博碩士論文 93621006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:3.138.122.195
姓名 簡巧菱(Chiao-Ling Chien)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 台灣北部地區不同季節以及不同降水型態的雨滴粒徑分布特性
(The characteristics of drop size distribution in different seasons and rain-types in Taiwan.)
相關論文
★ 宜蘭地區秋冬季降雨特性之研究★ 台灣地區午後對流降水特性之分析
★ 台灣梅雨季中尺度對流系統之數值模擬研究-TAMEX IOP 8 個案★ 利用整合探空系統分析南海北部大氣邊界層特性之研究
★ 中尺度波譜模式對梅雨期豪雨個案模擬之研究★ 宜蘭地區秋冬季豪大雨特性之研究
★ 台灣東南部地區局部環流與邊界層特性之研究★ 台灣東南部地區複雜地形局部環流的模擬研究
★ 宜蘭地區豪雨個案之研究★ 台灣北部地區雨滴粒徑分佈特性與降雨估計之探討
★ 冬季雹暴個案之分析與模擬★ 伴隨敏督利颱風的強烈西南氣流引發豪大雨之個案探討
★ 利用整合探空系統分析台灣東南部地區大氣邊界層特性之研究★ 桃芝颱風(2001)數值模擬研究:颱風路徑與結構之模擬與分析
★ 利用雨滴譜儀分析不同降水系統之微物理特性研究★ 颱風或熱帶低壓與中部空品區空氣品質之相關探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 研究雲的微物理特性需要雨滴粒徑分布的資訊,但雨滴粒徑分布會隨不同降水型態及地理位置而有所不同,故分析不同地點及不同降水型態下之雨滴粒徑分布特性是重要的課題;且藉由雨滴粒徑分布可以得到液態水含量、雷達回波、降雨率等降雨積分參數,對於雷達估計降水的準確性有幫助。因此本研究使用中央大學光學式雨滴譜儀及台灣北部地區(中央、石門、霞雲、翡翠、南港) 撞擊式雨滴譜儀之觀測資料進行分析探討。中央站資料時間為2002年2月至2006年5月,北部各站資料時間為2004年6月至2006年5月。
統計雨滴譜儀長期觀測資料之結果顯示,從雨滴粒徑分布圖可以看到,隨降雨率增加,大雨滴個數變多,雨滴粒徑分布向右延伸。撞擊式雨滴譜儀相較於光學式雨滴譜儀,在降雨率較大時會低估大雨滴及小雨滴個數。雖然兩種儀器計算得到之Gamma分布參數隨降雨率的變化不同,但對降雨積分參數影響不大。雨滴粒徑分布在空間的變化如下:翡翠水庫的降雨率較小且較偏小雨滴,南港站在小雨滴的部分有明顯較少之情形,石門及霞雲站之降雨率較大且大雨滴較多。
以季節及降水型態來看:冬季及鋒面型態偏小雨滴,降雨率較小。梅雨之雨滴粒徑分布較廣,雨滴顆粒較大。颱風降水偏中大雨滴,雨滴粒徑分布較窄;且當降雨率大於 60 (mm/hr) 時雨滴粒徑分布在大雨滴的部份有內縮情形。午後雷陣雨之降雨率較大且雨滴粒徑最大。不同地區的中值體積直徑(Median Volume Diameter:D0 )對Nw (標準化的N0) 的分布很穩定,但利用D0對Nw的機率分布則可以看出:不同降水型態、同降雨率下D0對Nw的分布雖在同一區塊,但集中的部分不同;另外將此圖與Bringi et al. (2003)之結果相比,發現當降雨率小於10 (mm/hr) 之降水型態偏向層狀性降水,降雨率大於10 (mm/hr) 之降水型態則介於大陸性對流及海洋性對流之間。
在個案討論中,颮線個案中的層狀降水具有較弱的雷達回波強度以及降雨率,且其雨滴粒徑分布較窄,以較小雨滴為主;而對流時段的雷達回波較強,降雨率也很大,相對的雨滴粒徑分布較寬廣,以較大雨滴為主。 艾利颱風個案中,螺旋雨帶通過的地區降雨率較大,雨滴粒徑分布較寬廣,雨滴顆粒較大。而眼牆通過時雨滴粒徑分布變窄,雨滴顆粒反而沒有那麼大。
摘要(英) Characterization of variations in the raindrop size distribution (DSD) is required for microphysical studies. The DSD varies in different rain types and different spatial distribution. And variations in reflectivity-rainfall (Z-R) relations are strongly dependent on DSD variations. Other integral rainfall parameters such as liquid water content, reflectivity, and rain-rate are also functions of DSD. For these reason, it is important to analyze the DSD in different places and rain types.
