博碩士論文 93541018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:18.226.177.58
姓名 林恆田(Heng-Tien Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 奈米粒子摻雜之軟性有機記憶體元件之研究
(Investigation of Flexible Organic Memory Device incorporating Nanoparticles)
相關論文
★ 增強型異質結構高速移導率電晶體大信號模型之建立及其在微波放大器之應用★ 空乏型暨增強型Metamorphic HEMT之製作與研究
★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用★ 氧化鋁基板上微波功率放大器之研製
★ 氧化鋁基板上積體化微波降頻器電路之研製★ 順序特徵結構設計研究及其應用在特徵模子去耦合與最小特徵值靈敏度
★ 順序特徵結構設計研究及其應用在最大強健穩定度與最小迴授增益★ LDMOS功率電晶體元件設計、特性分析及其模型之建立
★ CMOS無線通訊接收端模組之設計與實現★ 積體化微波被動元件之研製與2.4GHz射頻電路設計
★ 異質結構高速移導率電晶體模擬、製作與大訊號模型之建立★ 氧化鋁基板微波電路積體化之2.4 GHz接收端模組研製
★ 氧化鋁基板上積體化被動元件及其微波電路設計與研製★ 二維至三維微波被動元件與射頻電路之設計與研製
★ CMOS射頻無線通訊發射端電路設計★ 次微米金氧半場效電晶體高頻大訊號模型及應用於微波積體電路之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於有機材料使電子產品具有可撓性、簡單製程和低成本的優勢,在最近幾年引起相當大的注意。有機記憶體是一個必要的元件,在邏輯元件的操作上負責提供資料或儲存資料,例如:無線射頻辨識標籤、電子紙和電子看板。有機記憶體在結構上大致可分為雙穩態兩端元件和電晶體型式的三端元件。比較這兩種結構,雙穩態兩端元件的優點在於只需要較低的操作電壓和相對簡單的製程。在第二章中,我們利用金奈米粒子摻雜在聚合物裡面形成雙穩態有機記憶體。當提供外部電壓給有機記憶體時,元件特性可從低導電狀態轉變為高導電狀態和得到一個急遽上升的傳輸電流。我們在此提出空間電荷侷限電流來解釋傳導機制,並透過理論和實驗來驗證傳導機制。在第三章中,我們提出一個新的概念,就是利用聚合物去連結金奈米粒子,並混合在聚合物裡面作為記憶體之主動層。透過穿遂電子顯微鏡的分析,證實金奈米粒子可均勻地分散在聚合物裡面。這使元件能有更高的穩定性,並且利用外部電壓能夠精準控制這元件雙穩態之特性,使元件可操作次數 (endurance) 達到上千次和保持時間 (retention time) 超過三天。在第四章中,我們是首位在塑膠基板上,做出16-byte 可定址有機非揮發性記憶體陣列。記憶體開關次數可以超過上千次和預估可達到一年的保持時間。其元件在彎曲半徑為5 mm時,電性操作上仍然很穩定,並且可以透過外部電路去控制元件的操作,卻只需要消耗很低的功率。在第五章中,我們為了避免記憶體陣列產生誤動作,在有機記憶體上搭配一個有機二極體,這可使記憶體陣列能夠正確被讀取並能減少周邊的外部電路。此外,金奈米粒子顯示紫外光的吸收,所以我們利用紫外光的照射來清除記憶體之內容,因此二極體開關記憶體陣列能夠正確的被讀取和寫入,並能透過紫外光來重新清除記憶體之內容。因此,搭配紫外光清除的二極體開關記憶體陣列能夠扮演印製式電子開發的關鍵角色。
摘要(英) In recent year, organic materials have attracted much attention due to their potential advantages of flexibility, simple process and low cost. Organic memory is an essential device for any electronic logic system to provide or store information for the logic operation, such as radio-frequency identification (RFID)-tags, electronic-papers, and electronic-signage, which strongly demand for a low cost and simple process. The organic memory devices are basically characterized by two types of structure: two terminal bistable and three terminal transistor-like memory devices. The two terminal bistable memory devices offer the advantages of a low operation voltage and a simple process over three terminal transistor-like devices. In chapter 2, we utilize gold nanoparticles embedded polymer to fabricate bistable organic memory. The I–V characteristics show that the device switches from initial OFF-state to ON-state upon application of external electric field. The current transition exhibits in a very narrow voltage range causing an abrupt increase of the current. The conduction mechanism in nanoparticles contained polymer memory was investigated experimentally and theoretically. A trap-filled space-charge-limited current model is proposed to explain the transport mechanism in this memory device.
