博碩士論文 93621022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:9 、訪客IP:18.207.240.35
姓名 黃威巽(Wei-Xun Huang)  查詢紙本館藏   畢業系所 大氣物理研究所
論文名稱 2001年東亞硫沉降之模擬
相關論文
★ 雲凝結核計數器的製作與測試★ 桃園地區硫沈降之觀測與模擬
★ 亞洲沙塵暴之模擬★ 不同空氣源次微米氣溶膠活化能力之探討
★ 桃園地區降水化學特性分析★ 鄰近國家嚴重核事故之大氣長程輸送對台灣的影響評估
★ 桃園地區降水化學與硫化物清除係數探討★ 亞洲沙塵好發期間雲水化學特性分析
★ 光達及太陽輻射儀之應用:2005中壢氣膠光學垂直特性及邊界層高度之變化★ 亞洲生質燃燒氣膠對區域大氣輻射之衝擊及對氣象場的反饋作用
★ 鹿林山與中壢氣膠光學垂直特性之監測與比較★ 北台灣冬季層狀雲化學特性分析
★ 鹿林山空氣品質背景監測站之背景值分析★ 微脈衝光達及太陽輻射儀之應用: 2005-2007年中壢地區氣膠光學垂直特性分析
★ 多重濾鏡旋轉輻射儀與太陽輻射儀之應用: 2006-2008年鹿林山氣膠光學特性之探討★ 不同地域雲凝結核微物理特性之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究旨在探討東亞地區硫沉降之時空分佈特性,吾人應用與修改HYSPLIT模式,以2001年為基準,模擬東亞地區SO2與SO42-之排放、擴散、傳送、轉換及沉降,以及境外污染排放對於台灣本島硫沉降量的貢獻程度。
結果顯示東亞地區 (95°E-145°E ,10°N-40°N) 硫溼沉降量佔總硫沉降量的58.2%,較硫乾沉降來得多。大陸性質的區域 (中國與南韓) 硫乾沉降量佔總沉降量的比例較硫溼沉降量大;島嶼性質的區域 (日本與台灣) 則相反。硫乾沉降量模擬結果的數值分布受排放位置的影響很大,高值的位置不會隨著季節交替而明顯變動。整體來看硫乾沉降量的趨勢與雨量趨勢明顯相反。硫溼沉降量模擬結果的數值分布受到降水與排放兩者同時影響,在數值上會因為季節改變而有明顯的消長。整體來看硫溼沉降量與雨量具明顯的正相關性。
HYSPLIT模擬值與觀測值比較的結果顯示,台灣北部地區模擬結果較為接近觀測值,於南部則在五月到九月期間有明顯的低估情況。硫溼沉降明顯的受到境外硫排放移入的影響,且所佔比例與季節變化之間有明顯的關連,而硫乾沉降則正好相反。此外在不同的氣候條件所造成的降水型態,境外移入比例也將呈現不同的特徵,基本上東北季風型降水所造成之境外移入比例最高,其次為秋冬鋒面型降水。
摘要(英) The purpose of this study is to investigate the emission, dispersion, transport and deposition of sulfur compounds in East Asia for the year of 2001 using the HYSPLIT (Hybrid Single-Practice Lagrangian Integrated Trajectory) model. The contribution of sulfur deposition via long range to Taiwan was also assessed. Model results show that wet deposition pathway contributed about 58.2% of the total sulfur deposition in East Asia (95°E-145°E, 10°N-40°N). Sulfur dry deposition is higher than wet deposition in East Asian continent, and vice versa for island areas. Model results indicate that sulfur dry deposition was significantly correlated with source region. The location of maximum dry deposition remained at the same area regardless of seasonal change. The trend of sulfur dry deposition was opposite to that of precipitation. Sulfur wet deposition was influenced by precipitation and emission and it had a positive correlation with the former. The comparison between the simulation and observation of sulfur deposition indicated that both were close for the northern Taiwan but the former was much lower than the latter for the southern Taiwan in the months of May-September. Sulfur wet deposition in Taiwan was strongly affected through the long-range transport, depending on various weather conditions. Under the type of northeast monsoon, the contribution via the long-range transport to wet deposition was the largest and followed by the type of fall/winter frontal precipitation.
