博碩士論文 93543002 詳細資訊


姓名 潘士瑋(Shih-Wei Pan)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 無線網路資源有效分配之研究
(The Study of Effective Resource Allocation in Wireless Network)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在複雜和多樣化的無線網路環境中,要達到理想的網路管理機制是十分難以達成的目標。為了改善高無線網路的效能,我們首先分析Binary Exponential Back-off (BEB)演算法的效能。分析的重點在於分析AIFS事件對於網路效能的影響。藉由分析的結果指出,BEB演算法可有效減少碰撞和提高系統的資料Throughput。
引用分析結果,指出在網路負荷重時,高優先話務的服務品質易受低優先話務影響。因此,在論文中我們設計可調式BEB演算法,依據網路負荷調整Contention Window的大小,以保證高優先話務的服務品質。
為提供無線網路完整的管理機制,我們利用Simple Network Management Protocol (SNMP)來管理網路元件。並整合DiffServ, 802.11e和802.3x的網路,提供一完整的QoS管理機制。
摘要(英) For complex wireless networks with many tunable parameters and network performance objectives, the task of archiving the idea network management is difficult. To improve the performance of the Binary Exponential Back-off (BEB) scheme of networks, we analyze the performance of BEB to estimate the effect of the heavy load in the 802.11e network. The analysis concerns AIFS events among each back-off procedure and evaluates the saturation throughput of the IEEE 802.11e EDCA (Enhanced Distributed Channel Access) under heterogeneous traffic scenarios. The observation of the analysis model presents the BEB is reducing collisions and improving throughput.
Then, we adapt the contention window mechanism to reduce collisions. However, adaptive contention window algorithms cannot guarantee the absolute priority of the high-priority traffic. Especially in the heavy loading, low-priority traffics will introduce collisions and cause unsuccessful transmission. In order to compensate the strictly priority, the proposed scheme provides the absolute differentiated traffic scheme. Relative priorities are provisioned by adjusting the range of the contention window length of low-priority traffic class. Application requirements and network conditions determinates contention window length. Furthermore, the scheme is simple and easy to implement.
In second issue, the proposal provides corporate networks with a scalability management solution. The proposal is based on differentiated services to enable QoS (Quality of Service) and integrates 802.11e, 802.3x and DiffServ (Differentiated Services) over different enterprise sites. The proposed integrates management implements Simple Network Management Protocol (SNMP) to inform the Hotspot controller and to adapt the contention window (CW) of mobile stations to the heavy network load. In this paper, we describe the design, implementation, and performance evaluation of our solution.
關鍵字(中) ★ Markov Chain Analysis
★ 802.11e
★ EDCF
★ QoS
關鍵字(英) ★ QoS
★ EDCF
★ Markov Chain Analysis
★ 802.11e
論文目次 Abstract 2
誌謝 3
List of Figures 6
List of Tables 8
Chapter 1: Introduction 9
1.1. Motivation 9
1.2. Scope of the Work 9
1.3. Dissertation Organization 10
Chapter 2 Throughput Analysis of IEEE 802.11e EDCA under Heterogeneous Traffics 11
2.1 Introduction 11
2.2 Protocol Description of DCF and EDCA 13
2.2.1 Distributed Coordination Function (DCF) 13
2.2.2 Enhanced distributed Channel Access (EDCA) 14
2.3 Analytical Model 15
2.3.1 Markov Chain Model for the IEEE 802.11e 16
2.3.2 Transition Probabilities 17
2.3.3 System Equations 20
2.4 Throughput Analysis 22
2.5 Numerical and Simulation Results 23
2.5.1 Analysis Model Validation 25
2.6 Summary 30
Chapter 3 Collision-Aware Adaptation of Contention window Sizes in 802.11e Wireless LAN 31
3.1 Introduction 31
3.2 Problem Description 33
3.3 The Adaptive Back-off Mechanism 36
3.3.1 Discriminating the Network Loading 37
3.3.2 The Adaptive CW of the Low-priority Traffic as the Heavy Loading 38
3.4 Simulation and Results 40
3.4.1 Collision Rate and the Number of Consecutive Successful Transmissions 41
3.4.2 Throughput 43
3.4.3 Mean Delay 45
3.5 Summary 48
Chapter 4 A Sustained QoS Solution by Contention Adaptation in Operated IEEE 802.11e Wireless LANs 49
4.1 Introduction 49
4.2 Motivations and Related Work 50
4.3 The Adaptive CW Mechanism 53
4.4 Simulations and Results 57
4.4.1 The results of Experiment 1 58
4.4.2 The results of Experiment 2 61
4.4.3 The results of Experiment 3 63
4.4.4 The results of Experiment 4 66
4.5 Summary 69
Chapter 5 Congestion Control in the Wireless Enterprise Network 70
5.1 Introduction 70
5.2 Related Work 71
5.2.1 QoS in 802.11e EDCF 71
5.2.2 Service Management over 802.11 72
5.3 The Proposed Architecture 75
5.2.1 Network Topology 77
5.4 THE VALIDATION OF PROPOSED STSTEM 78
5.2.1 The Simulation Network Architecture 78
5.2.2 Simulation Results 79
5.5 Summary 80
Chapter 6: Conclusion and Future Work 86
Bibliography 89
參考文獻 [1] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, ISO/IEC IEEE 802.11 Standard 1999.
