博碩士論文 93541002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.238.186.43
姓名 張勝雄(Sheng-Hsiung Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以電漿子波導實現積體光學元件之研究與評價
(Investigation and assessment of optical integrated devices realized by plasmonic waveguides)
相關論文
★ 利用缺陷型接地結構之雙頻微型平面倒F天線設計★ 應用於第三代行動電話之倒F天線設計
★ 使用寄生元件之平面式倒F型雙頻天線設計★ 利用寄生元件之平面式倒 F 型三頻天線設計
★ 無線通訊之三頻天線設計★ 無線通訊之雙頻與三頻槽孔型天線設計
★ 應用於智慧型行動裝置之LTE/WWAN多頻單極天線設計★ 應用於行動手持裝置之LTE/WWAN天線設計
★ 利用背腔式槽孔線結構之多頻段天線設計★ 利用缺陷地面共振電路之介質量測技術
★ 應用於藍芽與全球衛星定位系統之電抗性負載型雙頻槽孔天線★ 帶通圓形極化頻率選擇面之設計
★ 啞鈴型缺陷地面之介質量測電路分析與設計★ 雙頻圓極化微波極化器設計
★ 利用微小共振電路之多頻段天線設計★ 應用於X-band平面吸波器之薄型負載電路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,表面電漿極化子已經被廣泛的研究與應用在不同的領域,包括:生醫感測、高密度資訊存取、高解析顯微鏡、高效率太陽能電池等等。另一方面,由於表面電漿極化子波導可突破光的繞射極限,使得積體光路重新獲得更多的注意,因此不論是在實驗上或理論上皆有大量研究的人力投入表面電漿極化子波導的研究。本論文利用「時域有限差分法」模擬電磁波與材料的交互作用,研究以電漿子建構之波導結構的線性與非線性傳播特性,進而評估電漿子波導元件應用於各式光通訊元件之可行性。
在線性傳播方面,提出「耦合脊狀電漿子波導」、「耦合電漿子波導陣列」與「異質電漿子波導」作為導波、極化分離與波長分波多工器之被動元件。其中「耦合脊狀電漿子波導」的傳播距離可達169μm,在光通訊波段(1550nm)打破世界記錄。此外,基於相同之耦合結構,彎曲波導與雙通道方耦合器亦被研究,目的在測詴次波長積體光路的可行性。研究結果顯示,可利用「耦合脊狀電漿子波導」建構次波長尺度之光元件。其次,提出「耦合電漿子波導陣列」作為極化分離器,將TE 與TM 模態於空間中分離至不同的輸出埠,材料與結構的最佳化過程,將極化分離器之插入損耗、消光比與操作頻寬優化為1dB、20dB 與450nm。此極化分離器可實現在100nm×2000nm 的小面積上;最後,提出以「異質電漿子波導」作為波長分波元件,此元件的角色散可達2.1°/nm,為傳統棱鏡的200 倍,並且可與以光子晶體所形成的棱鏡相比。此元件有機會應用於近場天線。
非線性方面,提出「耦合非線性電漿子波導陣列」作為光限制器,光限制器由耦合的金屬波導陣列埋藏於非線性波導所構成。利用具有光學克爾效應或雙光子吸收之材料,可將光限制器分為兩類:(金/克爾/金)波導陣列與(金/砷化鎵/金)波導陣列。(金/克爾/金)波導陣列的非線性吸收機制可歸因於電漿子的色散關係之改變,由於強場造成電漿子的傳播常數增大,進而增加電漿子的吸收;(金/砷化鎵/金)波導陣列的非線性吸收機制為雙光子吸收與雙光子吸收所誘發之自由載子吸收,利用金屬陣列的高穿透率與表面能量的增強效應提升非線性介質的吸收。此波導陣列的線性穿透可高於85.18﹪,其等效模場面積是輸入波導的一半,因此能提升功率密度,並且降低光限制閥值至42.69GW/cm2 , 以此建構之波導陣列的表面積為300nm×500nm,有利於高密度積體光路之實現。另一方面,由於自由載子的響應速度較慢,對於邏輯閘的高速響應之要求,是不利的。根據本研究之評估,當光脈衝寬度為10fs,甚至功率密度為89GW/cm2 時,雙光子吸收所誘發的自由載子效應僅為1﹪的穿透率變化。
基於電漿子波導的元件,可將尺寸進一步的縮小至0.1至1 倍的操作波長(0.15~1.5 微米),所以這樣的尺寸能夠完全滿足高密度積體光路的需求。然而,實際上礙於金屬本質的歐姆損耗,電漿子波導無法全面地取代介電質波導,作為積體光路的基本元件。但是卻能夠成功的取代一些功能性的元件,例如:次波長波導、極化光束分離器、角色散元件與光限制器。
摘要(英) In recent years, surface plasmon polariton (SPP) has been widely investigated and applied to various fields such as biomedicine sensors, high-density data storage and access, super-resoultion microscopy, and high-efficiency solar cell etc. On the other hand, optical integrated circuits have regained more attentions due to the capability of metallic waveguide structures to overcome diffraction limit. As a consequence, there is a significiant growth on experiments and theories devoted to the research of SPP. In this thesis, finite-difference time-domain method (FDTD) was utilized for the simulation of the interaction between electromagnetic waves and structured materials. The linear and nonlinear propagation characteristics of proposed plasmonic waveguide structures were investigated, and the feasibility of using plasmonic waveguide devices to optical communications is assessed.
