博碩士論文 93541012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:34.204.176.125
姓名 張啟原(Chi-Yuan Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 直接甲醇燃料電池混合供電系統之控制研究
(The Study of Controls for Hybrid Power system on Direct Methanol Fuel Cell)
相關論文
★ 利用折射率檢測法在水耕植物之水質檢測研究★ DSP主控之模型車自動導控系統
★ 旋轉式倒單擺動作控制之再設計★ 高速公路上下匝道燈號之模糊控制決策
★ 模糊集合之模糊度探討★ 雙質量彈簧連結系統運動控制性能之再改良
★ 桌上曲棍球之影像視覺系統★ 桌上曲棍球之機器人攻防控制
★ 模型直昇機姿態控制★ 模糊控制系統的穩定性分析及設計
★ 門禁監控即時辨識系統★ 桌上曲棍球:人與機械手對打
★ 麻將牌辨識系統★ 相關誤差神經網路之應用於輻射量測植被和土壤含水量
★ 三節式機器人之站立控制★ 三節式機器人之爬行控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文之主要目的為發展直接甲醇燃料電池之供電最佳化設計方法。提出直接甲醇燃料電池與二次電池混合供電模式之能量管理模式,提高供電系統之穩定性及燃料電池使用壽命。本研究之主題包括(1)討論不同操作條件對直接甲醇燃料電池輸出功率之影響,(2)發展直接甲醇燃料電池/電池混合供電架構,(3)討論Fuzzy、PIDNN和ANFIS 3種不同控制方法在混合模式對直接甲醇燃料電池電源進行能源管理。
探討主動式混合供應模式應用於直接甲醇燃料電池在不同負載操作條件下的供電系統,比較輸出電壓、輸出功率與輸出電流之間關係,以瞭解不同操作條件下對DMFC性能的影響,提出3種不同動態補償控制方法及硬體系統架構以延長其操作壽命及取代傳統電池混合供電系統。研究在高負載下,電池提供輔助動力幫助於高負荷需要作為補償來源,使DMFC運作時不會有電力中斷或輸出電壓大幅下降之問題,在低負載時將燃料電池多餘的能量儲存到電池中,使燃料電池儘量操作在符合負載行為之平均功率點。
藉由本研究對燃料電池之應用,增加了DMFC燃料電池系統暫態性能和滿足能源管理的要求。展露出燃料電池的優異性能,有效的延長工作時間,彌補了傳統電池工作時間過短的缺憾。
摘要(英) This study aimed to develop an optimal design method for the DMFC (direct methanol fuel cell) power supply. The proposed energy management model for a hybrid power supply of the DMFC and secondary battery can improve the power system stability and fuel cell life. The topics of this study include: (1) discussed performances for different operating conditions: fuel cell temperature, anode ?ow rate, air flow rate and methanol concentration, (2) the development of the DMFC/battery hybrid power supply structure and (3) discussion of the application with Fuzzy, PIDNN and ANFIS three different control methods in a hybrid model for DMFC power supply energy management.
This study explored the application of an active hybrid power supply model in the DMFC when the power supply systems are under different operating conditions for loads. This study also investigated the relationship between output voltage, output power and output current to help understanding the impact of different operating on conditions on the DMFC’’s performance. It also proposed three different control methods dynamic compensation and hardware system structure to extend service life and replace the traditional hybrid cell power supply system. The provision of auxiliary power provided by the cell was explored as a source of compensation in case of high load needs to prevent power outages or power slumps of operational DMFCs. In the case of a low load, excess energy from the DMFC was stored in the battery to keep average power of the load as much as possible.
Studies on the application of DMFC have increases the transient performance of the DMFC fuel cell system and satisfies the requirement of energy management, and demonstrated the cells’ efficiency in extending working time, making up for the defect of too short a working time for traditional batteries.
