博碩士論文 93621020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:6 、訪客IP:3.231.229.89
姓名 呂崇華(Chung-Hua Lu)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 雙偏極化雷達資料分析梅雨鋒面雨滴粒徑分佈的物理特性
(Using dual-polarization radar measurements to analyse the microphysics characteristics of the drop size distribution of Mei-yu frontal rainfall.)
相關論文
★ 賀伯颱風與地形間的交互作用★ SCSMEX期間利用C-Pol偏極化雷達氣象參數觀測降水系統之分析
★ 利用與滴譜儀分析雨滴粒徑分布:納莉颱風個案★ 利用都卜勒雷達分析颱風風場結構 - 2001年納莉颱風
★ 宜蘭地區豪雨個案之研究★ 利用二維雨滴譜儀研究雨滴譜特性
★ 利用Extended-GBVTD方法反求非軸對稱颱風(颶風)風場結構★ 利用中央大學雙偏極化雷達資料反求雨滴粒徑分佈及降雨率方法的研究
★ 納莉颱風登陸時的結構演化★ 台灣北部初秋豪雨個案之降雨特性研究
★ 雨滴粒徑分布模擬─雙偏極化雷達驗證★ 梅雨降水系統的雙偏極化雷達資料分析與WRF模式模擬研究
★ 2007年梅雨季期間之颮線個案分析★ MM5模式模擬之納莉颱風(2001)登陸時風場結構變化
★ SoWMEX/TiMREX個案中雨滴粒徑分佈之收支分析★ 利用SoWMEX/TiMREX實驗期間X-band雷達資料估計降雨
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究為利用中央大學C頻雙偏極化(C-Pol)雷達進行台灣地區梅雨鋒面通過期間降水系統特徵之觀測研究。在分析資料前首先建立完整的雷達資料品管流程,利用偏極化雷達參數差異相位差(ΦDP)進行回波( )與差異反射率( )之系統偏移與衰減的修正,以減少反演雨滴粒徑分佈所可能造成的誤差,同時經確認結果證實雷達參數有明顯提升其精確度。
在反演雨滴粒徑分佈及估算降雨率方面,為假設雨滴粒徑為Gamma分佈型態,並利用雨滴粒徑形狀(μ)與斜率(Λ)參數間的經驗關係式以及配合偏極化雷達觀測之回波( )、差異反射率( )及比差異相位差( )資料求得Gamma型態雨滴粒徑分佈三參數。由偏極化雷達反演雨滴粒徑分佈進而求得雲中各物理積分參數,定量上與地面雨滴譜儀觀測有良好的一致性,確認其反演參數之正確性後,將偏極化雷達反演資料應用至梅雨鋒面期間各類降水系統雨滴粒徑分佈特性,以探討其降水系統中雲物理的機制。
由本研究顯示,在二對流個案系統中,相同的高降雨率分別是由雨滴數量(相對多)及雨滴粒徑(相對大)所主導,二個案在雨滴粒徑分佈上有較不同的差異;雨滴碰撞結合及分裂過程,隨降雨率增大最終將會達到平衡,雨滴粒徑大小為一穩定值;此外,研究中也發現在對流及層狀個案中雷達參數相關係數( )在冰水混合區會有降低現象。
摘要(英) The major purpose of this research is to understand the microphysics characteristics of Mei-yu frontal system over Taiwan area using NCU C-band dual-polarization (C-Pol) radar measurements. A sequence of quality control procedures are carried out by using the differential phase measurements (ΦDP) to correct the system bias and attenuation of reflectivity (ZH) and differential reflectivity (ZDR). The corrected radar parameters were verified, the improvement after correction procedure is pronounced.
The method for retrieving drop size distribution (DSD) parameters is to assume that the drop size distribution (DSD) is represented by a gamma distribution, and an empirical relation between the distribution shape (μ) and slope (Λ) parameters. Then the three gamma parameters ( 、 、 ) can be derived from the polarimetric variables (ZH、ZDR and KDP) through an forward numerical calculation of scattering model. Retrieved physical characteristics of the drop size distribution (DSD) were generally well matched with disdrometer observations. The retrieval data is applied to the selected Mei-yu frontal precipitation cases to analyze the microphysics characteristics of the rainfall system.