In the aspect of linear propagation, coupled rib plasmonic waveguides (CRPW), coupled plasmonic waveguides array (CPWA), and hetero-plasmonic waveguides (HPW) were proposed for wave-guding, polarization beam splitting, and wavelength-division multiplexer, respectively. The proposed CRPW was predicted to have a propagation length of 169μm at wavelength of 1550nm, knocking down presnt world record. In addition, bent waveguide and dual channel directional coupler basing on the same structure were investigated, aiming at assessing the feasibility of subwavelength optical integrated circuits. The results reveal that the CRPW can be utilized to construt subwavelength optical devices. Secondly, CPWA was proposed as a polarization beam splitter (PBS) that can separate TE and TM mode in spatially distinct output ports. After optimization of structural and material parameters, the obtainable insertion loss, extinction ratio, and the operational bandwidth are 1dB, 20dB, and 450nm, respectively. It is realizable on a chip size as small as 100nm×2000nm. Finally, a HPW was proposed as an angular wavelength-division multiplexer. The resolving power is estimated to be 2.1°/nm, which is higher by 200 times than a conventional prism and comparable to those made of photonic crystals. This device is potentially applicable to near field antenna.
In the aspect of nonlinear propagation, coupled nonlinear plasmonic waveguides array (CNPWA) was proposed as optical limiters constructed by metal array embedded in nonlinear materials. According to optical Kerr effect (OKE) and two-photon absorption (TPA), the optical limiters can be classified by Au/Kerr/Au waveguides array and Au/GaAs/Au waveguides array. The nonlinear absorption of Au/Kerr/Au waveguides array is due to the variation of plasmonic dispersion, which using strong fields to enhance the propagation constant of plasmonic, and then to increase the absorption of plasmonic. The nonlinear absorptions of Au/GaAs/Au waveguides array, which utilizes high transmittance and surface enhanced energy effect to enhance the absorption of nonlinear material, include TPA and TPA induced free carrier absorption (FCA). The linear transmittance is higher than 85.18﹪, and the effective modal area is a half of the introduced waveguide, which result in a upgraded optical intensity, and the optical limiting threshold is shrunk down to 42.69GW/cm2. Moreover, the area of Au/GaAs/Au waveguides array is 300nm×500nm, which is advantage for the realization of highly dense optical integrated circuits. On the other hand, the TPA induced free carrier is disadvantage for a highly speeding demand of logic gate due to the slower response time. According to the assessments of this investigation, while optical pulsewidth is 10fs, and even the intensity is 89GW/cm2, the variation of transmission caused by TPA induced FCA is only ~ 1﹪.
Devices based on plasmonic waveguides can be further shrink down to ~ 0.1 to 1 times of the operating wavelength, which thereby satisfying the demand of highly dense optical integrated circuits. Practically, however, the plasmonic waveguides may not be able to replace all dielectric waveguides completely as the fundamental components in OICs due to the intrinsic ohmic loss of metallic materials. Nevertheless, we have shown that plasmonic waveguides could substitute some functional devices, such as subwavelength waveguide, polarization beam splitter, angular dispersive device, and optical limiter.