In chapter 3, we get a stable organic bistable nonvolatile memory (ONBM) by using polymer chain stabilized gold nanoparticles (Au-NPs) in a host polymer as the memory active layer. The TEM images show that the polymer stabilized Au-NPs are well-dispersed in the polymer matrix. We further demonstrate our concept that is feasible for polymer stabilized Au-NPs. This concept enables Au-NPs to be well dispersed in host polymer in order to fabricate the stable devices. This concept enables Au-NPs to be well dispersed in host polymer in order to fabricate the stable devices. The electrical bistability of the device can be precisely controlled by applying a positive voltage pulse or a negative voltage pulse, respectively. This memory can be switched on and off over 1000 times without appreciable performance degradation. In addition, the memory state can retain over 3 days in air environment.
In the chapter 4, a 16-byte addressable ONBM array on the plastic substrate has demonstrated. The memory cell can be switched on and off over 1,000 times and the longest retention time can be estimated to be nearly one year in the air. In the analysis of the mechanical flexibility, we demonstrated that electrical properties of our ONBM were fairly stable during the application of compressive stress down to 5 mm in bending radius. After connecting the ONBM array to the current-sensing circuit, the ONBM array can be correctly addressed and operated, while maintaining low-power consumption. To our best knowledge, this is the first actively addressable ONBM array ever demonstrated.
In the chapter 5, we demonstrate an UV erasable stacked diode-switch organic nonvolatile bistable memory using a polymer-chain stabilized Au nanoparticles on the plastic substrate in the ambient air. The specified DS-ONBM array can be correctly read and avoided crosstalk in a much simplified peripheral circuits. The absorption spectrum of the gold nanoparticles shows ultra-violet (UV) absorption. Therefore, UV light was used to erase data in the DS-ONBM. The function of UV-erasing and diode-switch could greatly simplify the required peripheral circuits. This DS-ONBM was demonstrated to be able to read, write and retain the data and was reusable by UV light illumination. Hence, the UV-erasable DS-ONBM was fully applicable for key applications in printed electronics such as RFID tags.
關鍵字(中) ★ 操作週期
★ 有機記憶體
★ 保留時間
關鍵字(英) ★ organic memory
★ endurance
★ retention time
論文目次 中文摘要
Abstract
Figure captions
Table captions
Chapter 1 Introductions
1-1 Motivation…………………………………………………………………………...1
1-2 Overview of Organic Nonvolatile Bistable Memory (ONBM)……………………..2
1-3 Thesis Organization………………………………………………………………..10
Chapter 2 Fabrication and Analysis of Gold Nanoparticle Polymer
Memory
2-1 Introduction………………………………………………………………...………13
2-2 Preparation of Gold Nanoparticles…………………………………………………14
2-3 Device Fabrication Process………………………………………………………...15
2-4 Electrical Characteristics of the Device……………………………………………18
2-5 Carrier Transport Mechanism……………………………………………………...20
2-6 Summary…………………………………………………………………………...25
Chapter 3 A Novel Organic Nonvolatile Bistable Memory with Polymer
Stabilized Gold Nanoparticle
3-1 Introduction………………………………………………………………………...26
3-2 Material Preparation and Analysis…………………………………………………28
3-2-1 Chemical Structure of Au-PCm……………………………………………..28
3-2-2 Thermal Gravimetric Analysis and Differential Scanning Calorimeter of
Au-PCm ……………………………………………………………………...29
3-3 Organic Memory with Different Formula…………………………………………32
3-4 Organic Memory with Different Polymer………………………………………….41
3-5 Spectroscopic Ellipsometry Study and Related Physical Properties of the ONBM.43
