博碩士論文 93523018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:54.226.30.186
姓名 王派昌(Pai-Chung Wang)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 分散式偵測系統之研究與其雷達系統之應用
(Study of distributed detection systems for applying to radar system.)
相關論文
★ Branch and Bound 演算法在全光網路包含串音局限的限制條件之最佳化規劃效能分析★ 平行式最佳區塊碼解碼演算法
★ 數位廣播之視訊系統架構與信號估測★ 粒子群優化演算法應用於電信業解決方案選商及專案排程之優化
★ 結合PSO及K-Means聚類分析演算法的圖像分割★ 利用粒子群優化演算法改善分群演算法在訊號分群上之應用
★ 應用模糊聚類與粒子演算法之色彩分群研究★ 粒子群優化演算法應用於企業更新數據網路採購之優化
★ 粒子群演算法應用於無線區域網路產品硬體開發成本優化★ 粒子群演算法應用企業伺服器負載平衡之省電優化
★ 粒子群優化演算法應用於瓦斯業微電腦瓦斯表自動讀表之優化★ 近場通訊之智慧倉儲管理
★ 在Android 平台上實現NFC 室內定位★ 適用於訊號傳輸暨無線電力傳輸之設計
★ 結合PSO及圖像品質評估演算法識別頻譜訊號★ 粒子群優化與二維Otsu演算法於影像二元化閥值選取研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文在探討如何很有效率地設計一個滿足乃曼-皮爾森準則的平行式分散式偵測系統。其中乃曼-皮爾森準則限制假警報機率在一個預先規定的值,並要求使偵測機率達到最大值;而分散式偵測系統使用了多個感應器觀測同樣一個現象,各個感應器在對其觀測資料做過處理之後,再將其決策送往融合中心作最後的判別。
設計分散式偵測系統所需要的時間將隨著感應器的數目成指數性地增加,因此,尋找一個有效率的演算法是非常重要的。在本論文中將討論如何以牛頓法調整感應器的門檻,配合以割線法調整融合規則以及良好的初始值,能夠快速地設計符合乃曼-皮爾森準則的分散式偵測系統。此演算法和傳統上被採用的Gauss-Seidel法相比,的確具有較好的成績。
摘要(英) A study of design of a parallel distributed detection system under Neyman-Pearson criterion, which means one seeks to attain the maximum detection probability with a constrained false alarm probability, is presented in this thesis. The distributed detection system uses multiple sensors to observe the same phenomenon, process observation data, and pass their decisions to the fusion center for the final decision.
The computation time for the design of a distributed detection system increases exponentially with the number of sensors, therefore it’s very important to find out an efficient algorithm. A discussion about how to adjust the threshold of sensors by Newton method with regulation of fusion rule and good initial values will be included in this thesis. We design a distributed detection system under Neyman-Pearson criterion in efficiency. This algorithm indeed has a better performance compared with the Gauss-Seidel algorithm used in tradition.
關鍵字(中) ★ 分散式偵測系統
★ 乃曼-皮爾森準則
關鍵字(英) ★ distributed detection system
★ Neyman-Pearson criterion
論文目次 誌謝 I
摘要 II
Abstract III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1 分散式偵測系統的特色及研究動機 2
1.2 分散式偵測系統的主要架構及操作原理 3
第二章 偵測理論的基本概念 12
2.1 信號偵測簡介 13
2.2 貝氏準則 17
2.3 乃曼-皮爾森準則 24
2.4 摘要 26
第三章 使用牛頓法設計系統 27
3.1 分散式偵測系統在雷達偵測上的應用 28
3.2 融合中心的設計 35
3.3 使用牛頓法設計感應器 38
3.4 使用割線法調整融合規則 46
3.5 初始值的設定 49
3.6 回顧 50
第四章 模擬結果 52
4.1 感應器個數對計算時間的影響 53
4.2 感應器個數對失誤機率的影響 56
4.3 假警報機率和偵測機率的關係 57
4.4 瑞雷衰退和萊斯衰退對失誤機率的比較 60
4.5 初始信號雜訊比不同對失誤機率的影響 61
第五章 結論 64
參考文獻 65
參考文獻 [1] T.-Y. Wang, Y. S. Han, and P. K. Varshney, “Fault-tolerant classification in multisensor networks using coding theory,” in The 6th International Conference on Information Fusion, July 2003.
[2] P. K. Varshney, Distributed Detection and Data Fusion. New York: Springer-Verlag, 1996.
[3] Z. B. Tang, K. R. Pattipati, D. L. Kleinman, “An algorithm for determining the detection thresholds in a distributed detection problem, ”IEEE Trans. Syst. Man. Cybern., pp.231-237, Jan./Feb. 1991.
[4] R. D. Hippenstiel, Detection Theory: Application and Digital Signal Processing. CRC Press LLC, 2002.
[5] P. Y. Papalambros, and D. J. Wilde, Principles of optimal design. Cambridge University Press, 1988.
[6] C. W. Helstrom, Elements of Signal Detection and Estimation. Englewood Cliffs, NJ: Prentice-Hall, 1995.
[7] C. W. Helstrom, “Gradient algorithm for quantization levels in distributed detection systems.” IEEE Transactions on Aerospace and Electronic Systems, vol. 31(Jan. 1995), 390-398.
[8] Z. Zaifeng, “A study on models of radar detection rate and false alarm rate.” International conference on Microwave and Milimeter Wave Technology Proceedings, 1998. (18-20 Aug. 1998). 520 – 523.
[9] Chair, Z. and P. K. Varshney, “Optimal data fusion in multiple sensor detection systems.” IEEE Transactions on Aerospace and Electronic Systems, AES-22 (Jan. 1986), 98-101.
[10] R, Srinivasan, “Distributed radar detection theory.” Proceedings of the Institute of Electrical Engineers, Pt. F, 133 (Feb. 1986), 55-60.
[11] I. Y. Hoballah, and P. K. Varshney, “Distributed Bayesian signal detection.” IEEE Transactions on Information Theory, 35 (Sept. 1989), 995-1000.
[12] Schwartz, M. “A coincidence procedure for signal detection,” IRE Transactions on Information Theory, IT-2 (Dec. 1956), 135-139.
[13] Worley, R. “Optimum thresholds for binary integration,” IEEE Transactions on Information Theory, IT-14 (Mar. 1968), 349-353.
指導教授 賀嘉律(Chia-Lu Ho) 審核日期 2006-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明