博碩士論文 93623004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:18.216.233.58
姓名 方慈瑋(Tzu-Wei Fang)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 低緯度電離層現象之模擬
(Model Simulation of the Low-latitude Ionosphere)
相關論文
★ 台灣地區1996年散塊E層之變化★ 2000年4月6日磁暴研究
★ 利用GPS觀測與IRI 模擬研究1997及2000年台灣經度赤道異常峰之變化★ 台灣地區1996及2000年電離層散狀F層與全球定位系統相位擾亂之比較
★ 電離層地震前兆之研究★ 電離層波動垂直能量傳播之研究
★ 南美洲磁赤道地區散狀F層於太陽活動極大期之研究★ 台灣地區中界層於第22-23太陽週期間之特性研究
★ 利用全球定位系統觀測電離層地震前兆★ 臺灣地區電離層季節異常與太陽活動之相關性研究
★ 台灣地區地震與閃電之研究★ 台灣地區地震前之電離層電子濃度異常
★ 磁暴時低緯度電離層變化★ 電離層赤道異常與赤道電噴流
★ 日出前及日落後電離層高度變化之研究★ 電離層探測儀與全球定位系統聯合觀測電離層F層電漿密度不規則體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 地球高層大氣中之電離層和熱氣層,在不同物理和化學機制相互作用影響下,使得其中之電子濃度隨著經緯度、高度、時間、季節、太陽活動及地磁活動,而呈現相當複雜的變化。這些變化肇因於太陽輻射改變,電離層、熱氣層與中氣層和磁層耦合及反饋作用。在低緯度電離層,由於磁力線近乎水平的結構,配合中性風及電磁場,而產生許多獨特的現象。本論文探討低緯度電離層在寧靜時期白天及日落後與電動相關之重要現象,包括有:(1)日間赤道電噴流,(2)白天電離層電漿垂直漂移,(3)日落前反轉增強(pre-reversal enhancement)垂直漂移。二個數值模式,美國國家大氣研究中心 (NCAR) 之熱氣層-電離層-電動環流模式(Thermosphere-Ionosphere-Electrodynamics General Circulation Model, TIE-GCM)和全球電離層電漿模式(Global Ionosphere and Plasmasphere Model, GIP)被用來探究上述現象之物理過程。在第一章介紹基本的電離層和熱氣層理論及其交互作用,以及低緯度之相關現象。第二章描述數值模式NCAR TIE-GCM和GIP的理論結構及計算過程。
赤道電噴流 (equatorial electrojet, EEJ)發生於赤道地區距地球表面100-120公里處,白天強大的東向電流流經電離層E層時,會對地表感應產生強大的磁場擾亂。計算赤道及北緯6-9度地區地表磁場水平分量的相差值(△H),可推估赤道電噴流的強度。本論文之第三章利用TIE-GCM模擬秘魯(76°W)及菲律賓(121°E)地區△H之日變化、季節變化及太陽活動變化。模擬可重現△H和白天電漿垂直漂移之線性關係及雷達觀測之結果。這項研究的結果顯示,除了赤道電噴流會造成地表磁場擾動,中性風經由發電效應所產生的電流也會同時產生地磁的變動。因此,第四章進一步利用TIE-GCM研究在不同高度中性風影響下所造成的電離層電流變化,模擬春分時期及中度太陽活動下在秘魯地區地球磁場變化和電漿垂直漂移速度之線性關係,.模擬結果顯示低緯度地區的東西向中性風在不同高度的速度變化,足以改變南北緯6-9度地區的電流,而對地磁產生擾動,因此在利用地表磁場水平分量的相差值來推估電漿垂直漂移速度時,必須同時考慮赤道電噴流以及中性風發電效應對電離層造成的影響。
日落前反轉增強垂直漂移現象對夜晚電離層電子濃度及電離層探測儀觀測散狀F層 (equatorial spread F) 的產生具有相當大的影響,但至目前為止,此現象之詳細物理機制尚未有定論。由於TIE-GCM 能夠成功模擬此現象的發生產生,因此第五章利用TIE-GCM在中度太陽活動時期,監控在秘魯地區發生垂直漂移增強時電位、電場、導電率、電漿垂直漂移速度及中性風的變化,藉由上述各項電離層參數在不同經度上的變化以了解此現象產生時的空間結構,結果顯示電離層F層的中性風及日落後E層迅速減少導電率是產生此現象的主要原因,此外由中氣層向上傳遞的大氣潮汐也會對此現象有所影響。另外在此章節中更利用模式計算電流連續性,證實EEJ對日落前反轉增強垂直漂移現象之產生並無太大影響,利用數值模擬可以讓我們更有能力診斷此複雜電動力過程及驗證目前所提出之相關理論,以進一步了解夜晚低緯度電離層的變化。
第六章研究在固定當地時間下觀測電子濃度及電漿垂直向上漂移的四個極值,此模擬利用中華衛星一號(ROCSAT-1)觀測之電漿向上漂移速度配合GIP模式來模擬此四個極值的日變化及年變化,GIP模式成功地重現衛星在600公里之電子濃度觀測結果及其經度變化,四個極值的日變化和年變化模擬也與觀測之電漿垂直漂移及電子濃度呈現相同結果。最後在第七章中總結本論文。
摘要(英) The Earth’s upper atmosphere, comprised of the ionosphere and thermosphere, is where neutral and charged particles interact to cause complicated physical processes. It is partly because of the complexity that the region is still actively studied by scientists. The densities of charged particles show a significant variation with altitude, latitude, longitude, universal time, season, solar cycle, and magnetic activity. The variation results from changes in solar radiation and from the coupling and feedback mechanisms between the ionosphere-thermosphere system and the mesosphere and magnetosphere. In the low latitude ionosphere, the nearly horizontal geomagnetic field lines combine with the neutral wind and electric field to create some unique phenomena. This study focuses on the daytime and post-sunset low latitude ionosphere under geomagnetic quiet conditions. Several important phenomena