博碩士論文 93523048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.147.43.234
姓名 鄭彥杰(Yen-Chieh Cheng)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 IEEE 802.11p無線車載網路協調是頻道存取方法之研究
(A Study of Coordinated Channel Access Schemes for IEEE 802.11p Wireless Vehicular Networks)
相關論文
★ UHF頻段RFID彈藥管理系統之設計、實作與評估★ 移動物偵測與追蹤之IP Camera系統
★ SDN自適應性自動化網路安全之研究★ Wi-Fi Direct Service 應用於IoT
★ 射頻前端電路應用於載波聚合長期演進技術★ 3C無線充電裝置運用在車載系統所產生之EMI輻射
★ 基於LoRa技術的物聯網前端防盜警示感測裝置實作與評估★ DOCSIS 3.1 效能研究 與下行通道干擾阻隔之設計
★ 藍芽無線光學投影翻譯筆★ 手持裝置應用於MIMO ( 8x8 ) Wi-Fi系統之設計
★ 基於無伺服器運算之智慧農業雲端系統設計與研究★ 嵌入式系統實現電梯物聯網
★ 在802.11 Ad-Hoc網路中基於速率考量之路由協定設計★ 利用智慧天線系統實現精準室內定位技術
★ 電力線通訊之競爭存取與路由方法設計與實現★ 合作博弈與灰色模糊方法改善無線網路之性能
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近幾年無線網路快速的成長,使得其應用與服務變得越來越普遍。車載資通訊有多樣應用服務,例如,行車安全、全球定位導航、多媒體、影音串流以及網路存取服務。隨著無線科技的成熟,各種無線網路需求的概念被提出,以智慧運輸系統為例,許多交通設備皆配備車載裝置,以提供多樣化服務,其中通訊功能更是扮演了重要的角色。民生資訊的取得更是和網路密不可分,當駕駛欲知道路況情形、便利資訊、氣候、新聞等等即時資訊時,藉由車用網路與外界(其他車輛或道路網路系統)的資訊交換,不但能方便駕駛了解目前的行車狀況,避開較為壅塞的路段,也提供駕駛者行車建議,使駕駛者做出較佳的判斷。由於資通訊技術的成熟,讓原本處於閉塞而無法與外界進行單向或雙向資訊傳輸互動的汽車環境,增加與外界溝通的通訊能力,也因此Telematics(Telecommunication+Information)車載資通訊系統產生了強烈的市場需求並顯示其重要性與其研究價值。
美國材料試驗協會(American Society for Testing and Materials,ASTM)為了發展專用短距通訊(Dedicated Short Range Communication,DSRC)技術,採用IEEE 802.11a作為實體傳輸技術,並促成IEEE 802.11p WAVE(Wireless Access in the Vehicular Environment)與IEEE 1609相關規格的誕生,但這些通訊協定的行為存在許多效能不彰的問題。由於WAVE設備所配置的天線數量有限,欲使用頻道資源,則需要透過競爭,易造成效率降低,又頻道切換機制,使存取網路機會變得更少,因此需要有效使用頻道資源的方法提出。
在研讀車用無線網路及相關的規格與文獻後,本論文經由估算網路頻道資源以及系統效率提出精確數學模型與網路模擬器(Network Simulator 2,NS-2)。透過驗證與分析IEEE 802.11p以及IEEE 1609規格之系統效能後,提出車用網路協調式頻道存取方法,包含以分群為基礎之車用頻道切換協定有效使用頻道資源並舒緩使用者競爭情形、以代理者協調排程方法之車用網路通道存取方法,並延伸至代理者的排程與中繼方法來達成有效的頻道資源管理以針對不同車道環境的頻道存取方法安排使用者存取頻道資源,以及記憶性載波偵測多重存取避免碰撞協定提高頻道使用率與減少競爭失敗的機會使得頻道使用率能達到100%且有效改善系統效能。
摘要(英) During the last few years, wireless networks have been rapidly growing and becoming more and more popular. In particular,telematics are receiving a lot of attentions due to wide variety ofservice which are safety, GPS navigation, multimedia, streaming, and other Internet applications. With the matured wireless transmission technology, the new demand on wireless applications is toward the concept of deploying wireless devices on transportation systems such
as buses, trains and vehicles. Telematics services and entertainment are also important for users.