3-6 Electrical Characteristics of the ONBM…………………………………………...51
3-6-1 The I-V characteristics……………………………………………………...51
3-6-2 Localized transport of the ONBM…………………………………………..52
3-7 Reliability of Organic Memory on Glass Substrate………………………………..58
3-7-1 Reproducibility……………………………………………………………...58
3-7-2 Endurance and Retention……………………………………………………61
3-8 Summary…………………………………………………………………………...64
Chapter 4 A 16-Byte Organic Nonvolatile Bistable Memory Array on
Plastic Substrates
4-1 Introduction………………………………………………………………………...66
4-2 Fabrication of 16-byte Memory Array……………………………………………..67
4-3 Design of External Driving Circuit………………………………………………...70
4-4 Reliability of Organic Memory on Plastic Substrate………………………………74
4-4-1 Flexiblility………………………………..…………………………………74
4-4-1 Endurance and Retention…………………………………………………....78
4-6 Summary…………………………………………………………………………...81
Chapter 5 An UV Erasable Stacked Diode-Switch Organic Nonvolatile
Bistable Memory on Plastic Substrates
5-1 Introduction………………………………………………………………………...82
5-2 Design of Diode-Switch ONBM Structure………………………………………...84
5-3 Fabrication of Diode-Switch Organic Nonvolatile Bistable Memory……………..90
5-4 Electrical Characteristics of UV erasing…………………………………………...95
5-5 Summary…………………………………………………………………………...99
Chapter 6 Conclusion…………………………………………………………...….100
Reference……...…………………………………………………………...….................103
Publication List …………………………………………………………...….................112
參考文獻 REFERENCE
[1] C. D. Müller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhirn, P. Rudati, H. Frohne, O. Nuyken, H. Becker, and K. Meerholz, “Multi-colour organic light-emitting displays by solution processing”, Nature, vol. 421, pp. 829-832, 2003.
[2] S. C. Lo, T. D. Anthopoulos, E. B. Namdas, P. L. Burn, and I. D. W. Samuel, “Encapsulated Cores: Host-Free Organic Light-Emitting Diodes Based on Solution-Processible Electrophosphorescent Dendrimers”, Advanced Materials, vol. 17, pp. 1945-1948, 2005.
[3] G. Dennler, and N. S. Sariciftci, “Flexible Conjugated Polymer-Based Plastic Solar Cells: From Basics to Applications”, Proceedings of the IEEE, vol. 93, pp. 1429-1439, 2005.
[4] G. Darlinski, U. Bottger, and R. Waser, “Mechanical force sensors using organic thin-film transistors”, Journal of Applied Physics, vol. 97, pp. 093708, 2005.
[5] M. Mizukami, N. Hirohata, T. Iseki, K. Ohtawara, T. Tada, S. Yagyu, T. Abe, T. Suzuki, Y. Fujisaki, Y. Inoue, S. Tokito, and T. Kurita, “Flexible AM OLED Panel Driven by Bottom-Contact OTFTs”, IEEE Electron Device Letters, vol. 27, pp. 249-251, 2006.
[6] K. Nakayama, K. Kojima, Y. Imai, T. Kasai, S. Fukushima, A. Kitagawa, M. Kumeda, Y. Kakimoto, M. Suzuki, “Nonvolatile Memory Based on Phase Change in Se-Sb-Te Glass”, Japanese Journal of Applied Physics Part 1, vol. 42, pp. 404-408, 2003.
[7] H. J. Hovel, J. J. Urgell, “Switching and Memory Characteristics of ZnSe-Ge Heterojunctions”, Journal of Applied Physics, vol. 42, pp. 5076-5083, 1971.
[8] T. Rueckes, K. Kim, E. Joselevich, G. Y. Tseng, C. L. Cheung, C. M. Lieber, “Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing”, Science, vol. 289, pp. 94-97, 2000.
[9] R. L. Badzey, G. Zolfagharkhani, A. Gaidarzhy, P. Mohanty, “Temperature dependence of a nanomechanical switch”, Applied Physics Letters, vol. 86, pp. 23106, 2005.
[10] K. Terabe, T. Hasegawa, T. Nakayama, M. Aono, “Quantized conductance atomicswitch”, Nature, vol. 433, pp. 47-50, 2005.
[11] N. Kouklin, S. Bandyopadhyay, S. Tereshin, A. Varfolomeev, D. Zaretsky, “Electronic Bistability and Non-Volatile Memory Effect in Electrochemically Self Assembled Quantum Dots”, Applied Physics Letters, vol. 76, pp. 460-462, 2000.