關鍵字(中) ★ 混合供電
★ 直接甲醇燃料電池
★ 電能管理
關鍵字(英) ★ Hybrid Power Supply
★ Energy Management
★ DMFC
論文目次 摘 要 i
Abstract ii
誌 謝 iv
Contents vi
List of Figures ix
List of Tables xiii
Chapter 1 Introduction 1
1.1 Objective 1
1.2 Overview of Related Research 3
1.3 Organization of this Dissertation 6
Chapter 2 Description of DMFC 10
2.1 Basic Principle of DMFC 11
2.2 Main Components of DMFCs 16
2.3 BOP in DMFC System 22
2.4 Operational System Description 26
Chapter 3 Characterization and Design of the DMFC System 29
3.1 Performance of DMFC 29
3.2 Effects of Operating Conditions on DMFC 31
3.2.1 Effects of Operating Temperature 31
3.2.2 Effect of Methanol Solution Flow Rate 33
3.2.3 Effect of Air Flow Rate 34
3.2.4 Effect of Methanol Concentration 35
3.3 DMFC Hybrid Power System Architecture 38
3.3.1 Energy Storage Devices for Hybridization 38
3.3.2 Passive Hybridization 41
3.3.3 Active Hybridization 44
3.4 Summary 45
Chapter 4 Control Design for Hybrid DMFC System Based on Fuzzy Logic 47
4.1 Introduction 47
4.2 Preparation and Operation of Stack for DMFC 48
4.2.1 DMFC Operation 49
4.2.2 Experimental setup 50
4.3 Control Strategies of the Hybrid DMFC system 53
4.3.1 Description of Control Variables for the Hybrid DMFC System 54
4.3.2 Fuzzy Rule Base for DMFC Control 56
4.4 Experiment Results 63
4.5 Summary 66
Chapter 5 Control Design for Hybrid System Using PIDNN 67
5.1 Introduction 67
5.2 Problem Description and System Architecture 68
5.3 Control Strategies of Hybrid DMFC System Using PIDNN 71
5.3.1 PIDNN Control Concept 71
5.3.2 DMFC Indirect Voltage-Mode Controller 75
5.4 Experiment Results 77
5.5 Summary 81
Chapter 6 Controller Design for Hybrid System Using an ANFIS Model 83
6.1 Introduction 83
6.2 Problem Description and Solution 84
6.3 ANFIS Modeling of Hybrid Power system 89
6.4 Experiment Results 94
6.5 Summary 99
Chapter 7 Conclusions and Future Works 101
7.1 Conclusions 101
7.2 Future Works 106
References 110
Publication List 119
參考文獻 [1]T. B. Atwater, P. J. Cygan, and F. C. Leung, “Man portable power needs of the 21st century: I. Applications for the dismounted soldier. II. Enhanced capabilities through the use of hybrid power sources,” Journal of Power Sources, vol. 91, pp. 27-36, 2000.
[2]B.-D. Lee, D.-H. Jung, and Y.-H. Ko, “Analysis of DMFC/battery hybrid power system for portable applications,” Journal of Power Sources, vol. 131, pp. 207-212, 2004.
[3]J. Han and E.-S. Park, “Direct methanol fuel-cell combined with a small back-up battery,” Journal of Power Sources, vol. 112, pp. 477-483, 2002.
[4]K. Lee, N. Chang, J. Zhuo, C. Chakrabarti, S. Kadri, and S. Vrudhula, “A fuel-cell- battery hybrid for portable embedded systems,” ACM Trans. Des. Autom. Electron. Syst., vol. 13, pp. 1-34, 2008.
[5]J.H. Wee, “A feasibility study on direct methanol fuel cells for laptop computers based on a cost comparison with lithium-ion batteries,” Journal of Power Sources, vol. 173, pp. 424-436, 2007.
[6]J. Zhenhua and R. A. Dougal, “A compact digitally controlled fuel cell/battery hybrid power source,” Industrial Electronics, IEEE Transactions on, vol. 53, pp. 1094-1104, 2006.
[7]J. Zhenhua and R. Dougal, “Design and testing of a fuel-cell-powered battery-charging station”, Journal of Power Sources, vol. 115, no. 2, pp. 148-153, 2003.
[8]R. J .Brodd, “Overview: rechargeable battery systems”, Conf. Record of WESCON’’93, pp. 206 –209, 1993.
[9]K. T. Jeng and C.W. Chen, “Modeling and simulation of a direct methanol fuel cell anode,” Journal of Power Sources, vol.112,no. 2 pp. 367-375, November 14, 2002.