Dedicated short range communications (DSRC) technique has been formally defined by American Society for Testing and Materials (ASTM) association couple years ago. Subsequently, the DSRC standardization process has been smoothly transferred to the IEEE 802.11p working group for the consideration of world-wide market and regulatory. Moreover, some documents released from IEEE 1609 Working
group (e.g., IEEE 1609.3 and IEEE 1609.4), which name the DSRC system as wireless access vehicular environment (WAVE), have defined that the wireless communication technique among vehicles and roadside system mainly inherits from IEEE 802.11a physical (PHY) layer and IEEE 802.11 carrier sense multiple access with collision avoidance (CSMA/CA) medium access control (MAC) protocol. Generally, number of antennas which each vehicle equips with is limited. If vehicles transmit and receive data over wireless medium, they shall contend each other on the same wireless channel. However, it usually suffers from packet collision, which decreases data throughput and increases delay as the number of vehicle increases. Moreover, the mandatory operation of channel switching between service channel and control channel will waste half channel resource. It is desired to have a smart channel access scheme for the vehicular networks.
In this dissertation, we propose coordinated channel access schemes including coordinated interleaving access (CIA), agent-based coordination (ABC), vehicular grouping access (VGA) under different roadway environments, and memorized carrier sense multiple access with collision avoidance (MCSMA/CA) so that the channel utilization is increased from 42\% to 100\% as compared to the alternating channel access scheme and system performance is improved significantly.
關鍵字(中) ★ 分群
★ WAVE
★ 代理者
★ 頻道存取
★ IEEE 802.11p
關鍵字(英) ★ Agent
★ WAVE
★ IEEE 802.11p
★ grouping
★ channel access
論文目次 Chinese Abstract
English Abstract
Acknowledgements
Contents
List of Figures
List of Tables
1 Introduction
1.1 Preface
1.2 Research Motivates
1.3 Dissertation Organization
2 Overview of IEEE 802.11p and IEEE 1609 Family Standards
2.1 The Operations of WAVE Networks
2.2 Multi-channel Operations
2.3 Amendments of Frame Formats
2.4 Inefficient Channel Utilization in IEEE 802.11p Wireless Vehicular Networks
2.5 Performance Anomaly Problem in IEEE 802.11p Wireless Vehicular Networks
2.6 High Packet Collision Probability in IEEE 802.11p Wireless Vehicular Networks
3 Coordinated Interleaving Access (CIA) Scheme
3.1 Introduction
3.2 System Architecture and Operations of Coordinated Interleaving Access (CIA) Scheme
3.2.1 The Amended Format of VSA Frame
3.2.2 Single Transceiver Scenarios
3.2.3 Multiple-transceiver Scenarios
3.2.4 Safety Message Handling
3.3 Analytical Model for CIA
3.3.1 Channel Utilization for Single Transceiver Scenario
3.3.2 Channel Utilization for Multi-transceiver Scenario
3.3.3 SCH Throughput Evaluation
3.4 Experimental Analysis
4 Agent-based Coordination (ABC) Scheme
4.1 Introduction
4.2 System Design
4.2.1 System Architecture
4.2.2 Agent Election Procedure
4.2.3 Agent-based Coordination Strategies
4.2.4 Agent-based Scheduling (ABS) Strategy
4.2.5 Agent-based Relaying (ABR) Strategy
4.2.6 Agent-based Scheduling and Relaying (ABSR) Strategy
4.2.7 The channel access operations of ABC scheme
4.3 Analytical Model for ABS
4.3.1 Delivery Probability Using Markov Chain Model
4.3.2 A-RTS/RTS Delivery Probability
4.3.3 SCH Performance
4.4 Experimental Analysis
5 Vehicular Grouping Access (VGA) Scheme
5.1 Introduction
5.2 System Design
5.2.1 Vehicular Grouping Access (VGA) Strategy
5.3 Analytical Model for VGA
5.3.1 Roundabout Scenario
5.3.2 Crossroad Scenario
5.3.3 Straight Roadway Scenario
5.3.4 Throughput analysis
5.3.5 Marginal utility
5.4 Experimental Analysis
5.4.1 Throughput Evaluation
5.4.2 RI Assignment
5.4.3 Evaluation of Marginal Utility
6 Memorized Carrier Sense Multiple Access with Collision Avoidance (MCSMA/CA) Protocol
6.1 Introduction
6.2 The Operation of MCSMA/CA Protocol
6.3 Analytical Model for MCSMA/CA
6.3.1 Backoff State Transitions
6.3.2 Data Transmission Probability
6.3.3 SCH Throughput Evaluation
6.3.4 Packet Delay
6.3.5 Packet Drop Probability
6.4 Numerical And Simulation Results
7 Conclusions
Bibliography
List of Publications
參考文獻 [1] IEEE Standard 1609.4-2010, “IEEE Standard for Wireless Access in Vehicular Environments (WAVE) - Multi-channel Operation,” Aug. 2010.