關鍵字(中) ★ 光學非線性
★ 積體光學
★ 電漿子波導
關鍵字(英) ★ optical nonlinearities
★ integrated optics
★ plasmonic waveguide
論文目次 中文摘要 i
英文摘要 iii
誌謝 vi
目錄 vii
圖目錄 x
表目錄 xiv
符號說明 xv
一﹑積體光學簡介 1
1-1 積體光學的發展 1
1-2 研究動機 7
1-3 論文架構 11
二﹑表面電漿極化子簡介 13
2-1 表面電漿極化子的歷史 13
2-2 表面電漿極化子的基本理論 14
2-3 杜德模型(Drude model) 17
2-3-1 金屬的古典模型 17
2-3-2 杜德模型的適用範圍 21
2-3-3 金屬的量子尺寸效應 22
三﹑時域有限差分法 24
3-1 簡介 24
3-2 馬克斯威爾方程式 27
3-3 馬克斯威爾方程式的Yee 演算法 28
3-4 邊界條件 30
3-5 電漿材料之模擬 33
3-6 光學克爾效應之模擬 37
3-7 雙光子吸收之模擬 40
3-8 光誘發之自由載子效應之模擬 42
四﹑積體光學之應用 45
4-1 簡介 45
4-2 耦合脊狀電漿子波導 46
4-2-1 傳播特性 47
4-2-2 雙通道指向性耦合器 53
4-2-3 九十度彎曲波導 54
4-3 極化分離元件 57
4-3-1 工作原理 58
4-3-2 元件模擬與分析 60
4-4 同質與異質(金屬/界電質/金屬)電漿子波導 71
4-4-1 同質與異質MDM 的色散關係 72
4-4-2 異質MDM 的負折射之機制 78
4-4-3 出平面之角色散 80
4-5 光限制器 84
4-5-1 光極限器之架構 86
4-5-2 Au/Kerr/Au 波導陣列 87
4-5-3 Au/GaAs/Au 波導陣列 90
4-5-4 雙光子誘發之自由載子效應 95
五﹑結論 99
六﹑參考文獻 103
七、論文著作列表 114
參考文獻 第一章
[1.1] S. E. Miller, A. G. Chynoweth: Optical Fiber Communications (Academic, New York 1979) Chap. 1.
[1.2] R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, “Coherent light emission from GaAs juctions,” Phys. Rev. Lett. 9, 366-369 (1962).
[1.3] A. Yariv: Optical Electronics, 4th edn. (Holt, Rinehart and Winston, New York 1991) pp. 309-316.
[1.4] D. P. Schinke, R. G. Smith, A. R. Hartmann: Photodetectors, in Semiconductor Devices for Optical Communication, 2nd edn. (Springer, Berlin, Heidelberg 1980) Chap. 3.
[1.5] G. P. Aqrawal: Fiber-Optic Communication System (John Wiley & Sons, New York 2002).
[1.6] R. W. Ziolkowski and J. B. Judkins, “Full-wave vector Maxwell equation modeling of the self-focusing of ultrashort optical pulses in a nonlinear Kerr medium exhibiting a finite response time,” J. Opt. Soc. Am. B 10, 186-198 (1993).
[1.7] J. Donegan, “Two-photon absorption speeds optical switching,” Lightw. Europe 1, 31 (2002).
[1.8] P. J. Maguire, L. P. Barry T. Krug, W. H. Guo, J. O’Dowd, M. Lynch, A. L. Bradley, J. F. Donegan, and H. Folliot, “Optical signal processing via two-poton absorption in a semiconductor microcavity for the next generation of high-speed optical communications network,” J. Light. Technol. 24, 2683-2692 (2006).
[1.9] N. Suzuki, “FDTD analysis of two-photon absorption and free-carrier absorption in Si high-index-contrast waveguides,” J. Light. Technol. 25, 2495-2501 (2007).
[1.10] M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12, 2880-2887 (2004).
[1.11] K. K. Lee. D. R. Lim, A. Agarwal, D. Ripin, H. H. Fujimoto, M. Morse, and L. Kimerling, “Performance of polycrystalline silicon waveguide devices for compact on-chip optical interconnection,” Proc. SPIE 3847, 120-125 (1999).
[1.12] B. Miao, C. Chen, S. Shi, J. Murakowski, and D. W. Prather, “High-efficiency broad-band transmission through a boudle-60° bend in a planar photonic crystal single-line defect waveguide,” IEEE Photon. Technol. Lett. 16, 2469-2471 (2004).
[1.13] Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944-947 (2003).
[1.14] P. Strasser, G. Stark, F. Robin, D. Erni, K. Rauscher, R. Wuest, and H. Jackel, “Optimization of a 60° waveguide bend in InP-based 2D planar photonic crystals,” J. Opt. Soc. Am. B 25, 67-73 (2008).
[1.15] S. H. Chang, T. C. Chiu, and C.-Y. Tai, “Propagation characteristics of the supermode based on two coupled semi-infinite rib plasmonic waveguides,” Opt. Express 15, 1755-1761 (2007).
