclusion and Future Work……………………………………………...60
References……………………………………………………………………………62
Appendix A…………………………………………………………………………..66
參考文獻 Amini A. A., Weymouth T. E., and Jain R. C. (1990). “Using Dynamic Programming for Solving Variational Problems in Vision”. IEEE Tran. Pettern Analysis and Machine Intelligence. 12, 855-867.
Bors A. G., Kechagias L., and Pitas I. (2002). “Binary Morphological Shape-Based Interpolation Applied to 3-D Tooth Reconstruction”. IEEE Tran. Med. Img. 21, 100-108.
Chatzis V. and Pitas I. (2000). “Interpolation of 3-D Binary Images Based on Morphological Skeletonization”. IEEE Tran. Med. Img. 19, 699-710.
Chen W.Z. (2002). “Active Contour-based Border Detection and 3D Flow Pattern Visualization in Fast Phase-Contrast Magnetic Resonance Imaging of Portal Veins”. Depart. of Indust. Eng. and Tech. Management, Da-Yeh University, Taiwan, ROC.
Chen Z. S. (2005). “Model-Based Vision System for Reconstructing 3D Scene from Multiple Images”. Depart. of Comp. Scien. and Infor. Eng., National Cheng Kung University, Taiwan, ROC.
Cheney W. and Kincaid D. (1980). Numerical Mathematics and Computing. Monterey. CA: Books/Cole.
Chuang K. S., Chen C.Y., Yuan L. J. and Yeh C. K. (1999). “Shape-Based Grey Level Image Interpolation”. Phys. Med. Biol. 44, 1565-1577.
Chuang Y. C. (2005) “Computerized 3D Object Reconstruction and Segmentation from Multi-spectral MR Images”. Depart. of Comp. Scien. and Infor. Eng., National Cheng Kung University, Taiwan, ROC.
Collins, D. L., Holmes, C. J., Peters, T. M., and Evans, A. C. (1995). “Automatic 3-D Model-based Neuroanatomical Segmentation”. Human Brain Mapping, 3(3), 190--208.
D’Llia C., Poggi G., and Scarpa G. (2003). “A Tree-structured Markov Random Field Model for Bayesian Image Segmentation”. IEEE Tran. Img. Process. 12, 1259-1273.
Fan W. Z., Miao S. J., Chen Y. S., Lin C.M., Yeh C.K. (2005). “Support Vector Machine Based Algorithm for Ultrasonic Breast Lesions Detection”. Biomedical Engineering Society 2005 Annual Symposium, Taiwan, ROC.
Goh H. T., Wu C. M., Ho L. L. and Su J. W. (2005). “Morphology-Based 3D Grey-Level Interpolation for Oral Magnetic Resonance Images”. Biomedical Engineering Society 2005 Annual Symposium.
Gonzalez R. C. and Woods R. E. (2002). Digital Image Processing 2/e. Pearson Edu. Inc. Prentice Hall.
Grevera G. J. and Udupa J. K. (1996). “Shape-Based Interpolation of Multidimensional Grey-Level Images”. IEEE Tran. Med. Img. 15, 881-892.
Grevara G. J., and Udapa J. K. (1998). “An Objective Comparison of 3-D Image Interpolation Methods”. IEEE Tran. Med. Img. 14, 642-652.
Guo J. F., Cai Y. L., and Wang Y. P. (1995). “Morphology-Based Interpolation for 3D Medical Image Reconstruction”. Computer Med. Imag. Graphics 19, 267-279.
Herman G. T., Zheng J. S. and Bucholtz C. A. (1992). “Shape-based Interpolation”. IEEE Computer Graphics and Applications, 12(3) 69-79.
Ho C. X. (2005). “Research on Image Segmentation Using Level Set Methods”. Colle. of Comp. Scien., National Chiao Tung University, Taiwan, ROC.
Jain R., Kasturi R., Schunck B. G. (1995). Machine Vision. McGraw-Hill, Inc.
Kass M., Witkin A. and Terzopoulos D. (1987). “Snakes: Active Contour Models”. Intern. Journal of Computer Vision, 321-331.
Lee T. Y. and Wang W. H. (2000). “Morphology-Based 3D Interpolation”. IEEE Tran. Med. Img. 19, 711-721.
Lei. T. and Udupa. J. K. (2003). “Performance Evaluation of Finite Normal Mixture Model-Based Image Segmentation Techiques”. IEEE Tran. Img. Process. 12, 1153-1169.
Liao C. H. (2002). “Region-based Image Retrieval Using Edgeflow Segmentation and Region Adjacency Graph.”. Depart. of Comp. Scien. and Infor. Eng., National Chung Cheng University, Taiwan, ROC.
Liu M. H. (1999). “Fast Interpolation Methods for 3-D Medical Image Reconstruction”. Depart. of Infor. Eng. and Comp. Scien., Feng Chia University, Taiwan, ROC.
Ma W. Y. and Manjunath B. S. (2000). “Edge Flow: A Framework of Boundary Detection and Image Segmentation”. IEEE Tran. Img. Process. 9, 1375-1388.
Raya S. P. and Udupa J. K. (1990). “Shape-Based Interpolation of Multidimensional Objects” IEEE Tran. Med. Img. 9, 32-42.
Penney G. P., Schnabel J. A., Rueckert D., Viergever M.A. and Niessen W. J. (2004). “Registration-Based Interpolation”. IEEE Tran. Med. Img. 23, 922-926
Robb R. A. (1995). 3D Biomedical Imaging (Principles and Practice). VCH Publishers, Inc.
Semmlow J. L. (2004). Biosignal and Biomedical Image Processing (Matlab-Based Applications). Marcel Dekker, Inc.
Tsai T. H. (2000). “An Intensive Research and Comprehension of the Techniques in Image Segmentation”. Department of Elec. Eng., Naional Taiwan Ocean University, Taiwan, ROC.
Udupa J. K. and Herman G. T. (2000). 3D Imaging in Medicine (Second Edition). CRC Press LLC.
Vapnik V. (1995). The Nature of Statistical Learning Theory. Springer Verlag, New York.
Wang Y. M., Zhang J. Z. and Guo. B. (2004). “Directional Coherence Interpolation for 3D Grey-Level Images”. International Journal of Image and Graphics (IJIG) 4, 535-561.
Wells III W. M., Grimson W. E. L., Kikinis R., Jolesz F. A. (1996). “Adaptive Segmentation of MRI Data” IEEE Tran. Img. Process. 15, 429-442.
Liu H. M. (劉明輝, 2002). “膨脹侵蝕法於影像內插運算與三維曲面重建之研究”. Depart. of Mechan. Eng., National Centrel University, Taiwan, ROC.
指導教授 吳炤民(Chao-Min Wu) 審核日期 2006-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明