博碩士論文 93543006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.214.224.224
姓名 惠汝生(Ruu-Sheng Huey)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 合作博弈與灰色模糊方法改善無線網路之性能
(Cooperative Game and Grey Fuzzy Approach for Performance Improvement in Wireless Networks)
相關論文
★ UHF頻段RFID彈藥管理系統之設計、實作與評估★ 移動物偵測與追蹤之IP Camera系統
★ SDN自適應性自動化網路安全之研究★ Wi-Fi Direct Service 應用於IoT
★ 射頻前端電路應用於載波聚合長期演進技術★ 3C無線充電裝置運用在車載系統所產生之EMI輻射
★ 基於LoRa技術的物聯網前端防盜警示感測裝置實作與評估★ DOCSIS 3.1 效能研究 與下行通道干擾阻隔之設計
★ 藍芽無線光學投影翻譯筆★ 手持裝置應用於MIMO ( 8x8 ) Wi-Fi系統之設計
★ 基於無伺服器運算之智慧農業雲端系統設計與研究★ 在802.11 Ad-Hoc網路中基於速率考量之路由協定設計
★ 採用拍賣策略之動態分散式方法於減少叢集小型基地台間干擾之研究★ 在LTE-A下聚合未授權頻譜及動態分配資源以優化系統效能
★ LTE-A網路中聚合未授權頻譜之資源分配策略研究★ 以拍賣策略之動態分散式資源分配於降低叢集LTE-U系統小型基地台之間干擾的研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在這篇論文中,我們專注於博弈論和灰色模糊理論來解決常見的無線網路問題。首先是無線網路博弈論之路由方法,第二是使用灰色模糊控制在異質無線網路的有效資源分配方案。
在第一個問題中,我們知道某些無線網路具有自我組織和自我管理的特性。根據網路環境的不同,我們可以選擇不同的路由協議,例如車載Ad hoc網絡(VANET),無線網狀網路,亦或是移動式Ad hoc網絡(MANET)。然而我們已經設計了一種新的路由演算法,可將博弈論運用在高度獨立的無線Ad hoc網路內之路由。在網路中的每個節點上,根據實際的情況在選擇下一個節點時,考慮其合理的路由成本。因此,每一個網路節點的路由成本的發展,必須符合納許均衡和網路節點之定價機制。從模擬的結果得到證明,新算法對於大型的網路規模依然可有效的規範。此外,網路成本也算一個啟發式的方式,模擬結果證明所選擇的路徑與建議計劃所需要的成本,具有共享路徑的競爭力。
在第二個問題,異質無線網路是一個複雜的系統,如何透過聯合無線資源管理(JRRM),達到現實無線接入技術(RAT)。聯合無線資源管理(JRRM)這項工作,需採用一種新的灰色模糊控制機制。在整個架構中,JRRM技術可分為灰色模糊控制(GFC)與灰色模糊多屬性決策(GFMADM)兩種。這是一個功能強且新的JRRM架構,主要是在最大限度下減低對用戶的干擾、減少壅塞,以及降低的封包遺失率,並改善負載的平衡。所採用的策略是利用信號強度,路徑損耗和負載算法接納控制(AC),水平越區切換(HHO)和垂直切換(VHO)於異質無線方案中,其中包括GSM / EDGE無線電接入網路(GERAN),高速分組接入(HSPA),長期演進(LTE)無線電存取技術。亦可從模擬結果得到驗證,所建議的GFC / GFMADM演算法可以降低用戶干擾,提升系統的無線傳輸容量,減少壅塞和降低遺失率與提高負載平衡。
在這篇論文中,我們使用R&S CMW500建立無線基站模擬系統,尚有許多我們沒有考慮到的地方, 這將會是我們未來的研究的重點。
摘要(英) In this dissertation, we use both game and grey fuzzy theories to solve common wireless network issues. First we apply the game theory routing approach for wireless networks, then we apply the grey fuzzy control to improve resource allocation schemes in heterogeneous wireless networks.
In the first issue, we know some wireless networks are self-organized and self-managed. Depending on the network environment, we can choose a different routing protocol, such as a vehicular ad hoc network (VANET), a wireless mesh network, or a mobile ad hoc network (MANET). We have designed a new routing algorithm applying game theory to routing within the highly independent wireless ad hoc networks. Each node in the network, depending on the actual situation, selects its own reasonable cost next node. However, the development of each network node’s routing cost must be in line with Nash equilibrium and the network nodes pricing mechanism. Our simulation results show that the new algorithm is efficient and scales well to large networks. In addition, the network cost is also considered in a heuristic manner and the simulation results illustrate that the required cost of the selected path in the proposed scheme is competitive with the shared path scheme.