[1.16] W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003).
[1.17] S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95,046802 (2005).
[1.18] S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluer, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508-511 (2006).
[1.19] B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. 87, 013107(2005).
[1.20] B. Wang and G. P. Wang, “Simulations of nanoscale interferometer and array focusing by metal heterowaveguides,” Opt. Express, 13, 10558-10563 (2005)
[1.21] X. Fan and G. P. Wang, “Nanoscale metal waveguide arrays as plasmon lenses,” Opt. Lett. 31, 1322-1324 (2006).
[1.22] H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762-1764 (2002).
[1.23] T. Goto, Y. Katagiri, H. Fukuda, H. Shinojima, Y. Nakano, I. Kobayashi, and Y. Mitsuoka, “Propagation loss measurement for surface plasmon-polariton modes at metal waveguides on semiconductor substrates,” Appl. Phys. Lett. 84, 852-854 (2004).
[1.24] J.-C. Weeber, M. U. Gonzalez, A.-L. Baudrion, and A. Dereux, “Surface plasmon routing along right angle bent metal strips,” Appl. Phys. Lett. 87, 221101 (2005).
[1.25] L. Chen, J. Shakya, and M. Lipson, “Subwavelength confinement in an integrated metal slot waveguide on silicon,” Opt. Lett. 15, 2133-2135 (2006).
[1.26] S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nature material 12, 229-232 (2003).
[1.27] D. F. P. Pile and D. K. Gramotnev, “Channel plasmon-polariton in a triangular groove on a metal surface,” Opt. Lett. 29, 1069-1071 (2004).
[1.28] K. Tanaka, M. Tanaka, and T. Sugiyama, “Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express 13, 256-266 (2005).
[1.29] F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided tw-dimensional optical waveguides,” Appl. Phys. Lett. 86, 211101 (2005).
[1.30] E. Moteno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polariton: modal shape, dispersion, and losses,” Opt. Lett. 31, 3447-3449 (2006).
[1.31] R. G. Hunsperger: Integrated Optics: Theory and Technology, 5th edn. (Springer, New York 2002) Chap. 3.
[1.32] I. V. Novikov and A. A. Maradudin, “Channel polaritions,” Phys. Rev. B 66, 035403 (2002).
[1.33] G. B. Hocker and W. K. Burns, “Mode dispersion in diffused channel waveguides by effective index method,” Appl. Opt. 16, 113-118 (1977).
[1.34] S. I. Bozhevolnyi and J. Jung, “Scaling for gap plasmon based waveguides,” Opt. Express 16, 2676-2684 (2008).
[1.35] F. Zheng, Z. Chen, and J. Zhang, “A finite-difference time-domain method without the Courant stability conditions,” IEEE Micro. Guided Wave Lett. 9, 441-443 (1999).
第二章
[2.1] R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. London 18, 269-275 (1902).
[2.2] U. Fano, “The theory of anomalous diffraction gratings and quasi-stationary waves on metallic surfaces (Sommerfeld’s waves),” J. Opt. Soc. Am. 32, 213-222 (1941).
[2.3] R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. 106, 874-881 (1957).
[2.4] E. A. Stern and R. A. Ferrell, “Surface plasma oscillations of a degenerate electron gas,” Phys. Rev. 120, 130-136 (1960).
[2.5] A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Zeitschrift fur Physik 216, 398-410 (1968).
[2.6] R. F. Harrington: Time-Harmonic Electromagnetic Fields (John Wiley & Sons, New York 2001) Chap. 1.
[2.7] M. A. Ordal, Robert J. Bell, R. W. Alexander, Jr. L. L. Long, and M. R. Querry, “Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V and W,” Appl. Opt. 24, 4493-4499 (1985).
[2.8] H. Eherenreich and H. R. Philipp, “Optical properties of Ag and Cu,” Phys. Rev. 128, 1622-1629 (1962).
[2.9] H. Ehrenreich and H. R. Philipp, and B. Segall, “Optical properties of Aluminum,” Phys. Rev. 132, 1918-1928 (1963).
[2.10] A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271-5283 (1998).
[2.11] U. Kreibig and M. Vollmer: Optical Properties of Metal Clusters (Springer, New York 1995).
[2.12] E. Cottanich, G. Celep, J. Lerme, M. Pellarin, J. R. Huntzinger, J. L. Vialle, M. Broyer, “Optical properties of noble metal clusters as a function of the size: comparison between experiments and a semi-quantal theory,” Theor. Chem. Acc. 116, 514-523 (2006).