[10]J. P. Zheng, T. R. Jow, and M. S. Ding, “Hybrid power sources for pulsed current applications”, IEEE Trans. Aerospace and Electronic Sys., vol. 37, no. 1, pp. 288-292, 2001.
[11]Y. Choi, N. Chang, and T. Kim, “Dc-dc converter-aware power management for battery-operated embedded systems”, in 42nd DAC, pp. 895-900, June 2005.
[12]M. J. Khan and M. T. Labal, “Modeling and analysis of electro chemical, thermal, and reactant flow dynamics for a PEM fuel cell system”, Fuel cells, vol. 5, no. 4, pp. 463-475, 2005.
[13]M. Serra, J. Auado, X. Ansede, and J Riera,” Controllability analysis of decentralized linear controllers for polymeric fuel cells,” Journal of Power Sources, vol. 151, pp. 93-102, 2005.
[14]B Wahdame, D Candusso, X Francois, F Harel, A Bernardinis, D. Kauffmann J-M and G. Coquery, ”Study of a 5kW PEMFC using experimental design and statistical analysis techniques, fuel cells from fundamentals to systems,” Journal of Power Sources, vol. 117, pp. 47-62,2007.
[15]B.-D. Lee, D.-H. Jund, and Y.-H. Ko, “Analysis of DMFC/battery hybrid power system for portable applications,” Journal of Power Sources, vol. 131, pp. 207-212, 2004.
[16]J. Han and E.-S. Park, “Direct methanol fuel-cell combined with a small backup battery,” Journal of Power Sources, vol. 112, pp. 477-483, 2002.
[17]L. Gao, Z. Jiang, and R. A. Dougal, “An actively controlled fuel cell/battery hybrid to meet pulsed power demands,” Journal of Power Sources vol. 130, no. 2, pp. 202-207, 2004..
[18]W. Gao, “Performance comparison of a fuel cell-battery hybrid powertrain and a fuel cell-ultracapacitor hybrid powertrain”, Vehicular Technology, IEEE Transactions, Vol. 54, Issue: 3, pp. 846–855, 2005.
[19]C. Wang and M.H. Nehrir, “Power management of a stand-alone wind/photovoltaic/fuel cell energy system,” IEEE Transactions on Energy Conversion, vol. 123 , pp. 957–967, 2008.
[20]J, Zhenhua and R.A Dougal, “A compact digitally controlled fuel cell/battery hybrid power source,” industrial electronics, IEEE Transactions , Vol. 53, Issue: 4, pp. 1094–1104, 2006.
[21]D. Chen ” Design and implementation of microcontroller-based direct methanol fuel cell/lithium polymer battery hybrid energy management system,” Nanjing University of Aeronautics and Astronautics, Master, 2007.
[22]M. J. Khan and M. T. Labal, “Modeling and analysis of electro chemical, thermal, and reactant flow dynamics for a PEM fuel cell system”, Fuel cells, vol. 5, no. 4, pp. 463-475, 2005.
[23]B. Gurau, and E.S. Smotkin, “Methanol crossover in direct methanol fuel cells: a link between power and energy density”, Journal of Power Sources, vol.112, pp. 339-352, 2002.
[24]J. C. Amphlett, B. A. Peppley, E. Halliop, and A. Sadiq, “The effect of anode flow characteristics and temperature on the performance of a direct methanol fuel cell,” J. Power Sources, vol. 96, pp. 204-213, 2001.
[25]J. P. Diard, N. Glandut, P. Landaud, B. L. Gorrec, and C. Montella, “A method for determining anode and cathode impedances of a direct methanol fuel cell running on a load,” Electrochim. Acta, vol. 48, pp. 555-562, 2003.
[26]J. Lobato, P. Canizares, M. A. Rodrigo, J. J. Linares, and A. F. Fragua, “Application of sterion membrane as polymer electrolyte for DMFCs,” Chem. Eng. Sci., vol. 61, pp. 4773-4782, 2006.
[27]C. Y. Chen, J. Y. Shiu, and Y. S. Lee, “Development of a small DMFC bipolar plate stack for portable applications,” Journal of Power Sources, vol. 159, pp. 1042-1047, 2006.
