博碩士論文 93523012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:18.232.188.251
姓名 陳良瑛(Liang-Ying Chen)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 干擾通道下之多天線正交分頻多工系統之資源分配演算法
(Resource Allocation Algorithms for Multi-antenna OFDM Systems with Interference Channel)
相關論文
★ 利用手持式手機工具優化行動網路系統於特殊型活動環境★ 穿戴裝置動態軌跡曲線演算法設計
★ 石英諧振器之電極面設計對振盪頻率擾動之溫度相依性研究★ 感知無線電異質網路下以不完美頻譜偵測進行資源配置之探討
★ 大數量且有限天線之多輸入多輸出系統效能分析★ 應用於3GPP WCDMA-FDD上傳鏈路系統的遞迴最小平方波束合成犛耙式接收機
★ 調適性遠時程瑞雷衰退通道預測演算法設計與性能比較★ 智慧型天線之複合式到達方位-時間延遲估測演算法及Geo-location應用
★ 應用功率控制之行動載具速度區段檢測技術★ 多級威能濾波器演算法應用在瑞雷衰退通道預測之最佳化設計
★ 多輸入多輸出正交分頻多工系統之調適性通道估測★ 多載波直接序列分碼多重進接系統之調適性位元、子載波、功率和展頻因子配置機制
★ 子空間方法應用於向下鏈結多載波分碼多重進接系統頻率偏移估測之探討★ 正交分頻多工系統中之方位角估測及應用在接收器之設計
★ 多級威能濾波器之應用於向上鏈結多載波分碼多重進接系統之接收器設計★ 適用於離散多頻系統之快速交替性的多重使用者位元負載演算法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本文中,我們討論兩個主題。第一個部份,我們提出了一個在使用波束形成技術的多細胞正交分頻多工系統上使用疊代方式的分散式位元和功率分配演算法。考慮由用戶端傳送訊號到基地台的情況且多細胞系統的通道考慮頻率重複使用。每一個用戶端傳送的訊號造成其他基地台接收的干擾。這個演算法是在達成每個用戶端傳輸速率和訊號錯誤率要求下,不超過傳輸最大功率上限,達成使所有用戶使用的功率和最小的目的。這個提出的演算法比固定傳送位元量的方式可以達到更好的效能並且和多使用者的貪婪演算法達到相近的效能同時降低了運算所需的複雜度,在模擬結果可以得到證明。第二個部份,我們提出了一個修改的位元和功率配置的演算法使用在多輸入多輸出的單細胞正交分頻多工系統,同樣考慮訊號由用戶端傳送訊號到基地台的情況。每個子載波都可以被一個以上的使用者來傳送訊號。這個修改的演算法同樣是在達成每個用戶端傳輸速率和訊號錯誤率要求下,不超過傳輸最大功率上限,達成使所有用戶使用的功率和最小的目的。從模擬結果可以發現這個修正的演算法比多使用者的貪婪演算法有更好的頻譜效益。
摘要(英) This thesis discusses two topics. First, we develop a distributed bit and power allocation algorithm with beamforming in an iterative fashion for multi-cell orthogonal frequency-division multiplexing (OFDM) systems on uplink. The model of the multi-cell channel with frequency reuse is considered. The transmit signal from each mobile causes interference to the received signals of other base stations. The scheme aims to minimize the total mobile transmit power which satisfying the required data rate, maximum transmit power constraint and bit error rate (BER) of each mobile. The proposed scheme offers better performance than the fixed bit allocation and tremendously reduces computational complexity compared to the multi-user greedy method with insignificant performance degradation as demonstrated in the simulation results. Second, we develop a modified bit and power allocation algorithm with multiple-input multiple-output (MIMO) for single cell multi-user OFDM systems on uplink. The model of the multi-user channel with sub-channel reuse is considered. The modified scheme aims to minimize the total user transmit power which satisfying the required data rate, maximum transmit power constraint and bit error rate of each user. The proposed modified algorithm offers better spectrum efficiency than the multi-user greedy algorithm as illustrated in the simulation results.
關鍵字(中) ★ 位元和功率分配
★ 波束合成
★ 同頻帶干擾
★ 資源分配
★ 正交分頻多工系統
★ 多輸入多輸出
關鍵字(英) ★ co-channel interference
★ Resource allocation
★ OFDM
★ MIMO
★ bit and power allocation
★ beamforming
論文目次 Contents…………………………………………………………………………I
List of Figure…………………………………………………………………III
Chapter 1 Introduction………………………………………………………1
Chapter 2 System Models……………………………………………………5
2.1 System Model for multi-cell OFDM with beamforming……………5
2.2 System Model for multi-user MIMO OFDM……………………………9
Chapter 3 Resource Allocation Algorithms……………………………14
3.1 Allocation Algorithm for Multi-cell OFDM with beamforming.14
3.1.1 Problem formulation…………………………………………………14
3.1.2 Centralized multi-user greedy allocation algorithm………15
3.1.3 Distributed allocation algorithm………………………………20
3.1.4 Procedure of Lagrangian operation………………………………28
3.2 Allocation Algorithm for Multi-user MIMO OFDM…………………30
3.2.1 Problem formulation…………………………………………………30
3.2.2 Original allocation algorithm……………………………………32
3.2.3 Modified allocation algorithm……………………………………36
3.2.4 Multi-user greedy allocation algorithm………………………40
Chapter 4 Simulation Results……………………………………………42
4.1 Simulation results for multi-cell OFDM with beamforming……42
4.2 Simulation results for Multi-user MIMO OFDM……………………53
Chapter 5 Analysis of Computational Complexity……………………66
5.1 Computational Complexity for multi-cell OFDM with
beamforming………………………………………………………………66
5.1.1 Computational Complexity of the Centralized multi-user
greedy allocation algorithm………………………………………66
5.1.2 Computational Complexity of the Distributed allocation
algorithm………………………………………………………………67
5.2 Computational Complexity for multi-user MIMO OFDM……………67
5.2.1 Computational Complexity of the modified allocation
algorithm………………………………………………………………67
5.2.2 Computational Complexity of the multi-user greedy allocation
algorithm………………………………………………………………68
Chapter 5 Conclusions………………………………………………………69
REFERENCE………………………………………………………………………70
參考文獻 [1]L. Litwin, “An introduction to multicarrier modulation,” IEEE Potentials, vol. 19, no. 2, pp. 36-38, Apr. / May 2000.