論文目次 摘要………………………………………………………………… I
致謝………………………………………………………………… III
目錄………………………………………………………………… IV
表目錄……………………………………………………………… VI
圖目錄……………………………………………………………… IX
第一章 前言……………………………………………………… 1
1.1 研究動機……………………………………………………… 1
1.2 研究目的……………………………………………………… 2
第二章 文獻回顧………………………………………………… 3
2.1 大氣污染物之排放…………………………………………… 3
2.1.1 排放資料庫的建立…………………………………… 4
2.1.2 各排放資料的比較…………………………………… 4
2.2 硫沉降之模擬………………………………………………… 7
2.2.1 前人研究……………………………………………… 7
2.2.2 硫沉降之模式種類…………………………………………10
2.2.3 酸沉降之模式機制…………………………………………12
第三章 研究方法…………………………………………………14
3.1 HYSPLIT模式………………………………………………… 14
3.1.1 模式之簡介………………………………………………14
3.1.2 模式之傳送機制………………………………………15
3.1.3 模式之擴散機制………………………………………16
3.1.4 模式之氣體濃度計算…………………………………19
3.1.5 模式之沉降機制………………………………………21
3.1.6 模式之參數設定………………………………………25
3.1.7 模式模擬流程…………………………………………26
3.2 資料處理……………………………………………………26
3.2.1 氣象場資料…………………………………………………26
3.2.2 排放源資料…………………………………………………27
3.3 TAQM模式………………………………………………………27
第四章 結果與討論………………………………………………28
4.1 硫沉降之模擬結果……………………………………………28
4.1.1 乾沉降………………………………………………………28
4.1.2 溼沉降………………………………………………………30
4.2 境外移入對台灣沉降之貢獻……………………………32
4.3 模擬結果與觀測值比較…………………………………33
4.4 個案之模擬……………………………………………………35
4.4.1 秋冬鋒面型降水…………………………………………35
4.4.2 春季鋒面型降水…………………………………………37
4.4.3 東北季風型降水…………………………………………39
4.4.4 夏季午後對流性降水……………………………………40
4.5 與前人研究比較………………………………………………42
4.5.1不同降水型態之硫沉降量比較………………………… 42
4.5.2不同降水型態之境外移入比例比較……………………… 46
第五章 結論與展望………………………………………………47
5.1 結論……………………………………………………………47
5.2 展望……………………………………………………………49
參考文獻……………………………………………………………50
參考文獻 王聖翔,2001:桃園地區硫沈降之觀測與模擬,國立中央大學,大氣物理研究所碩士論文,中壢。
呂世宗、林能暉及吳義林,2004:大氣污染物長程傳輸衝擊評估及酸雨監測分析,行政院環境保護署。
呂世宗、林能暉、李崇德及林登秋,2005:酸雨監測分析及酸沉降調查評估,行政院環境保護署。
吳承翰,2002:亞洲沙塵暴之模擬,國立中央大學,大氣物理研究所碩士論文,中壢。
林能暉及嚴明鉦,1999:東亞污染物長程傳輸對污染減量改善的影響-東亞硫化物在不同天氣系統下對台灣之長程傳輸,行政院環境保護署。
林能暉、劉振榮、李崇德及嚴明鉦,2000:東亞地區空氣污染物跨國長程輸送對台灣地區之影響研究計畫,行政院環境保護署。
林能暉、張木彬及丁望賢,2002:桃園縣酸雨分布及強度研究-長期趨勢分析與酸沉降對境內水域影響之先期調查,桃園縣環境保護局。
陳進煌,1995:氣流軌跡模式在大氣污染物長程輸送上之運用,國立中央大學,大氣物理研究所碩士論文,中壢。
陳雄文、陳雄文、王正雄、鄭資英、簡宗昌、許元正、米文慧、胡雅容、李平泉、郭季華、徐美榕、董子棟及楊禮源,2002:台灣地區酸沉降物質現況調查,行政院環境保護署。
劉遵賢、黃賀春、張艮輝、張時禹及鄭福田,2002:台灣空氣品質模式(TAQM)操作使用手冊。
鄭福田及張時禹,1993:台灣空氣品質模式(TAQM)之建立與應用,行政院環境保護署。
Akimoto, H., Narita, H., 1994: Distribution of SO2, NOx and CO2 emissions from fuel combustion and industrial activities in Asia with 1o × 1o degree resolution. Atmospheric Environment,18, 213-225.
