博碩士論文 93521117 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:81 、訪客IP:3.145.184.162
姓名 莊政達(Cheng-Ta Chuang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 被動動力設計之雙足機器人
(Design and implementation of a biped robot with passive knee joints)
相關論文
★ 直接甲醇燃料電池混合供電系統之控制研究★ 利用折射率檢測法在水耕植物之水質檢測研究
★ DSP主控之模型車自動導控系統★ 旋轉式倒單擺動作控制之再設計
★ 高速公路上下匝道燈號之模糊控制決策★ 模糊集合之模糊度探討
★ 雙質量彈簧連結系統運動控制性能之再改良★ 桌上曲棍球之影像視覺系統
★ 桌上曲棍球之機器人攻防控制★ 模型直昇機姿態控制
★ 模糊控制系統的穩定性分析及設計★ 門禁監控即時辨識系統
★ 桌上曲棍球:人與機械手對打★ 麻將牌辨識系統
★ 相關誤差神經網路之應用於輻射量測植被和土壤含水量★ 三節式機器人之站立控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 雙足機器人發展至今,不自然的機械步態依然沒有多大改變,且關節處都需要驅動器來提供動力,所以在耗能上是相當大的,若要做出更流暢的步行動作,其動作規畫與控制複雜度就越高。基於這些問題,本論文的雙足機器人,使用被動動力設計的概念,依靠重力、慣性、AI 馬達來提供動力,其膝蓋無驅動動力,僅提供可控制的電磁鎖,行走時運用馬達帶動上半身左右偏擺,配合腳踝馬達拉往側方的機制,藉此產生行走時所需的重心偏移,小腿則經由大腿連動產生的慣性向前踢出,以類似人類行走步態的方式,不需仰賴所有關節的馬達,在準確時間點做出控制,只需對必要的驅動器控制即可,對於控制和計算的複雜度可以降低,能量的消耗也能較其他類型步行機器人低。論文的雙足機器人,站立時高約90cm、重約4Kg,共有9 個自由度,以 PC-Based 為初期的開發架構,經由 RS-232 控制 AI 馬達建構行走策略,最後在以 DSP 將系統晶片化,達成獨立行走的目標,實現高效率和自然擺動的雙足機器人系統。
摘要(英) A biped robot has been developed for a long time and it still doesn’thave much change of the unnatural machine gait. It consumes a lot of energy because all joints are needed actuators to act. However, it will be more complicated if we want the robot to walk smoothly. For this reason, the biped robot we design uses the concept of passive dynamic walking.The knees of the robot have no actuators but only controllable latches and the robot can walk by gravity, inertial force and the AI motors. The upper body of the robot will swing when it walks forward and have COG shifted by pulling of motor on the ankle. The calf can kick out by the inertial force. It can walk like human being without motors of all joints, and we can only control the necessary actuators at the right timing to make the complication of control and calculations lower. It also consumes less energy compare to other similar robots. The robot which is 90 cm tall, 4kg weight has 9 internal degrees of freedom. At first, we use computer to develop whole system and design control strategy by controlling AI motor through RS-232. Finally, we transfer the system to DSP to let the robot stand alone and have achievement of high-efficiency with natural swing of a biped robot system.
關鍵字(中) ★ 被動
★ 雙足機器人
★ 數位訊號處理器
關鍵字(英) ★ digit signal processor
★ biped robot
★ passive
論文目次 第一章 緒論.............................................................................................. 1
1.1 研究背景......................................................................................... 1
1.2 研究動機與目的............................................................................. 3
1.3 文獻回顧......................................................................................... 4
1.4 論文架構......................................................................................... 6
第二章 機器人系統................................................................................. 7
2.1 簡介.................................................................................................. 7
2.2 機器人系統概觀............................................................................. 7
2.3 機器人實體機構............................................................................. 9
2.3.1 機器人重量............................................................................. 13
2.3.2 機構元件功能......................................................................... 14
2.4 AI 馬達.......................................................................................... 19
2.5 機器人控制系統........................................................................... 21
2.5.1 系統電源電路......................................................................... 21
2.5.2 馬達控制電路......................................................................... 21
2.5.3 電鎖控制電路......................................................................... 25
2.5.4 DSP 轉壓電路....................................................................... 27
2.5.5 RS-232 腳位功能.................................................................. 28
2.5.6 DSP Board............................................................................... 30
第三章 理論基礎與概念....................................................................... 31
3.1 簡介................................................................................................ 31
3.2 機器人座標系............................................................................... 31
3.3 機器人的自由度........................................................................... 32
3.4 重心................................................................................................ 35
3.4.1 重心對於機器人的意義........................................................ 35
3.4.2 重心投影於地面的位置........................................................ 37
3.4.3 平衡與重心............................................................................. 37
第四章 機器人步態規劃....................................................................... 38
4.1 簡介................................................................................................ 38
4.2 機構設計演進............................................................................... 38
4.2.1 重心偏移方面......................................................................... 40
4.2.2 腳底修改方面......................................................................... 43
4.2.3 電鎖設計方面......................................................................... 44
4.3 機器人的步態設計....................................................................... 46
4.3.1 主動與被動式機器人在步態開發上的差異性.................... 47
4.3.2 機器人行走時重心偏移方法................................................ 48
4.3.3 PC-Based 的步態開發介面.................................................. 50
4.3.4 鏡射關係................................................................................. 53
4.3.5 姿態數多和少的影響............................................................ 53
4.3.6 行走動作流程......................................................................... 54
4.4 遭遇問題與解決方法................................................................... 55
4.4.1 角度誤差補償......................................................................... 55
4.4.2 行走時晃動的影響................................................................. 56
4.4.3 基座問題................................................................................. 56
4.4.4 行走時機器人的旋轉現象.................................................... 56
第五章 實驗結果分析與討論............................................................... 57
5.1 簡介................................................................................................ 57
5.2 實驗初始條件............................................................................... 57
5.3 實驗一 行走動作和系統供應電流的關係.................................. 59
5.4 實驗二 行走動作與各個馬達所需電流的關係.......................... 61
5.5 實驗三 行走時馬達因機構負載造成的角度誤差...................... 65
5.6 機器人行走的分解動作............................................................... 66
5.7 機器人的展示影片....................................................................... 66
第六章 討論與結論............................................................................... 70
6.1 討論................................................................................................ 70
6.2 心得與展望................................................................................... 73
參考文獻.................................................................................................. 75
參考文獻 [1] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, “Efficient bipedal robots based on passive-dynamic walkers,” Science, vol. 307, no.5712, pp. 1082 -1085, 2005.