The research results indicate that two strong convective cases are dominated by relatively large drops number and relatively large drops size respectively at the same rainfall rate. Two cases have great variation in the drop size distribution (DSD). At high rain rates, the D0 values reach a steady value what are believed to be equilibrium DSDs in which breakup and accretion are roughly in balance. Besides, the radar measurements suggest that the correlation coefficient (ρhv) in both convective rain and stratiform rain will lower under mixed-phase precipitation.
關鍵字(中) ★ 雨滴粒徑分佈
★ 差異反射率
關鍵字(英) ★ Drop size distribution
★ Differential reflectivity
論文目次 摘要……………………………………………………………………………………I
致謝………………………………………………………………………..………III
目錄……………………………………………………………………….....……IV
圖表說明…………………………………………………………………..……...VI
第一章: 序論
? 1.1: 前言……………………………………………………… ..….….1
? 1.2: 文獻回顧…………………………………………………………….2
1.3: 研究動機與方向……………………………………………….……5
第二章: 資料來源
2.1: 觀測儀器………………………………………….…….………….7
2.2: 降水個案系統簡介……………………….……….……..……… 8
2.2.1: 台灣海峽上強對流系統…………………….……….… ......9
2.2.2: 新竹、苗栗近山區強對流系統……………………….…......9
2.2.3: 台北地區層狀性降水系統………………………. .……..…..9
第三章: 雙偏極化雷達之參數
3.1: 雲和降水的雷達氣象方程……………………….……….……..10
3.2: 雨滴散射截面……………………….……….……..…… .…..11
3.2.1: 球狀水象粒子……………………….……….……..…………12
3.2.2: 非球狀水象粒子……………………….…… ..……….…...12
3.2.3: 反散射(Backscattering)矩陣的概念……………….….……13
3.3: 雨滴粒徑分佈原理……………………….…… ..…….……..14
3.4: 雙偏極化雷達觀測……………………….……… .…….……..15
3.4.1: 反射率(reflectivity)及差異反射率 (Differential reflectivity)…………….… ..… …..16
3.4.2: 差異相位差(Differential phase shift)及比差異相位差(Specific differential phase shift)………… … . .17
3.4.3: 同極化相關係數(Co-polar correlation coefficient). 19
第四章: 雷達資料品質管制
4.1: 大氣、雲、降水粒子對雷達電磁波的衰減………………… …21
4.1.1: 大氣的衰減修正……………………….……….……. …….. 21
4.1.2: 降水衰減修正回顧……………………….……….…… ……..22
4.2: 差異反射率( )及反射率( )系統偏移修正……….…......23
4.3: 檢驗 及 兩參數間的合理性……………………………… 25
4.4: 濾除非雨訊號……………………….……….……….…………..26
4.5: 本研究雷達參數 、 之修正流程與檢驗…………………….....28
第五章: 反演雨滴粒徑分佈及降水估計方法
5.1: 雨滴粒徑分佈反演方法……………………….……….…… ...31
5.2: 估算降雨率及各降水物理積分參數……………………….………34
5.3: 反演雨滴粒徑分佈及降雨率之驗證……………………….………37
5.3.1: 使用理想參數之驗證……………………….……….…………….38
5.3.2: 使用雷達觀測參數之驗證……………………….……….……… 39
第六章: 梅雨鋒面降水系統特性分析
6.1: 台灣海峽上強對流降水系統……………………….……… …...42
6.2: 苗栗、新竹地區對流降水系統……………………….……… ….44
6.3: 台北地區層狀性降水系統……………………….……….…… ..45
6.4: 不同區域不同型態降水系統特性分析 ………………… .……..46
第七章: 結論與未來展望
7.1: 結論………………………………………………………………….50
7.2: 未來展望…………………………………………………………….52
參考文獻……………………………………………………………..………………55
附錄A:雨滴散射模擬程式:
A.1:T-matrix方法簡介與設定………………………………………………55
附錄B:反射率及差異反射率之降水衰減修正法
B.1:反射率的衰減修正法…………………………………….…59
B.2:差異反射率的差異衰減修正法……………………………….…..60
表………………………………………………………………………..……………66
附圖……………………………………………………………………..……………68
參考文獻 劉慈先, 2002: SCSMEX期間利用C-Pol偏極化雷達氣象參數觀測降水系統之分析, 國立中央大學大氣物理碩士論文, 67頁。
張偉裕, 2002: 利用雨滴譜儀分析雨滴粒徑分佈(納莉颱風個案), 國立中央大學碩士論文, 95頁。
鳳 雷, 2002: 熱帶降水系統之雙偏振雷達觀測研究, 國立台灣大學大氣科學博士論文,161頁。
林位總, 2004: 利用二維雨滴譜儀研究雨滴譜特性, 國立中央大學大氣物理碩士論文, 89頁。
紀博庭, 2005: 利用中央大學雙偏極化雷達資料反求雨滴粒徑分佈及降雨率方法的研究, 國立中央大學大氣物理碩士論文, 70頁。
Atlas, D., and C. W. Ulbrich, 1977: Path- and area-integrated rainfall measurement by microwave attenuation in 1-3 cm band. J. Appl. Meteor., 16, 1322-1331
Atlas, D., C. W. Ulbrich, F. D. Marks Jr., E. Amitai, and C. R. Williams, 1999: Systematic variation of drop size and radar–rainfall relations. J. Geophys. Res., 104, 6155–6169.