associated with the electrodynamic processes are investigated which include (1) the daytime equatorial electrojet (EEJ); (2) the daytime ionospheric vertical drifts; and (3) the post-sunset pre-reversal enhancement (PRE) of the vertical drifts. Two different numerical models, the NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM) and the Global Ionosphere and Plasmasphere Model (GIP), are utilized to examine and understand the physical processes of these phenomena. In Chapter 1, fundamental theories of ionosphere and thermosphere, their interaction and associated phenomena in the low latitude region are introduced. Structures and electrodynamic calculations of the TIE-GCM and the GIP model are described in Chapter 2.
Between 100 and 120 km height at the Earth’’s magnetic equator, the equatorial electrojet flows as an enhanced eastward current in the daytime E region ionosphere which induces a magnetic perturbation on the ground that is considerably larger than the perturbations at neighboring latitudes. Calculating the difference between the horizontal components of the magnetic perturbation (H) at magnetometers near the equator and about 6-9 degrees away from the equator, △H, provides us with information about the strength of the EEJ. The TIE-GCM is capable of simulating the EEJ current and its magnetic perturbation on the ground. In Chapter 3, the simulated diurnal, seasonal, and solar activity variations of △H in the Peruvian (76°W) and Philippine (121°E) sectors, and the relation of △H to the ionospheric vertical drift velocity, are presented. Results show the diurnal, seasonal and solar activity variations are captured well by the model. Agreement between simulated and observed magnitudes of △H and its linear relationship to the vertical drift is improved by modifying the original daytime E region photoionization in the TIE-GCM in order to better simulate observed E region electron densities.
The model results suggest that besides the electric-field-driven EEJ, wind-driven currents can also be an important factor in changing the magnitude of △H. Therefore, we use the TIE-GCM to further examine the influence of the neutral wind. In Chapter 4, we run the model at the March equinox under moderate solar activity (F10.7 = 140 units) and modify the neutral wind and high latitude electrical potential to obtain the latitudinal distributions of H, diurnal variations of △H and daytime vertical drift in the Peruvian (75°W) longitude sector. The relationship between △H and vertical drift is also simulated and analyzed, which helps us to understand the importance of both the EEJ and the off-equatorial wind-driven currents in altering the relation. Simulations show that a height-varying wind velocity in the low latitude region is capable of modifying the ground magnetic perturbation a few degrees away from the equator, while affecting the equatorial perturbation only little. Only by combining the effects of both the EEJ and the off-equatorial wind-driven currents can the magnitude of △H and its relation with the vertical drift be accurately estimated.