[2] C. L. Golliday, Jr., and H. Hemani “An approach analyzing biped locomotion dynamics and designing robot locomotion control,” IEEE Transactions on Automation Control, vol. 22, no. 6, pp. 963-972,1977.
[3] F. Miyazaki and S. Arimotr, “A control theoretic study on dynamical biped locomotion,” ASME. Journal of Dynamic Systems,Measurement and Control, vol. 102, pp. 233-239, 1980.
[4] K.Loffler, M. Gienger, and F. Pfeiffer, “Sensors and control concept of a biped robot,” IEEE Transactions on Industrial Electronics, vol.51, No. 5, Oct 2004.
[5] K. Erbatur, A. Okazaki, and K. Obiya, T. Takahashi, A. Kawamura,“A study on the zero moment point measurement for biped walking robots,” Advanced Motion Control, pp. 431–436, July 2002.
[6] L. Wei, H. Wang, and Y. Li, “Robust trajectory control for robot,”Intelligent Control and Automation, vol. 6, pp. 4927–4929, 2004.
[7] C. Zhu, M. Okamura, and A. Kawamura, Y. Tomizawa,“Experimental approach for high speed walking of biped robot MARI-1,” Advanced Motion Control, pp. 427–432, Mar 2004.
[8] T. McGeer, “Passive dynamic walking,” International Journal of Robotics Research, vol. 9, no. 2, pp. 62-82, 1990.
[9] M. J. Coleman, “A stability study of a three-dimensional passive-dynamic model of human gait”, Ph.D. thesis, Cornell University 1998.
[10] D. Kuo, “Energetics of actively powered locomotion using the simplest walking model,” Journal of Biomechanical Engineering, vol.124, pp.113-120, 2002.
[11] K. Ono, R. Takahashi, A. Imadu, and T. Shimada , “Self-excitation control for biped walking mechanism,” IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp 1143-1148,2000.
[12] S.H.Collins and A. Ruina, “ A bipedal walking robot with efficient and human-like gait,”IEEE International Conference on Robotics and Automation , pp1983-1998 , 2005.
[13] F. Gubina, H. Hemami, and R. B. McGhee, “On the dynamic stability of biped locomotion,” IEEE Transactions on Biomedical Engineering, vol. 21, no. 2, pp. 102–108, 1974.
[14] F.R. Sias, Jr. and Y.F. Zheng, “How many degrees-of-freedom does a biped need?” IEEE International Workshop on Intelligent Robots and Systems , vol. 1, pp 297-301, 1990.
[15] M. Inaba, F. Kanehiro, S. Kagami, and H. Inoue, “Two-armed bipedal robot that can walk, roll over and stand up,” Intelligent Robots and Systems, vol. 3, pp. 297–302, 1995.
[16] 范逸之、江文賢、陳立元 ,C++ Builder 與RS-232 串列通訊,文魁資訊, 2004。
[17] 晉茂林 著 國立編譯館主編, 機器人學,五南圖書出版有限公司,2000。
[18] 修伊特 著 蔡坤憲 譯 , 觀念物理II 轉動力學- 萬有引力 ,天下遠見出版股份有限公司,2001。
[19] Delft 機器人之網站http://mms.tudelft.nl/dbl/research/biped/Denise/
[20] Cornell 機器人之網站http://ruina.tam.cornell.edu/research/topics/
locomotion_and_robotics/papers/efficient_bipedal_robots/index.htm
[21] ASIMO 之網站http://www.honda.com/ASIMO
[22] PINO 之網站 http://www.simbio.jst.go.jp/PINO
[23] KHR-3 之網站http://ohzlab.kaist.ac.kr/robot/khr-3_spec.html
[24] Delft 機器人之網站http://mms.tudelft.nl/dbl/research/biped/Mike/
[25] Megarobotics 之網站 http://www.megarobotics.com/en_main.htm
指導教授 王文俊(Wen-June Wang) 審核日期 2006-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明