Aydin, K., T. A. Seliga, and V. Balaji, 1986: Remote sensing of hail with a dual-linear polarization radar. J. Climate Appl. Meteor., 25, 1475–1484.
Blake, L. B., 1970: Prediction of radar range. In“Radar Handbook”(M. I. Skolnik, ed), Chapter 2. McGraw-Hill, New York.
Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674–685.
Brandes, E. A., G. Zhang, and J. Vivekanandan, 2003: An evaluation of a drop distribution based polarimetric radar rainfall estimator. J. Appl. Meteor., 42, 652-660
Brandes, E. A., G. Zhang, and J. Vivekanandan, 2004a: Comparison of polarimetric radar drop size distribution retrieveal algorithms. J. Atmos. Oceanic Technol., 21, 584-598
Brandes, E. A., G. Zhang, and J. Vivekanandan, 2004b: Drop size distribution retrieval with polarimetric radar :model and application. J. Appl. Meteor., 43, 461-475
Brandes, E. A., and K. Ikeda, 2004c: Freezing-level estimation with polarimetric radar. J. Appl. Meteor., 43, 1541-1553.
Bringi, V. N., and V. Chandrasekar, N. Balakrishnan, and D. S. Zrnic, 1990: An examination of propagation effects in rainfall on radar measurements at microwave frequencies. J. Atmos. Oceanic Technol., 7, 829-840.
Bringi, V. N., T. Keenan, and V. Chandrasekar, 2001:Correcting C-Band radar reflectivity and differential reflectivity data for rain attenuation: A self-consistent method with constraints. IEEE Trans. Geosci. Remote Sens., 39, 1906–1915.
Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications, Cambridge Univ. Press, 636 pp.
Bring, V. N.,M. Thurai, and R. Hannesen, 2005: An overview of dual-polarization weather radar:theory and applications. Dual-polarization weather radar handbook, 123pp.
Carbone, R. E., and L. D. Nelson, 1978: The evolution of raindrop spectra in warm-based convective storms as observed and numerically modeled. J. Atmos. Sci., 35, 2302–2314.
Dingle, A. N., and K. R. Hardy, 1962: The description of rain by means of sequential raindrop-size distributions. Quart. J. Roy. Meteor. Soc., 88, 301–314.
Doviak, R.J., and D.S. Zrnic´, 1993: Doppler Radar and Weather Observations, 2nd
Edition, San Diego, CA, Academic Press, 562 pp.
Gorgucci, E., G. Scarchilli, and V. Chandrasekar,1999: A procedure to calibrate multiparameter weather radar using properties of the rain medium, IEEE Trans. Geosci. Remote Sens., 37, 269–276.
Gorgucci, E., G. Scarchilli, V. Chandrasekar, and V. N. Bringi, 2000: Measurement of mean raindrop shape from polarimetric radar observations. J. Atmos. Sci., 57, 3406–3413.
Gorgucci, E., V. Chandrasekar, V. N. Bringi, and G. Scarchilli, 2002: Estimation of raindrop size distribution parameters from polarimetric radar measurements. J. Atmos. Sci., 59, 2373–2384.