Arndt, R. L. and G. R. Carmichael, 1997: Sulfur dioxide emissions and sectorial contributions to sulfur deposition Asia. Atmospheric Environment, 31, 1553-1572.
Arndt, R. L., G. R. Carmichael and J. M. Roorda, 1998: Seasonal source-receptor relationships in Asia. Atmospheric Environment, 32, 1397-1406.
Benkovitz, CM, T. Scholtz, L. Pacyna, L. Tarrson, J. Dignon, E. Voldner, PA Spiro, and TE Graedel, 1996: Global gridded inventories of anthropogenic emissions of sulphur and nitrogen. J. Geophys. Res., 101, 29239-29253.
Carmichael, G. R., G. Calori, H. Hayami, I. Uno, S.-Y. Cho, M. Engardt, S.-B. Kim, Y. Ichikawa, Y. Ikeda, J.-H. Woo, H. Ueda and M. Amann, 2002: The MICS-Asia study: model intercomparison of long-range transport and sulfur deposition in East Asia. Atmospheric Environment,36, 175-199.
Chang, J. S., R. A. Brost, I. S. A. Isaksen, S. Madronich P. Middleton, W. R. Stockwell, and C. J. Walcek, 1987: A three-dimension Eulerian acid deposition model: Physical concepts and formulation, J. Geophys. Res., 92, 14681-14700.
Chang, J.S., 1990. Appendix E, NAPAP Report 4, The regional acid deposition model and engineering model. In Acid Deposition: State of Science and Technology, Vol I, Emissions, Atmospheric Processes, and Deposition, U.S. Government Printing Office, Washington D.C., 20402-9325.
Chang, J. S., S. Jin, Y. Li, M. Beauharnois, C.-H. Lu, H.-C. Huang, S. Tanrikulu and J. DaMassa, 1997: The SARMAP Air Quality Model: Final Report, 61 pp.
Chang, K.-H., F.-T. Jeng, Y.-L. Tsai and P.-L. Lin, 2000: Modeling of long-range transport on Taiwan’s acid deposition under different weather conditions. Atmospheric Environment, 34, 3281-3295.
Draxler, R.R., 1996: Trajectory optimization for balloon flight planning. Weather and Forecasting, 11, 111-114.
Draxler, R.R. and G.D. Hess, 1998, An Overview of the Hysplit_4 Modeling System for Trajectories, Dispersion, and Deposition, Aust. Met. Mag., 47, 295-308.
Dudhia, J., D. Gill, K. Manning, W. Wang, C. Bruyere, S. Kelly and K. Lackey, 2005, PSU/NCAR Mesoscale Modeling System Tutorial Class Notes and User’s Guide: MM5 Modeling System Version 3. National Center for Atmospheric Research.
Foell, W. and C. Green, 1991. Acid rain in Asia: an economic, energy and emission overview. Proceedings of the Second Annual Workshop on Acid Rain in Asia, 19-22 November 1990. Asian Institute of Technology, Bangkok.
Hicks, B. B., 1986: Differences in wet and dry particle deposition parameters between North America and Europe. In Aerosols: Research, Risk Assessment, and Control Strategies, Lewis Publishers, Chelsea, MI, 973-982.
Ichikawa, Y., H. Hayami and S.-I. Fujita, 1998: A long-range transport model for East Asia to estimate sulfur deposition in Japan. J. Appl. Meteorol., 37, 1364-1374.