[2.13] H. G. Tompkins, S. Tasic, J. Baker, and D. Convey, “Spectroscopic ellipsometry measurements of thin metal films,” Surf. Interface Anal. 29, 179-187 (2000).
第三章
[3.1] A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady state electromagnetic penetration problems,” IEEE Trans. Electromag. Compat. 22, 191-202 (1980).
[3.2] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antenna Propaga. 14, 302-307 (1966).
[3.3] R. Luebbers, F. P. Hunsberger, K. S. Kunz, R. B. Standler, and M. Schneider, “A frequency-dependent finite-difference time-domain formulation for dispersive materials,” IEEE Trans. Electromag. Compat. 32, 222-227 (1990).
[3.4] T. Kashiwa and I. Fukai, “A treatment by FDTD method of dispersive characteristics associated with electronic polarization,” Microwave Opt. Tech. Lett. 3, 203-205 (1990).
[3.5] D. M. Sullivan, “Frequency-dependent FDTD methods using Z transforms,” IEEE Trans. Antennas Propagat. 40, 1223-1230 (1992).
[3.6] W. C. Chew and W. H. Weedon, “A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates,” Micro. Opt. Tech. Lett. 7, 599-604 (1994).
[3.7] G. Mur, “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations,” IEEE Trans. Electromag. Compat. 23, 377-382 (1981).
[3.8] Z. P. Liao, H. L. Wong, B. P. Yang, and Y. F. Yuan, “A transmitting boundary for transient wave analysis,” Sci. Sin. Ser. A 27, 1063-1076 (1984).
[3.9] J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185-200 (1994).
[3.10] A. P. Zhao, “Comments on “An efficient PML implementation for the ADI-FDTD method”,” IEEE Micro. Wire. Components Lett. 14, 248-249 (2000).
[3.11] G.-X. Fan, Q. H. Liu, “An FDTD Algorithm with perfectly matched layers for general dispersive media,” IEEE Trans. Antenna Propaga. 48, 637-646 (2000).
[3.12] G.-X. Fan, Q. H. Liu, and S. A. Hutchinson, “FDTD and PSTD simulations for plasma applications,” IEEE Trans. Plasma Sci. 29, 341-348 (2001).
[3.13] Q. H. Liu, “An FDTD algorithm with perfectly matched layers for conductive media,” Micro. Opt. Tech. Lett. 14, 134-137 (1997).
[3.14] R. W. Ziolkowski and J. B. Judkins, “ Full-wave vector Mwxwell equation modeling of the self-focusing of ultrashort optical pulses in a nonlinear Kerr medium exhibiting a finite response time,” J. Opt. Soc. Am. B 10, 186-198 (1993).
[3.15] R. W. Ziolkowski, “The incorporation of microscopic material models into the FDTD approach for ultrafast optical pulse simulations,” IEEE Trans. Antenna Propaga. 45, 375-391 (1997).
[3.16] M. Fujii, C. Koos, C. Poulton, I. Sakagami, J. Leuthold, and W. Freude, “A simple and rigorous verification technique for nonlinear FDTD algorithms by optical parametric four-wave mixing,” Micro. Opt. Tech. Lett. 48, 88-91 (2006).
[3.17] I. S. Maksymov, L. F. Marsal, J. Pallares, “Modeling of two-photon absorption in nonlinear photonic crystal all-optical switch,” Opt. Commun. 269, 137-141 (2007).
[3.18] R. A. Soref, and B. R. Bennett, “Electrooptical effects in Silicon,” IEEE Journal Quant. Elect. QE-23, 123-129 (1987).
[3.19] N. Suzuki, “FDTD analysis of two-photon absorption and free-carrier absorption in Si high-index-constrast waveguides,” J. Lightwave Tech. 25, 2495-2501 (2007).
[3.20] S. H. G. Teo, A. Q. Liu, J. B. Zhang, and M. H. Hong, “Induced free carrier modulation of photonic crystal optical intersection via localized optical absorption effect,” Appl. Phys. Lett. 89, 091910 (2006).
[3.21] T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. V. Thourhout, W. Bogaerts, P. Dumon, R. Baets, and H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265, 171-174 (2006).
第四章
[4.1] J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Salerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 633 (2002).
[4.2] C. A. Pfeiffer, E. N. Economou, and K. L. Ngai, “Surface polaritons in a circularly cylindrical interface: surface plasmons,” Phy. Rev. B 10, 3038-3051 (1974).