DSD data collected with a Joss-Waldvogel disdrometer (JWD) and a 2d-video disdrometer (2DVD) in NCU from February, 2002 to May, 2006, is used to analyze the variations in gamma parameters of raindrop spectra. Besides, to compare the spatial difference of DSD, we also analyzed JWD data in five stations (i.e. Feitsui, Nankang, NCU, Shiyun and Suiman) from June, 2004 to May, 2006.
On average, as the rain-rate increased, more large drops were found in 2DVD and JWD. Although JWD underestimated the small drops, the small drops had little impact on the rain-rate and reflectivity differences between the 2DVD and JWD. For the comparison between five stations in northern Taiwan, the rainfall characteristics of Feitsui were more light rain and more small drops. Nankang had less small drops because small drops were masked by background noise. More heavy rainfall events occurred in Suiman and Shiyun due to its geographical features. And the average raindrop size in Suiman and Shiyun was larger than the other three stations.
DSD data from 2DVD and JWD had been analyzed to determine the variability of drop size in different seasons and precipitation types. For winter and front type, the rain-rate was smaller and the raindrops tended to smaller drop size. For Mei-yu front, the raindrop spectra were broader than the other seasons or types except the afternoon thundershower type. And the raindrop size was larger than winter. For typhoon type, the raindrops tended to medium size. As rain-rate greater than 60(mm/hr), the right side of raindrop spectra became narrow and the concentration of large drops decreased. For afternoon thundershower, it had more heavy rainfall events. The drop size was the largest and its spectra were the broadest of all types.
The composite statistics based on disdrometer suggested that the median volume diameter and generalized intercept for rain-rate less than 10(mm/hr) lied on a straight line with negative slope, which similar to stratiform rain type discussed by Bringi et al. (2003). And as rain-rate larger than 10(mm/hr), the two parameters lied between “maritime-like” and “continental-like” clusters.
In squall line case study, the analysis showed that stratiform precipitation has weaker reflectivity, narrower raindrop spectra, and smaller drop size. For convective precipitation, it had stronger reflectivity, broader raindrop spectra, and larger drop size. In typhoon Aere case, during the spiral band passage, the raindrop spectra became broader and the raindrop size was larger compared to the raindrop size during the passage of eye wall.
關鍵字(中) ★ 雨滴粒徑分布
★ 雨滴譜儀
關鍵字(英) ★ drop size distribution
★ disdrometer
論文目次 Abstract.............................................................................................................................................................................i
摘 要...............................................................................................................................................................................iii
致 謝................................................................................................................................................................................v
目 錄................................................................................................................................................................................vi
圖 表 說 明....................................................................................................................................................................viii
§ 第一章 前言.................................................................................................................................................................1
1.1 研究背景..................................................................................................................................................................1
1.2 文獻回顧..................................................................................................................................................................2
1.3 研究方向..................................................................................................................................................................6
§ 第二章 資料收集及分析方法.....................................................................................................................................7
2.1 資料收集...................................................................................................................................................................7
2.2 儀器介紹...................................................................................................................................................................7
2.3 雨滴粒徑分布 (DSD) 之計算...................................................................................................................................8
2.4 Gamma 分布之計算..................................................................................................................................................9
2.5 降雨積分參數計算及Z-R 關係式係數 A、b 之推導............................................................................................11
2.6 Normalized Gamma DSD 之計算.............................................................................................................................13
§ 第三章 北部地區雨滴粒徑分布之季節特性.............................................................................................................16
3.1 不分季節之雨滴粒徑分布及 Gamma 參數特性 ...................................................................................................16
3.1.1 中央站撞擊式與光學式雨滴譜儀之雨滴粒徑分布及Gamma參數特性...........................................................16
3.1.2 北部各站撞擊式雨滴譜儀之雨滴粒徑分布及Gamma參數特性........................................................................20
3.2 區分季節之 Gamma DSD 參數特性........................................................................................................................22
3.2.1 中央站撞擊式與光學式雨滴譜儀之雨滴粒徑分布及Gamma參數特性............................................................23