[2] Q. Chen, D. Jiang, and L. Delgrossi, “IEEE 1609.4 DSRC Multi-channel Operations and its Implications on Vehicle Safety Communications,” Proceedings of 2009 IEEE Vehicular Networking Conference (VNC), pp. 1–8, Oct. 2009.
[3] S. Wang, C. Chou, K. Liu., T. Ho, W. Hung, C. Huang, M. Hsu, H. Chen, and C. Lin, “Improving the Channel Utilization of IEEE 802.11p/1609 Networks,”Proceedings of 2009 IEEE Wireless Communications and Networking Coference,
WCNC 2009, pp. 1–6, 2009.
[4] ASTM E 2213-03, “Standard Specification for Telecommunications and Information Exchange Between Roadside and Vehicle Systems - 5 GHz Band Dedicated
Short Range Communications (DSRC) Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” Jul. 2003.
[5] IEEE Standard 802.11p-2010, “IEEE Standard for Information Technology - Telecommunications and Information Exchange Between Systems - Local and Metropolitan Area Networks - Specific Requirements; Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” Jul. 2010.
[6] IEEE P1609.2/D9.3, “Draft Standard for Wireless Access in Vehicular Environments - Security Services for Applications and Management Messages,” Sept. 2011.
[7] IEEE Standard 1609.3-2010, “IEEE Standard for Wireless Access in Vehicular Environments (WAVE) - Networking Services,” Dec. 2010.
[8] IEEE Standard 802.11-2007, “IEEE Standard for Information Technology - Telecommunication and Information Exchange Between Systems - Local and Metropolitan Area Networks - Specific Requirements; Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” Jun. 2007.
[9] IEEE Standard 802.11a-1999, “IEEE Standard for Information Technology - Telecommunication and Information Exchange Between Systems - Local and Metropolitan Area Networks - Specific Requirements; Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Highspeed Physical Layer in the 5 GHz Band,” Sept. 1999.
[10] J. B. Kenney, “Dedicated Short-Range Communications (DSRC) Standards in the United States,” Proceedings of the IEEE, vol. 99, no. 7, pp. 1162–1182, Jul. 2011.
[11] G. Yuan, X. Zhang, W. Wang, and Y. Yang, “Carrier Aggregation for LTEadvanced Mobile Communication Systems,” IEEE Communication Magazine, vol. 48, no. 2, pp. 88–93, Feb. 2010.
[12] M. Iwamura, K. Etemad, M.-H. Fong, R. Nory., and R. Love, “Carrier Aggregation Framework in 3GPP LTE-advanced,” IEEE Communication Magazine, vol. 48, no. 8, pp. 60–67, Aug. 2010.
[13] IEEE Standard 802.16m-2011, “IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Broadband Wireless Access Systems Amendment 3: Advanced Air Interface,” May 2011.
[14] 3GPP TR 36.913, “Requirements for Further Advancements for Evolved Universal Terrestial Radio Access,” Jun. 2009.
[15] 3GPP TR 36.814, “Further Advancements of E-UTRA Physical Layer Aspects,”Jun. 2010.
[16] ITU-R Rec. M.2134, “Requirements Related to Technical Performance for IMTAdvanced Radio Interface(s),” Nov. 2008.
[17] C. Campolo, A. Vinel, A. Molinaro, and Y. Koucheryavy, “Modeling Broadcasting in IEEE 802.11p/WAVE Vehicular Networks,” IEEE Communications Letters, vol. 15, no. 2, pp. 199–201, Feb. 2011.
[18] IEEE Standard 802.11e-2005, “IEEE Standard for Information Technology - Telecommunication and Information Exchange Between Systems - Local and Metropolitan Area Networks - Specific Requirements; Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications; Amendment 8: Medium Access Control (MAC) Quality of Service Enhancements,” Sept. 2005.