[12] R. Ohab, N. Sugiyama, K. Uchida, J. Koga, A. Toriumi, “Nonvolatile Si quantum memory with self-aligned doubly-stacked dots”, IEEE Trans. Electron Devices, vol. 49, pp. 1392-1398, 2002.
[13] M. L. Ostraat, J. W. De Blauwe, M. L. Green, L. D. Bell, M. L. Brongerma, J. R. Casperson, C. Flagan, H. A. Atwater, “Synthesis and characterization of aerosol silicon nanocrystal nonvolatile floating-gate memory devices”, Applied Physics Letters, vol. 79, pp. 433-435, 2001.
[14] J. C. Scott, “Is There an Immortal Memory?”, Science, vol. 304, pp. 62-63, 2004.
[15] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Brédas, M. Lögdlund,W. R. Salaneck, “Electrolumine-scence in conjugated polymers”, Nature, vol. 397, pp. 121-128, 1999.
[16] T. P. Juan, C. Y Chang, and J. Y. Lee, “A New Metal–Ferroelectric (PbZr0.53Ti0.47O3)–Insulator (Dy2O3)–Semiconductor (MFIS) FET for Nonvolatile Memory Applications”, IEEE Electron Device Letters, vol. 27, pp. 217-220, 2006.
[17] R. Schroeder, L. A. Majewski, M. Voigt, and M. Grell, “Memory Performance and Retention of an All-Organic Ferroelectric-Like Memory Transistor”, IEEE Electron Device Letters, vol. 26, no. 2, pp. 69-71, 2005.
[18] S. Fukami, H. Honjo, T. Suzuki, and N. Ishiwata, “Reduction of Writing Field Distribution in a Magnetic Random Access Memory With Toggle Switching”, IEEE Transactions on Magnetics, vol. 43, pp. 3512-3516, 2007.
[19] S. C. Li, J. M. Lee, M. F. Shu, J. P. Su, and T. H. Wu, “A Dielectric Tunnel RC Device Model for Magnetic Tunnel Junction in Magnetic Random Access Memory Cell”, IEEE Transactions on Magnetics, vol. 41, pp. 899-902, 2005.
[20] S. Kim, and H. S. P. Wong, “Analysis of Temperature in Phase Change Memory Scaling”, IEEE Electron Device Letters, vol. 28, pp. 697-699, 2007.
[21] H. Y. Cheng, C. A. Jong, C. M. Lee, and T. S. Chin, “Wet-Etching Characteristics of Ge2Sb2Te5 Thin Films for Phase-Change Memory”, IEEE Transactions on magnetics, vol. 41, pp. 1031-1033, 2005.
[22] L. V. Gregor, “Electrical conductivity of polydivinylbenzene films”, Thin Solid Films”, Thin Solid Films, vol. 2, p. 235-246, 1968.
[23] H. Carchano, R. Lacoste, and Y. Segui, “Bistable Electrical Switching in Polymer Thin Films”, Applied Physics Letters, vol. 19, p. 414-415, 1971.
[24] L. F. Pender, R. J. Fleming, “Memory switching in glow discharge polymerized thin films”, Journal of Applied Physics, vol. 46, p. 3426-3431, 1975.
[25] A. Szymanski, D. C. Larson, M. M. Labes, “A temperature-independent conducting state in tetracene thin film”, Applied Physics Letters, vol. 14, pp. 88-90, 1969.
[26] D. Tondelier, K. Lmimouni, and D. Vuillaume, “Metal/organic/metal bistable memory devices”, Applied Physics Letters, vol. 85, pp. 5763-5765, 2004.
[27] A. K. Mahapatro, R. Agrawal, S. Ghosh, “Electric-field-induced conductance transition in 8-c hydroxyquinoline aluminum (Alq3)”, Journal of Applied Physics, vol. 96, pp. 3583-3585, 2004.
[28] C. H. Tu, Y. S. Lai, D. L. Kwong, “Memory effect in the current-voltage characteristic of 8-hydroquinoline aluminum salt films”, IEEE Electron Device Letters, vol. 27, pp. 354-356, 2006.