In the second issue, a systematic approach to joint radio resource management (JRRM) over a complex heterogeneous network is to use several realistic radio access technologies (RATs). This work applies a novel grey fuzzy control process to joint radio resource management (JRRM). In this architecture, the JRRM techniques are divided between grey fuzzy control (GFC) and grey fuzzy multi-attribute decision making (GFMADM). These enhancements lead to a new JRRM architecture which seeks to minimize the multi-user interference, decrease blocking, lower dropping probabilities and improve load balancing. The policy uses the signal strength, path loss, and load algorithms for admission control (AC), horizontal handoff (HHO) and vertical handover (VHO) in a heterogeneous wireless scenario which includes GSM/EDGE radio access network (GERAN), high-speed packet access (HSPA) and long term evolution (LTE) RATs. Our simulation results show that the proposed GFC/GFMADM algorithm can decreases multi-user interference which results in increased system radio capacity, decreased blocking and dropping probabilities and enhanced load balancing.
The integration of Heterogeneous Wireless Networks and ad hoc wireless networks access network is recognized to be the trend of next generation network. In this dissertation, we use the R&S CMW500 simulator to simulate a wireless base station simulation system. We did not consider a number of cases which may lead to future research topics.
關鍵字(中) ★ 博弈 關鍵字(英)
論文目次 中文摘要 i
ABSTRACT iii
ACKNOWLEDGEMENTS .v
Table of Contents .vi
List of Figures viii
List of Tables x
Abbreviations .xi
Chapter 1. Introduction 1
1.1 Statement of Problems 1
1.2 Application of Game Theory 2
1.3 Strategy of Game in Wireless Networks .4
1.4 Organization of the Dissertation .5
Chapter 2. Routing Approach using Game Theory 6
2.1 Cooperative Game and Non-cooperative Game .7
2.2 Equilibrium and Nash Equilibrium Concept 8
2.3 Vickrey Auction 9
2.4 Summary 10
Chapter 3. Ad Hoc Network Forwarding Mechanism using Game Theory 11
3.1 Detection-based Incentive Approach 12
3.2 Motivation-based Incentive Approach .12
3.3 Vickrey-Clarke-Groves(VCG) Mechanism 13
3.4 Routing Game Model .14
3.5 Design of Routing Protocols 15
3.6 Pricing Mechanism .16
3.7 Routing Algorthm .18
3.8 Routing Cost .19
3.9 Summary 20
Chapter 4. 21
4.1 System Architecture 21
4.2 Simulation Analysist .22
4.3 The Assessment 23
4.3.1 Throughput 23
4.3.2 End-to –end Delay 23
4.3.3 Packet Loss 24
4.3.4 Jitter .24
4.4 The Transmission Analysis of Data in Ad Hoc Networks 24
4.4.1 Random Waypoint Mode Analysis 24
4.4.2 Random Trip Mobility Mode Analysis 28
4.5 Routing Cost .32
4.6 Summary 33
Chapter 5. A Structure JRRM Development 34
5.1 Evaluation Model of Grey Fuzzy .37
5.1.1 Determine the Grey Type of Assessment .38
5.1.2 Grey Fuzzy Multi-attribute Decision Marking Analysis .40
5.2 The Proposed JRRM and Alternative Schemes 43
5.3 Simulation Description .46
5.4 Performance Evalution .48
5.5 Summary 57
Chapter 6. Conclusion and Future Works .58
Reference 61
Publication List .66
參考文獻 [1] Mahasukhon, P. , Sharif, H., Hempel, M., Zhou, T., Wang, W., Chen, H. –H., IEEE 802.11b based ad hoc networking and its performance in mobile channels, Communications, IET May (2009), vol. 3, pp. 689-699.
[2] Prasad, P.S.; Agrawal, P., Opportunistic relay placement in mobile multihop wireless ad hoc networks, System Theory (SSST), 2010 42nd Southeastern Symposium on, Page(s) 147 – 151 (2010).
[3] Feng Chen; Hongqiang Zhai; Yuguang Fang, Available bandwidth in multirate and multihop wireless ad hoc networks, Selected Areas in Communications, IEEE Journal on, Page(s) 299 – 307 (2010).
[4] Shakeri, Majid, Hosseini, Ebrahim, Simulation and evaluation of routing protocols in wireless mobile Ad Hoc network, Wireless Communications, Networking and Information Security (WCNIS) , Page(s) 603 – 607 (2010).