[2] Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Medium access control (MAC) Enhancements for quality of service (QoS),IEEE Std. 802.11e, Nov. 2005.
[3] G. Bianchi, “IEEE 802.11-saturation throughput analysis,” IEEE Commun. Lett., vol. 2, pp. 318-320, Dec. 1998.
[4] G. Bianchi, “Performance analysis of IEEE 802.11 distributed coordination function,” IEEE J. Select. Areas. Commun., vol. 18, pp. 535-547, Mar. 2000.
[5] C. H. Foh and M. Zukerman, “Performance analysis of IEEE 802.11 MAC protocol,” in Proc. European Wireless, Florence, Italy, Feb. 2002.
[6] T. S. Ho and K. C. Chen, “Performance analysis of IEEE 802.11 CSMA/CA medium access control protocol,” in Proc IEEE PIMRC 1996.
[7] H. Zhai, Y. Kwon and Y. Fang, “Performance analysis of 802.11 MAC protocols in wireless LANs,” J. Wireless Communications and Mobile Computing, vol. 4, pp. 917-931, Dec. 2004.
[8] F. Cail, M. Conti, and E. Gregori, “IEEE 802.11 protocol: design and performance evaluation of an adaptive back-off mechanism,” IEEE J. Sel. Areas Commun., vol. 18, no. 9, pp. 1774-1786, Sept. 2000.
[9] F. Cali, M. Conti, and E. Gregori, “Tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit,” IEEE/ACM Trans. Networking, vol. 8, no. 6, pp. 785-799, Dec 2000.
[10] Y.C. Tay and K.C. Chua, “A capacity analysis for IEEE 802.11 MAC protocol,” Wireless Netw., pp. 159-171, Jul. 2001.
[11] H. Wu, Y. Peng, K. Long, S. Cheng, and J. Ma, “Performance of reliable transport protocol over IEEE 802.11 wireless LAN: Analysis and enhancement,” in Proc. INFOCOM, pp.599-607, Jun. 2002.
[12] Y. Xiao, “Enhanced DCF of IEEE 802.11e to support QoS,” in Proc. IEEE WCNC, New Orleans, LA. vol. 2, pp. 1291-1296, Mar. 2003.
[13] Z. Kong, D. H. K. Tsang, B. Bensaou and D. Guo, “Performance Analysis of IEEE 802.11e Contention-Based Channel Access, ” IEEE J. Select. Areas. Commun., vol. 22, pp. 2095-2106, Dec. 2004.
[14] J. Hui and M. Devtsilitios, “ A Unified Model for the performance Analysis of IEEE 802.11e EDCA,” IEEE Tran. Commun., vol. 53, pp. 1498-1510, Sept. 2005.
[15] Z. Tao And S. Panwar, “Throughput and Delay Analysis for IEEE 802.11e Enhanced Distributed Channel Acess”, IEEE Trans. Commun., vol. 54, pp. 596-602, Apr. 2006.
[16] The Network Simulator-NS2. [Online]. Available: http://www.isi.edu/nanam/ns
[17] F. Eshghi and A. K. Elhakeem, “Performance analysis of ad hoc wireless LANs for real-time traffic,” IEEE J. Select. Areas Commun., vol.21, no. 2, pp. 204-215, Feb. 2003.
[18] J. Choli, J. Yoo, and C. K. Kim, “A novel performance analysis model for an IEEE 802.11 wireless LANs,” IEEE Commun. Lett., vol. 10, no. 5, pp. 335-337, May 2006.
[19] G. H. Hwang and D. H. Cho, “Performance analysis on coexistence of EDCA and legacy DCF stations in IEEE 802.11 wireless LAN,” IEEE Trans. Wireless Commun., vol. 5, no. 12, pp. 3355-3359, Dec. 2006.
[20] J. C. Chen, and K. W. Cheng, “EDCA/CA: Enhancement of IEEE 802.11e EDCA by contention adaption for energy efficiency,” IEEE Trans. Wireless Commun., vol. 7, no. 8, Aug. 2008.
[21] M. Ma and Y. Yang, “A novel contention-based MAC protocol with channel reservation for wireless LANs,” IEEE Trans. Wireless Commun., vol. 7, no. 10, Oct. 2008.