[29] M. Terai, K. Fujita, T. Tsutsui, “Electrical Bistability of Organic Thin-Film Device Using Ag Electrode”, Japanese Journal of Applied Physics, vol. 45, pp. 3754 -3757, 2006.
[30] H. K. Henisch,W. R. Smith, “Switching in organic polymer films”, Applied Physics Letters, vol. 24, pp. 589-591, 1974.
[31] Y. Segui, B. Ai, H. Carchano, “Switching in polystyrene films: Transition from on to off state”, Journal of Applied Physics, vol. 47, pp. 140-143, 1976.
[32] Y. S. Lai, C.-H. Tu, D.-L. Kwong, J. S. Chen, “Bistable resistance switching of poly(N-vinylcarbazole) films for nonvolatile memory applications”, Applied Physics Letters, vol. 87, pp. 122101, 2005.
[33] H. S. Majumdar, A. Bandyopadhyay, A. Bolognesi, A. J. Pal, “Memory device applications of a conjugated polymer: Role of space charges”, Journal of Applied Physics, vol. 91, pp. 2433-2437, 2002.
[34] L. D. Bozano, B. W. Kean, M. Beinhoff, K. R. Carter, P. M. Rice, and J. C. Scott, “Organic Materials and Thin-Flim Structures for Cross-Point Memory Cells Based on Trapping in Metallic Nanoparticles”, Advanced Functional Materials, vol. 15, pp. 1933-1939, 2005.
[35] M. Lauters, B. McCarthy, D. Sarid, G. E. Jabbour, “Multilevel conductance switching in polymer films”, Applied Physics Letters, vol. 89, pp. 013507, 2006.
[36] R. S. Potember, T. O. Poehler, D. O. Cowan, “Electrical switching and memory phenomena in Cu-TCNQ thin films”, Applied Physics Letters, vol. 34, pp.405-407, 1979.
[37] E. I. Kamitsos, C. H. Tzinis, W. M. Risen, “Raman-study of the. mechanism of electrical switching in CuTCNQ films”, Solid State Commun., vol. 42, p. 561-565, 1982.
[38] K. Xiao, I. N. Ivanov, A. A. Puretzky, Z. Liu, D. B. Geohegan, “Directed Integration of Tetracyanoquinodimethane-Cu Organic Nanowires into Prefabricated Device Architectures”, Advanced Materials, vol. 18, pp. 2184-2188, 2006.
[39] L. P. Ma, Q. F. Xu, Y. Yang, “Organic nonvolatile memory by controlling the dynamic copper-ion concentration within organic layer”, Applied Physics Letters, vol. 84, pp. 4908-4910, 2004.
[40] H. J. Gao, K. Sohlberg, Z. Q. Xue, H. Y. Chen, S. M. Hou, L. P. Ma, X. W. Fang, S. J. Pang, and S. J. Pennycook, “Nanometer-Scale Conductance Transitions in an Organic Complex”, Physical Review Letters, vol. 84, pp. 1780-1783 , 2000.
[41] C. W. Chu, J. Ouyang, J. H. Tseng, and Y. Yang, “Organic Donor-Acceptor System Exhibiting Electrical Bistability for Use in Memory Devices”, Advanced Materials, vol. 17, pp. 1440-1443, 2005.
[42] Z. C. Liu, F. L. Xue, Y. Su, and K. Varahramyan, “Electrically Bistable Memory Device Based on Spin-Coated Molecular Complex Thin Film”, IEEE Electron Device Letters, vol. 27, pp. 151-153, 2006.
[43] L. P. Ma, W. J. Yang, Z. Q. Xue, S. J. Pang, “copper-ion concentration within organic layer organic thin film by a scanning tunneling microscope”, Applied Physics Letters, vol. 73, pp. 850-852, 1998.
[44] Q. Ling, Y. Song, S. J. Ding, C. Zhu, D. S. H. Chan, D.-L. Kwong, E.-T. Kang, and K.-G. Neoh, “A Non-volatile Polymer Memory Device Based on a Novel Copolymer of N-Vinylcarbazole and Eu-complexed Vinylbenzoate”, Advanced Materials, vol. 17, p. 455-458, 2005.