[5] Reddy, Y.B., A Game Theory Approach to Detect Malicious Nodes in Wireless Sensor Networks, Sensor Technologies and Applications, Page(s)462-468 (2009).
[6] Fangni Chen, Zhongpeng Wang, Yi Yang, A Cooperation Strategy Based on Game Theory in Cooperative UWB Networks, Wireless Communications, Networking and Mobile Computing, Page(s) 24-26, (2009).
[7] Mumtaz, S., Marques, P., Gameiro, A., Rodriguez, J., Application of Game Theory in Ad-Hoc Opportunistic Radios, Networks, Page(s) 46 – 51, March (2009).
[8] Yu-Chang Chen; Chen-Chun Yang; Shiang-Chi Tseng, Ya-Bo Hu., Next generation heterogeneous wireless networks with QoS guarantees. Consumer Electronics (ISCE), 2011 IEEE 15th International Symposium on, Page(s): 188 – 191 (2011).
[9] Suleiman, K.H.; Chan, H.A.; Dlodlo, M.E., Issues in Designing Joint Radio Resource Management for Heterogeneous Wireless Networks, Wireless Communications, Networking and Mobile Computing (WiCOM), 2011 7th International Conference on, Page(s): 1 - 5 (2011).
[10] Zhang Li; Zou Jin, A Wireless Ad Hoc Network Congestion Control Algorithm Based on Game Theory, Future Computer Sciences and Application (ICFCSA), 2011 International Conference on , Page(s) 137 – 141, (2011).
[11] Ke Zhang; Ying Wang; Cong Shi; Tan Wang; Zhiyong Feng, A Non-Cooperative Game Approach for Bandwidth Allocation in Heterogeneous Wireless Networks, Vehicular Technology Conference (VTC Fall), 2011 IEEE, Page(s) 1 – 5, (2011).
[12] Torkaman, A.; Charkari, N.M.; Aghaeipour, M., A new classification approach based on cooperative game , Computer Conference, 2009. CSICC 2009. 14th International CSI, Page(s)458 – 463, (2009).
[13] Ma Kai; Guan Xinping; Zhao Bin, Symmetrical cooperative strategies in wireless networks: A cooperative game approach, Control Conference (CCC), 2010 29th Chinese, Page(s) 4175 – 4179, (2010).
[14] Paul, A.; Mandal, S.; Maitra, M.; Sadhukhan, S.K.; Saha, D., Dynamic spectrum management by a single wireless service provider: A cooperative game theoretic approach, Recent Advances in Intelligent Computational Systems (RAICS), 2011 IEEE, Page(s) 204 – 209, (2011).
[15] Younggeun Cho; Tobagi, F.A., Cooperative and Non-Cooperative Aloha Games with Channel Capture, Global Telecommunications Conference, 2008. IEEE GLOBECOM 2008. IEEE, Page(s): 1 – 6, (2008).
[16] Yu, Xiaohui; Zhang, Qiang, Fuzzy Nash equilibrium of fuzzy n-person non-cooperative game, Systems Engineering and Electronics, Journal of Volume: 21 , Issue: 1 , Page(s) 47 – 56, (2010).
[17] Guoyan Yang; Guoyin Zhang, A power control algorithm based on non-cooperative game for wireless sensor networks, Electronic and Mechanical Engineering and Information Technology (EMEIT), 2011 International Conference on Volume: 2, Page(s) 687 – 690, (2011).
[18] Inaltekin, H.; Wicker, S.B., The Analysis of Nash Equilibria of the One-Shot Random-Access Game for Wireless Networks and the Behavior of Selfish Nodes, Networking, IEEE/ACM Transactions on Volume: 16 , Page(s) 1094 – 1107, (2008).
[19] Chaporkar, P.; Proutiere, A.; Radunoviac, B., Rate Adaptation Games in Wireless LANs: Nash Equilibrium and Price of Anarchy, INFOCOM, 2010 Proceedings IEEE, Page(s) 1 – 9, (2010).
[20] B. Paul Harrenstein, Mathijs M. de Weerdt, Vincent Conitzer, A qualitative vickrey auction. In U. Endriss and G. Paul W, editors, Proceedings of the 2nd International Workshop on Computational Social Choice, University of Liverpool, Page(s) 289-301, (2008).