3.2.2 北部各站撞擊式雨滴譜儀之雨滴粒徑分布及Gamma參數特性........................................................................26
3.3 區分降水型態之 Gamma DSD 參數特性.................................................................................................................28
3.3.1 中央站撞擊式與光學式雨滴譜儀之雨滴粒徑分布及Gamma參數特性............................................................29
3.3.2 北部各站JWD之雨滴粒徑分布及Gamma參數特性 ...........................................................................................34
§ 第四章 個案討論.........................................................................................................................................................37
4.1 2006年5月2日颮線個案...........................................................................................................................................37
4.1.1 個案概述................................................................................................................................................................37
4.1.2 雨滴粒徑分布隨時間與空間的變化....................................................................................................................38
4.2 2004年8月23~26日艾利颱風個案...........................................................................................................................39
4.2.1 個案概述................................................................................................................................................................39
4.2.2 雨滴粒徑分布隨時間與空間的變化....................................................................................................................40
§ 第五章 結論與展望.....................................................................................................................................................42
5.1 結論...........................................................................................................................................................................42
5.2 展望...........................................................................................................................................................................43
參考文獻.........................................................................................................................................................................44
表.....................................................................................................................................................................................46
圖.....................................................................................................................................................................................47
附錄................................................................................................................................................................................113
參考文獻 [01] 張偉裕,2002:利用雨滴譜儀分析雨滴粒徑分布─納莉颱風個案,國立中央大學碩士論文。
[02] 林位總,2004:利用二維雨滴譜儀研究雨滴譜特性,國立中央大學碩士論文。
[03] 許玉金,2005:台灣北部地區雨滴粒徑分布特性與降雨估計之探討,國立中央大學碩士論文。
[04] 蔣孟良,2005:利用雨滴譜儀分析不同降雨系統之雨滴粒徑分佈,文化大學碩士論文。
[05] Atlas, D. and C. W. Ulbrich, 1977: Path-and area-integrated rainfall measurement by microwave attenuation in the 1-3 cm Band. J. Appl. Meteor., 16, 1322-1331.
[06] Bringi, V. N., V. Chandrasekar, J. Hubbert, E. Gorgucci, W. L. Randeu, and M. Schoenhuber, 2003: Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis. J. Atmos. Sci., 60, 354-365.
[07] Chen, C.-S., and Y.-L. Chen, 2003: The rainfall characteristics of Taiwan. Mon. Wea. Rev., 131, 1323-1341.
[08] Cifelli, R., C. R. Williams, D. K. Rajopadhyaya, S. K. Avery, K. S. Gage, and P. T. May, 2000: Drop-size distribution characteristics in tropical mesoscale convective systems. J. Appl. Meteor., 39, 760-777.
[09] Gunn, R. and G. D. Kinzer, 1949: The terminal velocity of fall for droplets in stagnant air. J. Meteor., 6, 243-248.
[10] Huggel, A., W. Schmid, and A. Waldvogel, 1996: Raindrop size distributions and the radar bright band. J. Appl. Meteor., 35, 1688-1701.
[11] Illingworth, A. J., and T. M. Blackman, 2002: The need to represent raindrop size spectra as normalized gamma distributions for the interpretation of polarization radar observations. J. Appl. Meteor., 41, 286-297.
[12] Kozu, T., and K. Nakamura, 1991: Rainfall Parameter Estimation from dual-radar measurements combining reflectivity profile and path-integrated attenuation. J. Atmos. Oceanic Technol., 8, 259-270.
[13] Lee, G. W. and I. Zawadzki, 2005: Variability of drop size distributions: Time-scale dependence of the variability and its effects on rain estimation. J. Appl. Meteor., 44, 241-255.
[14] Marshall, J. S., and W. McK. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165-166.
[15] Maki, M., T. D. Keenan, Y. Sasaki, and K. Nakamura, 2001: Characteristics of the raindrop size distribution in tropical continental squall lines observed in Darwin, Australia. J. Appl. Meteor., 40, 1393-1412.
[16] Nešpor, V., and B. Sevruk, 1999: Estimation of wind-induced error of rainfall gauge measurements using a numerical simulation. J. Atmos. Oceanic Technol., 16, 450-464.
[17] Nešpor, V., W. F. Krajewski, and A. Kruger, 2000: Wind-induced error of raindrop size distribution measurement using a two-dimensional video disdrometer. J. Atmos. Oceanic Technol., 17, 1483-1492.
[18] Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 1118-1140.
[19] Tokay, A., and D. A. Short, 1996: Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J. Appl. Meteor., 35, 355-371.
[20] _________, A. Kruger, and W. F. Krajewski, 2001: Comparison of drop size distribution measurements by impact and optical disdrometers. J. Appl. Meteor., 40, 2083-2097.
[21] Ulbrich, C. W, 1983: Natural variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 1764-1775.
[22] _____________, and D. Atlas, 1984: Assessment of the contribution of differential polarization to improved rainfall measurements. Radio Sci., 19, 49-57.
[23] Waldvogel, A., 1974: The N0 jump of raindrop spectra. J. Atmos. Sci., 31, 1067-1078.
指導教授 林沛練(Pay-Liam Lin) 審核日期 2006-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明