[4.3] J. R. Krenn, A. Dereux, J. C. Webber, E. Bourillot, Y. Lacroute, J. P. Goudonnet, G. Schider, W. Gostschy, A. Leitner, F. R. Aussenegg, and C. Girard, “Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles,” Phy. Rev. Lett. 82, 2590-2593 (1999).
[4.4] K. Tananka, M. Tanaka, and T. Sugiyama, “Simulation of practical nanometeric optical circuits based on surface plasmon polariton gap waveguides,” Opt. Express 13, 256-266 (2005).
[4.5] D. F. Pile, T. Ogawa, D. K. Gramotnev, T. Okamoto, M. Haraguchi, M. Fukui, and S. Matsuo, “Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding,” Appl. Phys. Lett. 87, 061106 (2005).
[4.6] S. I. Bozhevolnyi, V. S. Volkov, E. Deavux, and W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95, 046802 (2005).
[4.7] S. H. Chang, T. C. Chiu, and C.-Y. Tai, “Propagation characteristics of the supermode based on two coupled semi-infinite rib plasmonic waveguides,” Opt. Express 15, 1755-1761 (2007).
[4.8] S. H. Chang, C.-Y. Tai, T. C. Chiu, “The propagation characteristics of a dual channel directional coupler and a 90° bent waveguide based on coupled rib plasmonic waveguides,” Optics and Photonics, Taiwan, December 2006, BO-45 (2006).
[4.9] D. Dai, and Z. Sheng, “Numerical analysis of silicon-on-insulator ridge nanowires by using a full-vectorial finite-difference method mode solver,” J. Opt. Soc. Am. B 24, 2853-2859 (2007).
[4.10] C.-Y. Tai, S. H. Chang, T. C. Chiu, “Design and analysis of an ultra-compact and ultra-wideband polarization beam splitter based on coupled plasmonic waveguide arrays,” IEEE Photon. Techn. Lett. 19, 1448-1450 (2007).
[4.11] P. Wei, and W. Wang, “A TE-TM mode splitter on Lithium Niobate using Ti, Ni, ane MgO diffusions,” IEEE Photon. Technol. Lett. 6, 245-248 (1994).
[4.12] J. M. Hong, H. H. Ryu, S. R. Park, J. W. Jeong, S. G. Lee, E. H. Lee, S. G. Park, D. H. Woo, S. H. Kim, and B. H. O, “Design and fabrication of a significantly shortened multimode interference coupler for polarization splitter application,” IEEE Photon. Technol. Lett. 15, 72-74 (2003).
[4.13] L. B. Soldano, A. H. de Vreede, M. K. Smit, B. H. Verbeek, E. G. Metaal, and F. H. Groen, “Mach-Zehnder interferometer polarization splitter in InGaAsP-InP,” IEEE Photon. Technol. Lett. 6, 402-405(1994).
[4.14] W. N. Ye, D. X. Xu, S. Janz, P. Waldron, P. Cheben, and N. G. Tarr, “Passive broadband silicon-on-insulator polarization splitter,” Opt. Lett. 32, 1492-1494 (2007).
[4.15] C.-Y. Tai, S. H. Chang, and T. C. Chiu, “Optimization of wide-angle and broadband operational polarization beam splitter based on anisotropically coupled plasmonic waveguides array,” Accepted to be published in J. Opt. Soc. Am. B (2008).
[4.16] G. R. Bird and M. Parrish, “The wire grid as a near-infrared polarizer,” JOSA 50, 886-891 (1960).
[4.17] L. Zhou and W. Liu, “Broadband polarization beam splitter with and embedded metal-wire nanograting,” Opt. Lett. 30, 1434 (2005).
[4.18] H. J. Juretschke, “Comment on “Microscopic approach to reflection, transmission, and the Ewald-Ossen extinction theorem,” by Heidi Fearn, Daniel F. V. James, and Peter W. Milonni,” [Am. J. Phys. 64, 986-995], “ Am. J. Phys. 67, 929-930 (1999).
[4.19] H. A. Bethe, “Theory of diffraction by small holes,” Phys. Rev. 66, 163-182 (1944).
[4.20] S. I. Hosain, J. –P., Meunier, and Z. H. Wang, “Coupling efficiency of butt-joined planar waveguides with simultaneous tilt and transverse offset,” IEEE J. Lightwave Technol. 14, 901-907 (1996).
[4.21] Clifford R. Pollock and Michal Lipson, Integrated photonics. Boston:Kluwer Academic Publishers, 2003, pp.35-36.