[21] Kao-Shing Hwang, Jin-Ling Lin, Hui-Ling Huang, Cooperative patrol planning of multi-robot systems by a competitive auction system, ICCAS-SCIE, Page(s) 4359 – 4363, Aug. (2009).
[22] Froushani, M.H.L.; Khalaj, B.H.; Vakilinia, S., A novel approach to incentive-based cooperation in wireless ad hoc networks, Telecommunications (ICT), 2011 18th International Conference on, Page(s) 78 – 83, (2011).
[23] Juan J. Jaramillo, R. Srikant, A game theory based reputation mechanism to incentivize cooperation in wireless ad hoc networks, Journal of Networks and Computer Applications, June (2010), Vol.8, Page(s) 416-429, (2010).
[24] Ming Qiu; Haibin Hu; Qingshan Jiang; Hailong Hu, A New Approach of Graph Isomorphism Detection Based on Decision Tree, Education Technology and Computer Science (ETCS), 2010 Second International Workshop on Volume: 2, Page(s) 32 – 35, (2010).
[25] Vasantha, V., Manimegalai, D., Mitigating routing misbehavior in mobile ad hoc networks, Conference on Computational Intelligence and Multimedia Applications, Page(s) 417– 422, (2007).
[26] Fang Liu, Rongsheng Dong, Jianming Liu, Xuliang Xu, “A Reputation Mechanism to Stimulate Node Cooperation in Ad Hoc Networks,” Genetic and Evolutionary Computing, Page(s) 7 – 10, (2009).
[27] M. Felegyhazi, L. Buttyan and J.-P. Hubaux, Equilibrium analysis of packet forwarding strategies in wireless ad hoc networks – the static case, Proceedings of IEEE Personal Wireless Communications, Page(s) 776-789, (2003).
[28] M. Jakobsson, J. P. Hubaux, and L. Buttyan, A micropayment scheme encouraging collaboration in multi-hop cellular networks, in Proceedings of Financial Crypto 2003, La Guadeloupe, January (2003). M. Jakobsson, J. P. Hubaux, and L. Buttyan, A micropayment scheme encouraging collaboration in multi-hop cellular networks, in Proceedings of Financial Crypto 2003, La Guadeloupe, January (2003).
[29] B. Lamparter, K. Paul, and D. Westhoff, Charging Support for Ad Hoc Stub Networks, Journal of Computer Communication, Special Issue on Internet Pricing and Charging: Algorithms, Technology and Applications, Elsevier Science, summer (2003).
[30] Parkes, D.C., Shneidman, J., Distributed implementations of Vickrey-Clarke-Groves mechanisms, Autonomous Agent and Multiagent System, Page(s) 261 -268, (2004).
[31] Edward H. Clarke, Multipart pricing of public goods, Public Choice, Vol. 11, Page(s) 19-33, (1971) .
[32] Theodore Groves, Incentives in teams, Econometrical, Vol. 41, Page(s) 617-631, (1973).
[33] Murali, P., Rakesh, K., Hota, C., Yla-Jaaski, A., Engery-aware routing in Mobile Ad-Hoc Networks, Wireless Days, Page(s) 1-5, (2008).
[34] Mohammed Tarique, Kemal E. Tepe, Minimum energy hierarchical dynamic source routing for Mobile Ad Hoc Networks, Journal of Networks and Computer Applications, Vol.7, pp. 1125-1135, (2009).
[35] Umang, S., Reddy, B.V.R., Enhanced intrusion detection system for malicious node detection in ad hoc routing protocols using minimal energy, Communication, IET, Page(s) 2084-2094, (2010).
[36] Hyytia, E., Lassila, P., Virtamo, J., Spatial node distribution of the random waypoint mobility model with applications, Mobile Computing, IEET Transaction on, Page(s) 680-694, (2006).
[37] Serrador, A.; Carniani, A.; Corvino, V.; Correia, L.M., Radio access to heterogeneous wireless networks through JRRM strategies, Future Network and Mobile Summit, 2010, Page(s): 1 – 8 (2010).
[38] Metre, P.B.; Radhika, K.R.; Gowrishankar, G, Survey of soft computing techniques for joint radio resource management, Multimedia Computing and Systems (ICMCS), 2012 International Conference on, Page(s): 562 - 565 (2012).
[39] He Xianlou; Jiang Yan, Study on the venture capital exit of grey ideal solution and fuzzy multiple attribute decision-making, E-Business and E-Government (ICEE), 2010 International Conference on, Page(s): 4671 – 4674 (2010).