[19] Q. Chen, F. Schmidt-Eisenlohr, D. Jiang, M. Torrent-Moreno, L. Delgrossi, and H. Hartenstein, “Overhaul of IEEE 802.11 Modeling and Simulation in NS-2,” Proceedings of the 10th ACM Symposium on Modeling, Analysis, and Simulation of Wireless and Mobile Systems, Methodologies and Tools, pp. 159–168, 2007.
[20] S.-T. Sheu, Y.-C. Cheng, and J.-S. Wu, “A Channel Access Scheme to Compromise Throughput and Fairness in IEEE 802.11p Multi-rate/Multi-channel Wireless Vehicular Networks,” Proceedings of the 2010 IEEE 71st Vehicular Technology Conference, VTC 2010 Spring, pp. 1–5, May 2010.
[21] Y. Bi, H. Zhao, and X. Shen, “A Directional Broadcast Protocol for Emergency Message Exchange in Inter-Vehicle Communications,” Proceedings of the IEEE International Conference on Communications, pp. 1–5, Jun. 2009.
[22] Y. Bi, L. X. Cai, X. Shen, and H. Zhao, “A Cross Layer Broadcast Protocol for Multihop Emergency Message Dissemination in Inter-Vehicle Communication ,” Proceedings of the IEEE International Conference on Communications, pp. 1–5, May 2010.
[23] Q. Wang, S. Leng, H. Fu, Y. Zhang, and H. Weerasinghe, “An Enhanced Multi-channel MAC for the IEEE 1609.4 Based Vehicular Ad Hoc Networks,” INFOCOM IEEE Conference on Computer Communications Workshops, pp. 1–2, Mar. 2010.
[24] Y. Zang, L. Stibor, B. Walke, H.-J. Reumerman, and A. Barroso, “A Novel MAC Protocol for Throughput Sensitive Applications in Vehicular Environments,” Proceedings of the 2007 IEEE 65th Vehicular Technology Conference, VTC 2007
Spring, pp. 2580–2584, Apr. 2007.
[25] Y. Zang, L. Stibor, B. Walke, H.-J. Reumerman, and A. Barroso, “Towards Broadband Vehicular Ad-Hoc Networks - The Vehicular Mesh Network (VMESH) MAC Protocol,” Proceedings of 2007 IEEE Wireless Communications and Networking Coference, WCNC 2007, pp. 417–422, Mar. 2007.
[26] S.-T. Sheu, Y.-C. Cheng, P.-J. Hsieh, and J.-S. Wu, “Agent-based Scheduling Scheme for IEEE 802.11p Wireless Vehicular Networks,” Proceedings of the 73rd IEEE Vehicular Technology Conference, pp. 1–5, May 2011.
[27] B. G., “Performance Analysis of the IEEE 802.11 Distributed Coordination Function,” IEEE Journal on Selected Area in Communications, vol. 18, no. 3, pp. 535–
547, Mar. 2000.
[28] H. Wu, Y. Peng, K. Long, and S. Cheng, “A Simple Model of IEEE 802.11 Wireless LAN,” Proceedings of the Info-tech and Info-net, vol. 2, pp. 514–519, Nov. 2001.
[29] D. Malone, K. Duffy, and D. Leith, “Modeling the 802.11 Distributed Coordination
Function in Nonsaturated Heterogeneous Conditions,” IEEE/ACM Transactions on Networking, vol. 15, no. 1, pp. 159–172, Feb. 2007.
[30] M. Laddomada, F. Mesiti, M. Mondin, and F. Daneshgaran, “On the Throughput Performace of Multirate IEEE 802.11 Networks with Variable-Loaded Stations:
Analysis, Modeling, and a Novel Proportional Fairness Criterion,” IEEE Transactions on Wireless Communications, vol. 9, no. 5, pp. 1594–1607, May 2010.
[31] J.-M. Chung and D.-C. Go, “Stochastic Vector Mobility Model for Mobile and Vehicular Ad Hoc Network Simulation,” IEEE Transactions on Mobile Computing, vol. PP, no. 99, pp. 1–14, Aug. 2011.
[32] D.-Y. Yang, T.-J. Lee, K. Jang, J.-B. Chang, and S. Choi, “Performance Enhancement of Multirate IEEE 802.11 WLANs with Geographically Scattered Stations,” IEEE Transactions on Mobile Computing, vol. 5, no. 7, pp. 906–919, Jul. 2006.
指導教授 許獻聰、吳中實
(Shiann-Tsong Sheu、Jung-Shyr Wu)
審核日期 2012-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明