Hitschfeld W. F., and J. Bordan, 1954: Errors inherent in the radar measurement of rainfall at attenuating wavelengths. J. Meteor., 11, 58-67
Hu, Z., and R. C. Srivastava, 1995: Evolution of raindrop size distribution by coalescence, breakup, and evaporation: Theory and observations. J. Atmos. Sci., 52, 1761–1783.
Huggel. A., W. Schmid, and A. Waldvogel, 1996: Raindrop size distributions and radar bright band. J. Appl. Meteor., 35, 1688-1701.
Illingworth, A.J., and I.J. Caylor, 1989: Cross polar observation of the bright band. Proc.24th Radar Meteor. Conf., Amer. Meteor. Soc., 323-327
Illingworth, A. J., and T. M. Blackman, 2002: The need to represent raindrop size spectra as normalized gamma distributions for the interpretation of polarimetric radar observations. J. Appl. Meteor., 41, 286–297.
Illingworth, A. J., 2004: Improved Precipitation rates and data quality by using polarimetric measurements. Advanced Applications of Weather Radar, Chapter 5,Springer Press, 130-166
Jameson, A. R., 1992: The effect of temperature on attenuation correction schemes in rain using polarization propagation differential phase shift. J. Appl. Meteorol., 31, 1106–1118.
Keenan, T. D., D. Zrnic´, L. Carey, P. May, and S. Rutledge, 1997: Sensitivity of C-band polarimetric variables to propagation and backscatter effects in rain. Preprints, 28th Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 13-14
Kozu, T., and K. Nakamura, 1991: Rainfall parameter estimation from dual-radar measurements combining reflectivity profile and path-integrated attenuation. J. Atmos. Oceanic Technol., 8, 259-271
Marshall, J.S., and W.M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165−166.
Rayleigh, L., 1871: On the scattering of light by small particle. Phil. Mag., 41, 447-452.
Ray, P. S., 1972: Broad-band complex refractive indices of ice and water. Appl. Opt., 11, 1836-1844.
Ryzhkov, A. V., and D. S. Zrnic´, 1995: Precipitation and attenuation measurements at a 10-cm wavelength. J. Appl. Meteor., 34, 2121–2134.
Sachidananda M., and D.S. Zrnic´, 1987: Rain rate estimates from differential polarization measurements. J. Atmos. Oceanic Technol., 4, 588-598
Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteorol., 15, 69–76.
Smyth T.J., and A.J. Illingworth, 1998: Correction for attenuation of radar reflectivity using polarization data. Q. J. R. Meteorol. Soc., 124, 2393-2415.
Stewart, R. E., J. D. Marwitz, J. C. Pace, and R. E. Carbone, 1984: Characteristics through the melting layer of stratiform clouds. J. Atmos. Sci., 41, 3227–3237.
Testud, J., E. Le Bouar, E. Obligis, and M. Ali-Mehenni, 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Ocean. Technol., 17, 322-356
Testud, J., S. Qury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “Normalized” distribution to describe raindrop spectra: A tool for cloud physics and
cloud remote sensing. J. Appl. Meteor., 40, 1118-1140
Ulbrich, C.W., 1983: National variations in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor., 22, 1764-1775.
Vivekanandan, J., D. S. Zrnic´, S. M. Ellis, R. Oye, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381-388
Waldvogel, A., 1974: The N0-jump of raindrop spectra. J. Atmos. Sci., 31, 1067-1078.
Willis, P. T., 1984: Functional fits to some observed dropsize distributions and parameterization of rain. J. Atmos. Sci., 41, 1648-1661
Zeng, Z., S. E. Yuter, and R. A. Houze Jr., 2001: Microphysics of the rapid development of heavy convective precipitation. Mon. Wea. Rev., 129, 1882-1904
Zhang, G., J. Vivekanandan, and E. Brandes, 2001: A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens., 39, 830-841
Zrnic´, D. S., and A. V. Ryzhkov, 1996: Advantages of rain measurements using specific differential phase. J. Atmos. Oceanic Technol., 13, 454–464.
Zrnic´ D.S., T.D. Keenan, L.D. Carey, and P. May, 2000: Sensitivity analysis of polarimetric variables at a 5-cm wavelength in rain. J. Appl. Meteorol., 39, 1514-1526.
指導教授 陳台琦(Tai-Chi Chen) 審核日期 2006-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明