[22] D. J. Deng, C. H. Ke, H. H. Chen and Y. M. Huang, “Contention window optimization for IEEE 802.11 DCF access control,” IEEE Trans. Wireless Commun., vol. 7, no. 12, Dec. 2008.
[23] Y. Xiao, “A simple and effective priority scheme for IEEE 802.11,” IEEE Commun. Lett., vlo. 7, no. 2, Feb. 2003.
[24] L. Romdhani, Q. Ni, and T. Turletti, “Adaptive EDCF: Enhanced Service Differentiation for IEEE 802.11 Wireless Ad-Hoc Networks,” in Proc. IEEE WCNC, vol. 2, pp. 16-20, Mar. 2003.
[25] Q. Ni, I. Aad, C. Barakat and T. Turletti, "Modelling and Analysis of Slow CW Decrease for IEEE 802.11 WLAN," in Proc. IEEE PIMRC, Vol. 1-3, pp. 1717-1721, Beijing, China, September 2003
[26] Q. Ni, L. Romdhani and T. Turletti, “A Survey of QoS Enhancements for IEEE 802.11 Wireless Lan,” Wirel. Commun. Mob. Comput., vol. 4, pp. 547-566, Aug. 2004.
[27] J.W. Robinson, T.S. Randhawa, “Saturation throughput analysis of IEEE 802.11e enhanced distributed coordination function,” IEEE J. Select. Areas Commun., vol.22, no.5, pp. 917- 928, June 2004
[28] Q. Ni. "Performance Analysis and Enhancements for IEEE 802.11e Wireless Networks," IEEE Network, Vol. 19, No. 4, pp. 21-27 July/August, 2005.
[29] J. F. Lee, W. J. Liao, and M. C. Chen, “A Differentiated Service Model for the Enhanced Distributed Channel Access (EDCA) of IEEE 802.11e WLANs,” ACM/Springer Mobile Net. Applications, vol. 12, no. 1, Feb 2007.
[30] M. Frikha, T. Najet and F. Tabana, “Mapping DiffServ to MAC differentiation for IEEE 802.11e,” in Proc. ICIWE, pp. 79, Feb. 2006.
[31] U. Shirwadkar, N.Chilamkurti, C. Ke. Shieh, “A new end-to-end QoS mechanism for video delivery over heterogeneous networks,” in Proc. IEEE/IFIP WOCN, pp. 5-10, Aug. 2006.
[32] M. Bottigliengo, C. Casetti, C. -F. Chuasserini, M. Meo, “Enhancing Faireness for Short-Lived TCP Flows in 802.11b WLANs,” IEEE Trans. on Vehicular Technology, vol. 56, pp. 206-217, Jan. 2007.
[33] D. Skyrianoglou, N. Passas and A. Salkintzis, “Support of IP QoS over wireless LANs,” in Proc. IEEE 59th VTC, Vol. 5, pp. 2993-2997, May 2004.
[34] M. Li. , H. Zhu. , I. Chlamtac , and B. Prabhakaran, “End-to-end QoS framework for heterogeneous wired-cum-wireless networks,” Wireless Networks, Vol.12, No. 4, pp. 439-450, July 2006.
[35] IEEE Standard for Information Technology-Telecommunications And Information Exchange Between Systems- Local And Metropolitan Area Networks- Specific Requirements Part 3: Carrier Sense Multiple Access With Collision Detection (CSMA/CD) Access Method And Physical Layer Specifications (802.3-2002 Annex 31B)
[36] L. Noura, R. Julien, L. O. Marc, S. Hayder and P. Guy, “Service Management in Secure and QoS-Aware Wireless Enterprise Networks,” IEEE J. Select. Areas Commun., Vol. 23, pp. 1950-1962, Oct. 2005.
[37] S. Tartarelli and G. Nunzi, “QoS Management and Congestion Control in Wireless Hotspots,” in Proc. 10th IEEE/IFP NOMS, pp. 95-105, 2006
[38] Y. Li-Hsing and Y. Tse-Tsung, “SNMP-Based Approach to Load Distribution in IEEE 802.11 Networks,” in Proc. IEEE 63rd VTC, Vol. 3, pp. 1196-1200, 2006.
[39] Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications, IEEE standard 802.3, 2003.
[40] K. Yoshigoe and K.Christensen, “Rate control bandwidth allocated services in IEEE 802.3 Ethernet,” in Proc. of IEEE 26th LCN, pp. 446-453, Nov. 2001.
[41] A. Ge and G. Chiruvolu, “DiffServ compatible extended pause (DiffPause) for fair congestion control in Metro-Ethernet,” in Proc. of IEEE ICC, Vol. 2, pp. 1248-1252, June 2004.
指導教授 吳中實(Jung-Shyr Wu) 審核日期 2011-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