Kasibhatla, P., A. Arellano, J. A. Logan, P. I. Palmer, and P. Novelli (2002), Top-down estimate of a large source of atmospheric carbon monoxide associated with fuel combustion in Asia, Geophys. Res. Lett., 29(19), 1900, doi:10.1029/2002GL015581.
Kim, J., B. Han and S.-Y. Cho, 2003: A numerical simulation of annual acid deposition amount in Korea. Atmospheric Environment, 37, 1703-1713.
Kreyszig, E., 1968: Advanced Engineering Mathematics. 2nd Ed., J. Wiley and Sons, New York, 898 pp.
Legg, B. J., and M. Raupach, 1982: Markov chain simulation of particle dispersion in inhomogeneous flows: the mean drift velocity induced by a gradient in Eulerian velocity variance. Boundary- Layer Meteorol., 24, 3-13.
Olivier, J. G. J., A. F. Bouwman, K. W. van der Hoek, and J. J. M. Berdowski, 1999: Global air emission inventories for anthropogenic sources of NOX, NH3 and N2O in 1990, Environ. Poll., 102, 135-148.
Park, S.-U. and E.-H. Lee, 2003: Long-range transport contribution to dry deposition of acid pollutants in South Korea. Atmospheric Environment, 37,3967-3980.
Petterssen, S., 1940: Weather Analysis and Forecasting. McGraw-Hill Book Company, New York, 221-223.
Seinfeld, J. H., and S. N. Pandis, 1997: Atmospheric chemistry and physics: From air pollution to climate change. Chapter 23, Wiley-Interscience Publication, New York, 1195-1201.
Simpson D., Fagerli H., Jonson J. E., Tsyro S., Wind P. and J.-P. Tuovinen, 2003: Transboundary acidification, eutrophication and ground level ozone in Europe. Status Report 1/2003. Part I: Unified EMEP Model Description. Norewgian Meteorological Institute, Oslo, Norway.
Streets, D. G., G.R. Carmichael, and R. L. Arndt, 1997: Sulfur dioxide emissions and sulfur deposition form international shipping in Asian waters. Atmos. Environ., 31, 1573-1582.
Streets, D. G., K.F. Yarber, J.-H. Woo, and G.R. Carmichael, 2003: Biomass burning in Asia: annual and seasonal estimates and atmospheric emissions, Global Biogeochemical Cycles, In-review.
Streets, D. G., T.C. Bond, G.R. Carmichael, S.D. Fernandes, Q. Fu, D. He, Z. Klimont, S.M. Nelson, N.Y. Tsai, M.Q. Wang, J.-H. Woo, and K.F. Yarber, 2003: An inventory of gaseous and primary aerosol emissions in Asia in the year 2000, J. Geophys. Res., In press.
Tan, Q., W. L. Chameides, D. Streets, T. Wang, J. Xu, M. Bergin, and J. Woo, 2004: An evaluation of TRACE-P emission inventories from China using a regional model and chemical measurements. J. Geophys. Res., 109, D22305, doi:10.1029/2004JD005071.
Van der Hoven, I., 1968: Deposition of particles and gases. In Meteorology and Atomic Energy. D. Slade (Ed.), TID-24190, NTIS, Springfield, VA, 445 pp.
Walmsley, J. L., and M.L. Wesely, 1996: Modification of coded parameterizations of surface resistances to gaseous dry deposition. Atmos. Environ., 30, 1181-1188.
Wesely, M.L., 1989: Parameterizations of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmos. Environ., 23, 1293-1304.
Xu, Y. and G. R. Carmichael, 1998: Modeling the dry deposition velocity of sulfur dioxide and sulfate in Aisa. J. Appl. Meteorol., 37, 1084-1099.
Xu, Y. and G. R. Carmichael, 1999: An assessment of sulfur deposition pathways in Asia. Atmospheric Environment,33, 3473-3486.
Zhang, M., Y. Pu, R. Zhang and Z. Han, 2006: Simulation of sulfur transport and transformation in East Asia with a comprehensive chemical transport model. Environmental Modelling and Software, 21, 812-820.
指導教授 林能暉(Neng-Huei Lin) 審核日期 2006-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明