[28]M. Nadal and F. Barbir, “Development of a hybrid fuel cell/battery powered electric vehicle,” International Journal of Hydrogen Energy, vol.121, Issue: 6, pp. 497-505, 2006.
[29]T. Ali and K. Mohsen,” Interconnection and damping assignment and Euler-Lagrange passivity-based control of photovoltaic/battery hybrid power source for stand-alone applications,” Journal of Zhejiang University-Science C-Computers & Electronics, vol.12, Issue: 9, pp. 497-505, 2011.
[30]Y. Eren, O. Erdinc, H. Gorgun, M. Uzunoglu and B. Vural,” A fuzzy logic based supervisory controller for an FC/UC hybrid vehicular power system,” International Journal of Hydrogen Energy, vol.34, Issue: 3, pp. 8681-8694, 2009.
[31]N. Y. Hsu, S. C. Yen, K. T. Jeng and C. C. chien, “Impedance studies and modeling of direct methanol fuel cell anode with interface and porous structure perspectives,” Journal of Power Sources, vol. 161, pp. 232-239, 2006.
[32]L. Zhong, X. Wang, Y. Jiang, Q. Zhang, X. Qiu and Y. Zhau, “A micro-direct methanol fuel cell stack with optimized design and micro fabrication,” Sens Actuators A Phys, vol. 143, pp. 70–76, 2008
[33]L. J. Gao, Z. H. Jiang and R.A Dougal, “An actively controlled fuel cell/battery hybrid to meet pulsed power demands,” Journal of Power Sources, vol. 130, pp. 202-207, 2004.
[34]J .K Seong, L.W Yong and K.C Soo, “Energy management strategies of a fuel cell/battery hybrid system using fuzzy logics”, Journal of Power Sources, vol.145, Issue: 2, pp.319-326, 2005.
[35]J. Zhuo, C. Chakrabarti, K. Lee, and N. Chang, “Dynamic power management with hybrid power sources," in Proceedings of DAC 2007, pp.319-326, 2007.
[36]A. Hacquard,” Improving Understanding Direct Methanol Fuel Cell (DMFC) Performance”, Worcester Polytechnic Institute, May 2005.
[37]D.D. Boettner, G. Paganelli, Y.G. Guezennec, G. Rizzoni and M.J. Moran. J. Energy Res. Technol., 124, pp. 20–27, 2002.
[38]S Rosiek, F. J Batlles, “Modelling a solar-assisted air-conditioning system installed in CIESOL building using an artificial neural network”, Renewable Energy, vol.35, Issue: 12, pp. 2894-2901, 2010.
[39]E. A Mohamed, H. A Talaat, E. A Khamis, “Fault diagnosis system for tapped power transmission lines”, Electric Power Systems Research, vol.80, no.5, pp.599-613, 2010.
[40]Y. Takeuchi and A. Hirata “A method of optimization of linear observations for the kalian filter based on a generalized water filling theorem,” International Journal of Innovative Computing, Information and Control, vol.5, no.1, pp.75-85, 2009.
[41]M. Matsubara, Y. Usui and S. Sugimoto, “Identification of continuous-time MIMO systems via sampled data”, International Journal of Innovative Computing, Information and Control ,vol.2, no.5, pp.927-942, 2006.
[42]C. H. Shi and G. H. Zhang “A New Method of PID Control Based on Improved BP Neural Network”, Control Conference, pp.1167-1171, 2007.
[43]H. L Shu. and Y.G. Pi, “ PID neural networks for time-delay systems”, Computers and Chemical Engineering, Vol. 24, pp. 859–862, 2000.
[44]H. L Shu, L. Shu, “PID neural network in multivariable time-varying systems”, dynamics of continuous discrete and impulsive systems-series b-applications & algorithms. Vol. 2, pp. 822-824, 2005.
[45]Huailin Shu and Xiucai Guo, “Decoupling control of multivariable time-varying systems based on PID neural network”, Control Conference 5th , vol. 1, pp. 682-685, 2004.
[46]C. Y. Du, T. S. Zhao and W. W. Yang, “Effect of methanol crossover on the cathode behavior of a DMFC: A half-cell investigation”, Electrochimica Acta, Vol. 52, pp. 5266–5271, 2007.