[4.22] 李正中,薄膜光學與鍍膜技術第五版,藝軒圖書出版社(2006).
[4.23] X. Fan, G. P. Wang, Jeffrey C. W. Lee, C. T. Chan, “All-angle broadband negative refraction of metal waveguide arrays in the visible range: theoretical analysis and numerical demonstration,” Phys. Rev. Lett. 97, 073901 (2006).
[4.24] T. Liu, A. R. Zakharian, M. Fallahi, J. V. Moloney, and M. Mansuripur, “Design of a compact photonic-crystal-based polarizing beam splitter,” IEEE Photon. Technol. Lett. 17, 1435-1437 (2005).
[4.25] H. Fukuda, K. Yamada, T. Tai, T. Watanabe, H. Shinojima, and S. -I. Itabashi, “Ultrasmall polarization splitter based on silicon wire waveguides,” Opt. Express 14, 12401-12408 (2006).
[4.26] S. Kim, Gregory P. Nordin, J. Cai, and J. Jiang, “Ultracompact high-efficiency polarizing beam splitter with a hybrid photonic crystal and conventional waveguide structure,” Opt. Lett. 28, 2384-2386 (2003).
[4.27] X. Ao, L. Liu, L Wosinski, and S. He, “Polarization beam splitter based on a two-dimensional photonic crystal of pillar type,” Appl. Phys. Lett. 89, 171115 (2006).
[4.28] E. Hutter, J. Fendler, “Exploitation of Localized Surface Plasmon Resonance,” Adv. Mater. 16, 1685-1706 (2004).
[4.29] P. Tournios, Vincent Laude, “Negative group velocities in metal-film optical waveguides,” Opt. Commun. 137, 41-45 (1997).
[4.30] J. A. Dionne, L. A. Sweatlock, H. A. Atwater, A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72, 075405 (2005).
[4.31] J. A. Dionne, L. A. Sweatlock, H. A. Atwater, A. Polman, “Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73, 035407 (2006).
[4.32] H. Shin and S. Fan, “All-angle negative refraction for surface plasmon waves using a metal-dielectric-metal structure,” Phys. Rev. Lett. 96, 073907 (2006).
[4.33] H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430-432 (2007).
[4.34] K. T. Wu, Y. D. Yao, W. B. Wu, and H. Z. Liu, “optical and magnetic studies in Ni-Ti alloy thin films,” in proceedings of 2003 Magnetics Conference, CS-14 (2003).
[4.35] C. Min, P. Wang, X. Jiao, Y. Deng, and H. Ming, “Beam manipulating by metallic nano-optics lens containing nonlinear media,” Opt. Express 15, 9541-9546 (2007).
[4.36] Q. Chen, L. Kuang, E. H. Sargent, and Z. Y. Wang, “Ultrafast nonresonant third-order optical nonlinearity of fullerene-containing polyurethane films at telecommunication wavelength, “Appl. Phys. Lett. 83, 2115-2117 (2003).
[4.37] H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering,” Appl. Phys. Lett. 74, 1370-1372 (1999).
[4.38] G. S. He, L. Yuan, J. D. Bhawalkar, and P. N. Prasad, “Optical limiting, pulse reshaping, and stabilization with a nonlinear absorptive fiber system,” Appl. Opt. 36, 3387-3392 (1997).
[4.39] A. Nevejina-Srurhan, O. Werhahn, and U. Siegner, “Low-threshold high-dynamic-range optical limiter for ultra-short laser pulses,” Appl. Phys. B 74, 553-557 (2002).
[4.40] R. C. C. Leite, S. P. S. Porto, and T. C. Domen, “The thermal lens effects as power-limiting device,” Appl. Phys. Lett. 10, 100-101 (1967).
[4.41] K. M. Nashold, and D. P. Walter, “Investigation of optical limiting mechanisms in carbon particle suspensions and fullerene solutions,” J. Opt. Am. B 12, 1228-1237 (1995).
[4.42] D. Vincent, and J. Cruickshank, “Optical limiting with C60 and other fullerenes,” Appl. Opt. 36, 7794-7798 (1997).
[4.43] B. L. Justus, A. J. Campillo, A. L. Huston, “Thermal-defocusing /scattering optical limiter,” Opt. Lett. 19, 673-675 (1994).
[4.44] G. C. Duree, G. J. Salamo, M. Segev, A. Yariv, E. J. Sharp, and R. R. Neurgaonkar, “Photorefractive self-focusing and defocusing as an optical limiter,” Proc. SPIE 2229, 192-199 (1994).