[45] Y. Song, Q. D. Ling, C. Zhu, E. T. Kang, D. S. H. Chan, Y. H. Wang, and D. L. Kwong, “Memory Performance of a Thin-Film Device Based on a Conjugated Copolymer Containing Fluorene and Chelated Europium Complex”, IEEE Electron Device Letters, vol. 27, pp. 154-156, 2006
[46] Y. Iwasa, T. Koda, S. Koshihara, Y. Tokura, N. Iwasawa, G. Saito, “Intrinsic negative-resistance effect in mixed-stack charge-transfer crystals”, Physical Review B, vol. 39, pp. 10441-10444, 1989.
[47] C. K. Chiang, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. McDiarmid, “Electrical conductivity in doped polyacetylene”, Physical Review Letters, vol. 39, pp.1098-1101, 1978.
[48] Q. X. Lai, Z. H. Zhu, Y. Chen, S. Patil, and F. Wudl, “Organic nonvolatile memory by dopant-configurable polymer”, Applied Physics Letters, vol. 88, pp. 133515, 2006.
[49] L. P. Ma, J. Liu, S. M. Pyo, and Y. Yang, “Organic bistable light-emitting devices”, Applied Physics Letters, vol. 80, pp. 362-364, 2002.
[50] L. P. Ma, J. Liu, and Y. Yang, “Organic electrical bistable devices and rewritable memory cells”, Applied Physics Letters, vol. 80, pp.2997-2998, 2002.
[51] L. D. Bozano, B. W. Kean, V. R. Deline, J. R. Salem, and J. C. Scott, “Mechanism for bistability in organic memory elements”, Applied Physics Letters, vol. 84, pp. 607-609, 2004.
[52] L. P. Ma, S. M. Pyo, J. Y. Ouyang, Q. F. Yu, and Y. Yang, “Nonvolatile electrical bistability of organic/metal-nanocluster/organic system”, Applied Physics Letters, vol. 82, pp. 1419-1421, 2003.
[53] J. Ouyang, C.-W. Chu, D. Sieves, and Y. Yang, “Electric-field-induced charge transfer between gold nanoparticle and capping 2-naphthalenethiol and organic memory cells”, Applied Physics Letters, vol. 86, pp. 123507, 2005.
[54] J. Ouyang, C. W. Chu, C. R. Szmanda, L. Ma, and Y. Yang, “Programmable polymer thin film and non-volatile memory device” Nature Materials, vol. 3, pp. 918-922, 2004.
[55] J. Ouyang, C. W. Chu, R. J. H. Tseng, A. Prakash, and Y. Yang, “Organic Memory Device Fabricated Through Solution Processing”, Proceedings of the IEEE, vol. 93, pp. 1287-1296, 2005.
[56] A. Prakash, J. Ouyang, J. L. Lin, and Y. Yang, “Polymer memory device based on conjugated polymer and gold nanoparticles”, Journal of Applied Physics, vol. 100, pp. 054309, 2006.
[57] B. Prahdan, S. K. Batabyal, and A. J. Pal, “Electrical Bistability and Memory Phenomenon in Carbon Nanotube-Conjugated” J. Phys. Chem. B, vol. 110, pp. 8274-8277, 2006.
[58] S. H. Kang, T. Crisp, I. Kymissis, V. Bulovic, “Memory effect from charge trapping in layered organic structures”, Applied Physics Letters, vol. 85, p. 4666-4668, 2004.
[59] A. Kiesow, J. E. Morris, C. Radehaus, A. Heilmann, “Switching behavior of plasma polymer films containing silver nanoparticles”, Journal of Applied Physics, vol. 94, pp. 6988-6990, 2003.
[60] Z. Fan, D. Wang, and J. G. Lu, “Silver-tetracyanoquinodimethane (Ag-TCNQ) Nanostructures and Nanodevice” IEEE Nanotechnology, vol. 2, pp. 588-591, 2003.
[61] R. J. Tseng, J. Ouyang, C. W. Chu, J. Huang, and Y. Yang, “Nanoparticle-induced negative differential resistance and memory effect in polymer bistable light-emitting device”, Applied Physics Letters, vol. 88, pp. 123506, 2006.