[40] Xiao-He Qie, Gui-Qin Zhang, Wei Zhang, DSM Effect Based on Grey-Fuzzy Theory, E Product E-Service and E-Enterainment (ICEEE), Page(s): 1 - 4 (2010) Xiao-He Qie, Gui-Qin Zhang, Wei Zhang, DSM Effect Based on Grey-Fuzzy Theory, E Product E-Service and E-Enterainment (ICEEE), Page(s): 1 - 4 (2010).
[41] Hui Li; Lihong Guo, A combat effectiveness evaluation model based on interval number and grey decision making, Mechatronic Science, Electric Engineering and Computer (MEC), 2011 International Conference on, Page(s): 1166 - 1169 (2011).
[42] Tudzarov, A.; Janevski, T., Experience-based radio access technology selection in wireless environment, EUROCON - International Conference on Computer as a Tool (EUROCON), 2011 IEEE, Page(s): 1 - 4 (2011).
[43] Paiva, R.C.D.; Vieira, R.D.; Iida, R.; Tavares, F.M.; Saily, M.; Hulkkonen, J.; Jarvela, R.; Niemela, K., GSM voice evolution using orthogonal subchannels, Communications Magazine, IEEE, Page(s): 80 - 86 (2012).
[44] Medvid, I.; Mikuc, M., Quality of service mechanisms and priority management in HSPA system, MIPRO, 2012 Proceedings of the 35th International Convention, Page(s): 656 - 661 (2012).
[45] Prasad, Narayan; Zhang, Honghai; Zhu, Hao; Rangarajan, Sampath, Multi-user scheduling in the 3GPP LTE cellular uplink, Mobile Computing, IEEE Transactions on, Page(s): 262 - 269 (2012).
[46] Gui Yufeng; Zheng Zhaohui; Xu Bichao; Zhang Zhiling, A split and merge algorithm based on grey theory, Grey Systems and Intelligent Services (GSIS), 2011 IEEE International Conference on, Page(s): 469 – 472 (2011).
[47] Juntao Kang; Baiben Chen , Comprehensive technical condition evaluation of bridge based on grey fuzzy theory , Natural Computation (ICNC), 2010 Sixth International Conference , Volume: 1, Page(s): 200 – 204 (2010).
[48] Congjun Rao; Wenlue Chen; Cheng Wang, Research and application of fuzzy grey multi-attribute group decision making, Control and Decision Conference, 2008. CCDC 2008. Chinese, Page(s): 2292 - 2295 (2008).
[49] Cai-yun Gao; Ning Gao, A New Kind of Optimized Method of Grey Prediction Model and Its Applications in Deformation, Information Engineering and Computer Science, 2009. ICIECS 2009. International Conference on, Page(s): 1 – 4 (2009).
[50] Gao Yan; Chenchen Liu; Zhuyan Shao, Analysis of influencing factors for the grey multi-attribute group decision making, Grey Systems and Intelligent Services, 2009. GSIS 2009. IEEE International Conference on, Page(s): 1081 - 1086 (2009).
[51] Chengyu Yao, Zhen Dang, Dongning Chen, Shijun Lv, Fault Search Based on Grey Fuzzy Multi-attribute Decision Making, Fluid Power and Mechatronics (FPM), pp.107-112 (2011).
[52] Lopez-Benitez, M.; Gozalvez, J., Common Radio Resource Management Algorithms for Multimedia Heterogeneous Wireless Networks, Mobile Computing, IEEE Transactions on, Volume: 10, Issue:9, Page(s): 1201 - 1213 (2011).
[53] Xuebing Pei; Tao Jiang; Daiming Qu; Guangxi Zhu; Jian Liu, Radio-Resource Management and Access-Control Mechanism Based on a Novel Economic Model in Heterogeneous Wireless Networks, Vehicular Technology, IEEE Transactions on, Volume: 59 , Issue: 6, Page(s): 3047 – 3056 (2010).
[54] Ikuno, J.C.; Wrulich, M.; Rupp, M., System Level Simulation of LTE Networks, Vehicular Technology Conference (VTC 2010-Spring), 2010 IEEE 71st, Page(s): 1– 5 (2010).
[55] http://www.3gpp.com/LTE.
[56] Mori, M.; Tachibana, T.; Hirata, K.; Sugimoto, K., A Proposed Topology Design and Admission Control Approach for Improved Network Robustness in Network Virtualization, Global Telecommunications Conference (GLOBECOM 2011), 2011 IEEE, Page(s): 1 - 5 (2011).
指導教授 吳中實(Jung-Shyr Wu) 審核日期 2013-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明