[4.45] L. Porres, O. Mongin, C. Katan, M. Charlor, T. Pons, J. Mertz, and M. Balanchard-Desce, “Enhanced two-photon absorption with novel cutupolar propeller-shaped fluorophores derived from triphenylamine,” Org. Lett. 6, 47-50 (2004).
[4.46] O. Mongin, T. R. Krishna, M. H. V. Werts, A.-M. Caminade, J.-P. Majoral, and M. Blanchar-Desce, “A modular approach to two-photon absorption organic nanodots: brilliant dandrimers as alternative to semiconductor quamtum dots?,” Chem. Commun. , 915-917 (2006).
[4.47] S. Qu, Y. Gao, X. Jiang, H. Zeng, Y. Song, J. Qiu, C. Zhu, and K. Hirao, “Nonlinear absorption and optical limiting in gold-precipitated glasses induced by a femtosecond laser,” Opt. Commun. 224, 321-327 (2003).
[4.48] P. P. Kiran, B. N. S. Bhaktha, and D. N. Rao, “Nonlinear optical properties and surface plasmon enhanced optical limiting in Ag-Cu nanoclusters co-doped in SiO2 Sol-Gel films,” J. Appl. Phys. 96, 6717-6723 (2004).
[4.49] N. Izard, P. Billaud, D. Riehl, and E. Ahglaret, “Influence of structure on the optical limiting properties of nanotubes,” Opt. Lett. 30, 1509-1511 (2005).
[4.50] J.-B. Han, D.-J. Chen, S. Ding, H.-J. Zhou, Y.-B. Han, G.-G. Xiong, and Q.-Q. Wang, “Plasmon resonant absorption and third-order optical nonlinearity in Ag-Ti cosputtered composite films,” J. Appl. Phys. 99, 023526 (2006).
[4.51] H. Pan, W. Chen, Y. P. Feng, W. Ji, and J. Lin, “Optical limiting properties of metal nanowires,” Appl. Phys. Lett. 88, 223106 (2006).
[4.52] H. J. Elim, J. Yang, J.-Y. Lee, J. Mi, and W. Ji, “Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanorods,” Appl. Phys. Lett. 88, 083107 (2006).
[4.53] S. Porel, N. Venkatram, D. N. Rao, T. P. Radhakrishnan, “Optical power limiting in the femtosecond regime by silver nanoparticle-embedded polymer film,” J. Appl. Phys. 102, 033107 (2007).
[4.54] T. K. Liang, L. R. Nunes, M. Tsuchiya, K. S. Abedin, T. Miyazaki, D. V. Thourhout, W. Bogaerts, P. Dumon, R. Baets, H. K. Tsang, “High speed logic gate using two-photon absorption in silicon waveguides,” Opt. Commun. 265, 171-174 (2006).
[4.55] M. Sheik-Bahae, D. J. Hagan, and E. W. V. Stryland, “Dispersion and band-gap scalling of the electronic kerr effect in solids associated with two-photon absorption,” Phys. Rev. Lett. 65, 96-99 (1990).
[4.56] M. Sheik-Bahae, D. C. Hurchings, D. J. Hagan, and E. W. V. Stryland, “Dispersion of band electronic nonlinear refraction in solids,” IEEE Quan. Electron. 27, 1296-1309 (1991).
[4.57] R. G. Hunsperger, Integrated Optics, 5th ed. (Springer, Berlin, 2002).
[4.58] N. Suzuki, “FDTD analysis of two-photon absorption and free-carrier absorption in Si high-index-constrast waveguides,” J. Lightwave Tech. 25, 2495-2501 (2007).
[4.59] Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15, 924-929 (2007).
[4.60] S. Manipatruni, Q. Xu, B. Schmidt, J. Shakya, and M. Lipson, “High speed carrier injection 18Gb/s Silicon micro-ring electro-optic modulator,” LEOS 2007, 21-25 (2007).
[4.61] K. Preston, P. Dong, Bradley Schmidt, and M. Lipson, “High-speed all-optical modulation using polycrystalline silicon microring resonators,” Appl. Phys. Lett. 92, 151104 (2008).
[4.62] C. Kittle, Introduction to Solid State Physics, 7th ed. (John Wiely & Sons, 1996).
[4.63] S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, and G. A. Mourou, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59, 3276-3278 (1991).
指導教授 丘增杰、戴朝義
(TsenChieh Chiu、Chao-Yi Tai)
審核日期 2008-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明