[62] D. Y. Tu, C. S. Wang, Z. Y. Ji, W. P. Hu, and M. Liu, “Fabrication and Electrical Characteristics of AgTCNQ Crossbar Switches for Organic Molecular Memories and Logics”, IEEE Electron Devices and Solid-state circuits, pp. 575-578, 2005.
[63] J. G. Simmons and R. R. Verderber, “New conduction and reversible memory phenomena in thin insulating films”, Proc. Roy. Soc., Ser. A, vol. 301, pp. 77-102, 1967.
[64] T. S. Ahmadi, Z. L. Wang, T. C. Green, A. Henglein and M. A. El-Sayed, “Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles”, Science, vol. 272, pp. 1924-1926, 1996.
[65] S. A. Harfenist, Z. L. Wang, M. M. Alvarez, I. Vezmar and R. L. Whetten, “Highly Oriented Molecular Ag-Nanocrystal Arrays”, Journal of Physical Chemistry, vol. 100, pp. 13904-13910, 1996.
[66] C. R. Kagan, C. B. Murray, M. Nirmal and M. G. Bawendu, “Electronic Energy Transfer in CdSe Quantum Dot Solids”, Physical Review Letters, vol. 76, pp. 1517-1520, 1996.
[67] S. A. Harfenist, Z. L. Wang, R. L. Whetten, I. Vezmar and M. M. Alvarez, “Three-dimensional hexagonal close-packed superlattice of passivated Ag nanocrystals”, Advanced Material, vol. 9, pp. 817-822, 1997.
[68] S. Murthy, T. P. Bigioni, Z. L. Wang, J. T. Khoury and R. L. Whetten, “Liquid-phase synthesis of thiol-derivatized silver nanocrystals”, Material Letters, vol. 30, pp. 321-325, 1997.
[69] P. D. Nellist and S. J. Pennycook, “Subangstrom Resolution by Underfocused Incoherent Transmission Electron Microscopy”, Physical Review Letters, vol. 81, pp. 4156-4159, 1998.
[70] O. Nagao, G. Harada, T. Sugawara, A. Sasaki and Y. Ito, “Small-Angle X-Ray Scattering Method to Determine the Size Distribution of Gold Nanoparticles Chemisorbed by Thiol Ligands”, Japanese Journal of Applied Physics, vol. 43, pp. 7742-7746, 2004.
[71] Z. Pei, A. Y. K. Su, and H. L. Hwang, “Room temperature tunneling transport through Si nanodots in silicon rich silicon nitride”, Applied Physics Letters, vol. 86, pp. 063503, 2005.
[72] M. A. Lampert, and P. Mark, “Current injection in solids”, Academic Press, New York, pp. 14-25, 1970.
[73] K. Efimenko, V. Rybka, V. Svorcik, and V. Hnatowicz, “Electrical properties of Au-polystyrene-Au submicron structures”, Applied Physics A: Materials Science & Processing, vol. 67, pp. 503-505, 1998.
[74] Y. S. Lai, C. H. Tu, D. L. Kwong, and J. S. Chen, “Charge-Transport Characteristics in Bistable Resistive Poly(N-Vinylcarbazole) Films”, IEEE Electron Device Letters, vol. 27, pp. 451-453, 2006.
[75] B. A. Mattis and V. Subramanian, “Stacked low-power field-programmable antifuse memories for RFID on plastic” IEEE International Electron Devices Meeting Technical Digest, pp. 311-314, 2006.
[76] E. A. Irene, In Situ Real-Time Characterization of Thin Films, eds. O. Auciello and A. R. Krauss (Wiley, New York, 2001) p. 57.
[77] P. W. Li, D. M. T. Kuo, W. M. Liao, M. J. Tsai, “Optical and Electronic Characteristics of Germanium Quantum Dots Formed by Selective Oxidation of SiGe/Si-on-Insulator”, Japanese Journal of Applied Physics, vol. 43, p. 7788-7792, 2004.
[78] K. Nikawa, C. Matsumoto, and S. Inoue, “Novel method for defect detection in Al stripes by means of laser beam heating and detection of changes in electrical resistance”, Japanese Journal of Applied Physics, vol. 34, pp. 2260-2265, 1995.
[79] H. T. Lin, Z. Pei, and Y. J. Chan, “Carrier Transport Mechanism in a Nano-particle Incorporated Organic Bistable Memory Device,” IEEE Electron Device Letters, vol. 28, pp. 569-571, 2007.