[47]C. L. Chang, C.Y. Chen, C. C. Sung, C.Y. Chang and H.C. Cha, “Fuel sensor-less control of a liquid feed fuel cell under dynamic loading conditions for portable power sources (II)”, Journal of Power Sources, vol.195, pp. 1427-1434, 2010.
[48]Y Wakasa, K Tanaka and T Akashi, “PSO-based simultaneous tuning method for PID controllers and dead-zone compensators and its application to ultrasonic motors”, International Journal of Innovative Computing, Information and Control , Soc. Vol. 6, pp. 4593-4604, 2010.
[49]G. D. Li, S. Masuda and D. Yamaguchi, “The Optimal GNN-PID Control System using Particle Swarm Optimization Algorithm”, International Journal of Innovative Computing, Information and Control , vol.5, pp. 3457–3469, 2009.
[50]Y. Abe, M. Konishi and Imai J, “Neural network based diagnosis system for looper height controller of hot strip mills”, International Journal of Innovative Computing, Information and Control , vol. 3, pp. 919-935, 2007.
[51]J. P. Meyers and J. Newman, “Simulation of the Direct Methanol Fuel Cell,” Journal of Electrochemical. Soc. vol. 149, pp. A718-A728, 2002.
[52]J. Larminie and A. Dicks, Fuel Cell Systems Explained, West Sussex: John Wiley & Sons Ltd, 2000.
[53]G. Zhi and S. Watanabe, “A Fuzzy Model for Bidding Behavior of Generators in Electricity Markets,” International Journal of Innovative Computing, Information and Control, vol.3, no.4, pp. 953-966, 2007.
[54]W. G. Ma, “Design of Signal Fuzzy Controller of Single Intersection in Intelligence Transportation System,” International Journal of Innovative Computing, Information and Control, vol.3, no.4, pp. 1023-1029, 2007.
[55]Y. Shi, P. Messenger, and M. Mizumoto, “Fuzzy Inference Modeling Based on Fuzzy Singleton-type Reasoning,” International Journal of Innovative Computing, Information and Control, vol.3, no.1, pp. 13-20, 2007.
[56]S.A. Grigoriev, V.I. Porembskiy, S.V. Korobtsev, V.N. Fateev, F. Aupretre and P. Millet, “High-pressure PEM water electrolysis and corresponding safety issues ”, International Journal of Hydrogen Energy, Vol.36, pp. 2721-2728, 2011.
[57]M.A. Shoorehdeli, M.T Lin, and A.K Sedigh, “Training ANFIS as an identifier with intelligent hybrid stable learning algorithm based on particle swarm optimization and extended Kalman filter,” Fuzzy Sets and Systems, vol.160, pp. 922-948, 2009.
[58]C. H. Chen, C. J. Lin, and C. T. Lin, “An efficient quantum neuro-fuzzy classifier based on fuzzy entropy and compensatory operation,” Soft Computing, vol. 12, no. 6, pp. 567-583, 2008.
[59]T. S. Shih, J. S. Su, and J. S. Yao, “Fuzzy linear programming based on interval-valued fuzzy sets,” International Journal of Innovative Computing, Information and Control, vol.5, no.8, pp. 2081-2090, 2009.
[60]S.H. Yang, W.J Wang, C.Y Chen, C.H Hsu and P.H Chou, “The impedance based fuzzy logic control for the cathode air flow of a direct methanol fuel cell system,” International Journal of Innovative Computing, Information and Control, vol.7, no.2, pp. 625-635, 2011.
[61]M. Matsubara, Y. Usui and S. Sugimoto, “Identification of continuous-time MIMO systems via sampled data”, International Journal of Innovative Computing, Information and Control, vol.2, no.5, pp.927-942, 2006.
[62]E. Entchev and L. Yang, “Application of adaptive neuro-fuzzy inference system techniques and artificial neural networks to predict solid oxide fuel cell performance in residential microgeneration installation”, Journal of Power Sources, vol.170, pp. 122-129, 2007.
[63]J. Larminie and A. Dicks, Fuel cell systems explained, West Sussex: John Wiley & Sons Ltd, 2000.