[2]X. Qiu and K. Chawla, “On the performance of adaptive modulation in cellular systems,” IEEE Trans. Comm., vol. 47, no. 6, pp. 884-895, June 1999.
[3]C. C. Chai, T. T. Tjhung, and L. C. Leck, “Combined power and rateadaptation for wireless cellular systems,” IEEE Trans. Wireless Communications, vol. 4, no. 1, pp. 6-13, Jan. 2005.
[4]Z. Han and K. J. R. Liu, “Noncooperative power-control game and throughput game over wireless networks, ’’ IEEE Trans. Comm. , vol. 53, no. 10, pp. 1625- 1629, Oct. 2005.
[5]C.-H Yin and E. Geraniotis, “Adaptive modulation, power allocation and control for OFDM wireless networks,’’ Proc. IEEE Int’l. Symp. Personal, Indoor, and Mobile Radio Comm., ’00, pp. 809-813, Sept. 2000.
[6]C.-H. Yih and E. Geraniotis, “Centralized power allocation algorithms for OFDM cellular networks,” Proc. IEEE Milcom’03, pp. 1250-1255, Oct. 2003.
[7]Z. Han and K. J. R. Liu, “Power minimization under constant throughput constraint in wireless networks with beamforming,” Proc. IEEE seminar. Vehicular Technology Conf. Fall ’02, pp. 611-615, Sept. 2002.
[8]J. Lee, R. Sonalkar, and J. M. Cioffi, “Multi-user discrete bit-loading for DMT-based DSL systems,” Proc. IEEE Globecom’02, pp. 1259-1263, Nov. 2002.
[9]Z. Han, Z. Ji, and K. J. R. Liu, “Power Minimization for Multi-cell OFDM Networks Using Distributed Non-cooperative Game Approach”, Proc. IEEE Globecom’04, pp. 3742-3747, Nov. / Dec. 2004.
[10]M. Olfat, F. R. Farrokhi, and K. J. R. Liu, "Power allocation for OFDM using adaptive beamforming over wireless networks," IEEE Trans. Comm. , vol. 53, no. 3, pp. 505- 514, Mar. 2005.
[11]S. Haykin, Adaptive Ftlter Theory. Englewood Cliffs, NJ:Prentice- Hall, 1986.
[12]A. Goldsmith and S. Chua, “Variable-rate variable-power MQAM for fading channels,” IEEE Trans. Comm., vol. 45, no. 10, pp. 1218-1230, Oct. 1997.
[13]G. Kulkarni, S. Adlakha and M. Srivastava, “Subcarrier allocation and bit loading algorithms for OFDMA-based wireless networks,” IEEE Trans. Mobile Computing , vol. 4, no. 6, pp. 652- 662, Nov. / Dec. 2005.
[14]T. Ibaraki and N. Katoh, Resource Allocation Problems–Algorithmic Approaches, MIT Press, 1988.
[15]J. S. Lee and L. E. Miller, CDMA Systems Engineering Handbook, Artech House, 1998.
[16]M. Patzold, Mobile Fading Channels. New York: Wiley, 2002.
[17]T. S. Rappaport, Wireless Communications: Principles and Practice, second ed., Prentice Hall, 2002.
[18]J. Z. Ying and K. B. Letaief, “Adaptive resource allocation for multi-access MIMO/OFDM systems with matched filtering,” IEEE Trans. Comm., vol. 53, no. 11, pp. 1810- 1816, Nov. 2005.
[19]J. Kim and J. M. Cioffi, “Spatial Multi-user Access with Antenna Diversity using Singular Value Decomposition,” Proc. IEEE Int’l. Conf. Communications, ’00, pp. 1253-1257, Jun. 2000.
[20]J. Z. Ying and K. B. Letaief, “An efficient resource-allocation scheme for spatial multi-user access in MIMO/OFDM systems,” IEEE Trans. Comm., vol. 53, no.1, pp. 107- 116, Jan. 2005.
[21]C. Y. Wang , C. Y. Tsui, R. S. Cheng, and K. B. Letaief, “A real-time sub-carrier allocation scheme for multiple access downlink OFDM transmission,” Proc. IEEE seminar. Vehicular Technology Conf. Fall ’99, pp. 1124-1128, Sept. 1999.
[22]S.-M. Lee, Y.-S. Park and D.-J. Park, “Fast bit and power allocation algorithm for OFDM systems,” Proc. IEEE seminar. Vehicular Technology Conf. Fall ’04, pp. 503-506, Sept. 2004.
[23]G. G. Raleigh and J. M. Cioffi, “Spatio-temporal coding for wireless communication,” Communications, IEEE Trans. Comm., vol. 46, no.3 ,pp. 357-366, Mar 1998.
指導教授 陳永芳(Yung-Fang Chen) 審核日期 2006-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明