[80] D. A. Neamen, “Semiconductor Physics and Devices”, McGraw–Hill, New York, Chapter 4, 3e/d., 2003.
[81] A. Bandyopadhyay, and A. J. Pal, “Large conductance switching and binary operation in organic devices: Role of functional groups”, Journal Physics Chemical B, vol. 107, pp. 2531-2536, 2003.
[82] T. Oyamada, H. Tanaka, K. Matsushige, H. Sasabe, and C. Adachi, “Switching effect in Cu:TCNQ charge transfer-complex thin films by vacuum codeposition”, Applied Physics Letters, vol. 83, p. 1252-1254, 2003.
[83] L. Ma, Q. Xu, and Y. Yang, “Organic nonvolatile memory by controlling the dynamic copper-ion concentration within organic layer”, Applied Physics Letters, vol. 84, pp. 4908-4910, 2004.
[84] T. Ouisse, and O. Stephan, “Electrical bistability of polyfluorene devices”, Organic Electronics, vol. 5, pp. 251-256, 2004.
[85] J. H. A. Smits, S. C. J. Meskers, R. A. J. Janssen, A. W. Marsman, and D. M. Leeuw, “Electrically Rewritable Memory Cells from Poly(3-hexylthiophene) Schottky Diodes”, Advanced Materials, vol. 17, pp. 1169-1173, 2005.
[86] R. J. Tseng, J. Huang, J. Ouyang, R. B. Kaner, Y. Yang, “Polyaniline Nanofiber/Gold Nanoparticle”, Nano Letters, vol. 5, pp. 1077-1080, 2005.
[87] T. Sekitani, S. Iba, Y. Kato, and T. Someya, “Bending effect of organic field-effect transistors with polyimide gate dielectric layers”, Japanese Journal of Applied Physics, vol. 44, pp. 2841-2843, 2005.
[88] B. Cho, T. Yasue, H. Yoon, M. Lee, I. Yeo, U. Chung, J. Moon, and B. Ryu, “Thermally robust multi-layer non-volatile polymer resistive memory”, IEEE International Electron Devices Meeting Technical Digest, pp. 781-784, 2006.
[89] H. T. Lin, Z. Pei, J. R. Chen, C. P. Kung, Y. C. Lin, C. M. Tseng, and Y. J. Chan, “A 16-Byte Nonvolatile Bistable Polymer Memory Array on Plastic Substrates,” IEEE International Electron Devices Meeting Technical Digest, pp. 233-236, USA, 2007.
[90] H. T. Lin, Z. Pei, J. R. Chen, G. W. Hwang, J. F. Fan, and Y. J. Chan, “A New Nonvolatile Bistable Polymer-nanoparticle Memory Device,” IEEE Electron Device Letters, vol. 28, pp. 951-953, Nov. 2007.
[91] D. T. Simon, M. S. Griffo, R. A. Dipietro, S. A. Swanson, and S. A. Carter, “Admittance spectroscopy of polymer-nanoparticle nonvolatile memory devices”, Applied Physics Letters, vol. 89, pp.133510, 2006.
[92] H. P. Wang, S. Pigeon, R. Izquierdo, and R. Martel, “Electrical bistability by self-assembled gold nanoparticles in organic diodes”, Applied Physics Letters, vol. 89, pp. 183502, 2006.
[93] G. Gu, M. G. Kane, and S. C. Mau, “Reversible memory effects and acceptor states in pentacene-based organic thin-film transistors”, Journal of Applied Physics, vol. 101, pp. 014504, 2007.
[94] J. Chen and D. Ma, “Performance improvement by charge trapping of doping fluorescent dyes in organic memory devices”, Journal of Applied Physics, vol. 100, pp. 034512, 2006.
[95] T. Kondo, S. M. Lee, M. Malicki, B. Domercq, S. R. Marder, and B. Kippelen, “A Nonvolatile Organic Memory Device Using ITO Surfaces Modified by Ag-Nanodots”, Advanced Functional Materials, vol. 18, pp. 1112-1118, 2008.
指導教授 詹益仁、裴靜偉
(Yi-Jen Chan、Zingway Pei)
審核日期 2008-12-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明