[64]Z T. Sun, S. Yan, G. Cao and X. Zhu, “Modeling and control PEMFC using fuzzy neural networks,” Journal of Power Sources, vol. 110, pp. 1084-1089, 2005.
[65]O.Erdinc, B. Vural and M. Uzunoglu,” A wavelet-fuzzy logic based energy management strategy for a fuel cell/battery/ultra-capacitor hybrid vehicular power system,” Journal of Power Sources, vol. 194, pp. 376-385, 2009.
[66]L.C. Yan and L.G. Ping,” Optimal fuzzy power control and management of fuel cell/battery hybrid vehicles,” Journal of Power Sources, vol. 191, pp. 542-549, 2009.
[67]C.Y Chang, K.Y Chang, W.J Wang and C.Y Chen, “The active control design for hybrid dmfc system based on fuzzy logic,” IEICE Transactions on Communications, vol. E94.B, pp. 2994-3000, 2011.
[68]A. Khaligh, A. M. Rahimi, Y. J. Lee, J. Cao, A. Emadi, S. D. Andrews, C. Robinson and C. Finnerty, “Digital control of an isolated active hybrid fuel cell/Li-ion battery power supply,” IEEE Transactions on Vehicular Technology, vol.56, no 6, pp.3709-3721, 2007.
[69]R.O Hayre, S.W Cha, W. Colella and F. B. Prinz,” Fuel cell fundamentals.” Hoboken, NJ, John Wiley & Sons, 2006.
[70]G. Q. Lu and C. Y. Wang, “Electrochemical and flow characterization of a direct methanol fuel cell,” Journal of Power Sources, vol. 134, pp. 33-40, 2004.
[71]K. Sundmacher, T. Schultz, S. Zhou, K. Scott, M. Ginkel and E. D. Gilles, “Dynamics of the direct methanol fuel cell (DMFC): experiments and model-based analysis,” Chemical Engineering Science, Vol.56, Issue.2, pp.333-341, 2001.
[72]A.J. Appleby and F.R. Foulkes,” Fuel cell handbook (sixth edition)” CRC Press, ISBN: 0849308771 August, 2002.
[73]E.A Mohamed, H.A Talaat and E.A Khamis, “Fault diagnosis system for tapped power transmission lines,” Electric Power Systems Research, vol.80, no.5, pp.599-613, 2010.
[74]G.D Li, S Masuda and D Yamaguchi, “The Optimal GNN-PID control system using particle swarm optimization algorithm”, International Journal of Innovative Computing, Information and Control, vol.5, pp. 3457–3469, 2009.
[75]Z. Jiang, L. Gao and R. A. Dougal, “Flexible multiobjective control of power converter in active hybrid fule cell/battery power sources,” IEEE Transactions on Power Electronics, vol. 20, no. 1, pp. 244–253, 2009.
[76]Y. Choi, N. Chang and T. Kim, “Dc-dc converter-aware power management for battery-operated embedded systems,” in 42nd DAC, pp.895-900, 2005.
[77]D. Gervasio, “Fuel-cell system for hand-carried portable power,” International Fuel Cell R&D Forum, Nov. 2005.
[78]L. Gao, Z. Jiang and R. A. Dougal, “Evaluation of Active hybrid fuel cell / battery power sources,” IEEE Tran. Aerospace and Electronic Systems, vol. 41, pp. 346-355, 2005.
[79]L. P. Jarvis, P. J. Cygan, and M. P. Roberts, “Hybrid power source for manportable applications,” IEEE Aerosp. Electron. Syst. Mag., vol. 18, no. 1, pp. 13–16, 2003.
[80]Z. Jiang, L. Gao, and R. A. Dougal, “Flexible multiobjective control of power converter in active hybrid fuel cell/battery power sources,” IEEE Trans. Power Electron, vol. 20, no. 1, pp. 244–253, 2005.
[81]G.L. Guizzi, M. Manno, and M. De Falco, “Hybrid fuel cell-based energy system with metal hydride hydrogen storage for small mobile applications” International Journal of Hydrogen Energy, vol.34, Issue: 3, pp. 3112-3124, 2009.
指導教授 陳長盈、張寬裕、王文俊
(Charn-Ying Chen、Koan-Yuh Chang、Wen-June Wang)
審核日期 2012-1-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明