The pre-reversal enhancement is one of the most important phenomena controlling the nighttime ionosphere and the generation of equatorial spread F (ESF), but its causal mechanism is still not fully understood. The TIE-GCM is capable of simulating ionospheric phenomena and the pre-reversal enhancement. In Chapter 5, the model is run under moderate solar activity (F10.7=150) and geomagnetic quiet conditions to monitor the variation of ionospheric parameters when the maximum upward drift of the PRE is occurring in the Peruvian longitude (75°W). Since it is a three-dimensional model, it provides us electric potential, electric field changes, conductivity variations, ion drifts, and neutral wind at the Peruvian longitude and also at longitudes to the east (post-PRE) and west (pre-PRE). From the results, the spatial variations of the ionosphere surrounding the PRE can be illustrated and effects due to various physical parameters are evaluated. Specifically, the effects of neutral winds and conductivities separately in the ionospheric E and F regions on the PRE are examined. Results show that the F region wind and sudden decrease of E region conductivities are essential for creating the PRE. The upward propagating thermospheric tides also participate in the formation of the PRE. Through calculating the current divergence, result demonstrates that the contribution of the EEJ to the F-region upward current and the vertical drift is negligible. With the TIE-GCM simulation, we are able to diagnose the complex electrodynamic process to examine the existing theories and to further understand the morphology of nighttime low-latitude ionosphere.
In Chapter 6, we investigate the annual and local time variations of the wave-4 structures in the plasma density and vertical drift in the low-latitude F region by analyzing the measurements from the first Republic of China SATellite (ROCSAT-1) and conducting simulations with the GIP model. In order to understand how the vertical drifts relate to the longitudinal structure of the topside ionosphere, we apply the equatorial vertical drifts observed from ROCSAT-1 to drive the GIP model. The model well reproduces the longitudinal structure in electron density, and the magnitudes of electron density are comparable with ROCSAT-1 measurement at 600 km. The annual and local time variations of the wave-4 component in the GIP model density also show good agreement with the vertical drift and plasma density observed by the ROCSAT-1. Finally, Chapter 7 summarizes the main conclusions of this work and identifies future research directions.
關鍵字(中) ★ 赤道電離層
★ 電離層模擬
關鍵字(英) ★ model simulation
★ equatorial ionosphere
論文目次 中文摘要....................................................................................................................................i
Abstract.....................................................................................................................................iii
Acknowledgement…………………………………………………………………………….vii
Table of Contents…………………………………………………………………………….viii
List of Figures………………………………………………………………………………….x
List of Tables…………………………………………………………………………………xiv
Chapter 1. Introduction...........................................................................................................1
1.1 Motivation and Objective.......................................................................................1
1.2 Thermosphere…………………………………………………………………….2
1.3 Ionosphere………………………………………………………………………..5
1.4 Low-latitude Ionosphere…………………………………………………….......11
1.4.1 The Equatorial Electrojet………………………………………………………..13
1.4.2 The Equatorial Vertical Drifts and Pre-reversal Enhancement………….………15
1.4.3 The Relationship between Equatorial Vertical Drifts and Equatorial Electrojet..17
Chapter 2. Theoretical Models: NCAR TIE-GCM and GIP Model……………………..20
2.1 NCAR TIE-GCM..................................................................................................20
2.1.1 Global-Scale Wave Model………………………………………….……….......22
2.1.2 Modified Apex Coordinates and Quasi-Dipole Coordinates……………………29
2.1.3 Electrodynamics (dynamo.F)………………………………….………...............31
2.1.4 Current Density Calculation (current.F)…………………………….………......37
2.2 Global Ionosphere and Plasmasphere Model………….…………………….......40
2.2.1 Model Description…………………….………………………………….….......40
2.2.2 Model Calculation……………………………………………………………….41
2.2.3 Simulation Results……………………………………...……………………….44
Chapter 3. Model Simulation of the Equatorial Electrojet in the Peruvian and
Philippine Sectors………………………………………………………………53
3.1 Introduction………………………………………………………………….......53
3.2 Model Simulation………………………………………………………………..54
3.3 Diurnal, Seasonal, Solar Activity Variation and Longitudinal Difference in △H
and Vertical Drifts……………………………………………………………….56
3.4 E Region Electron Density and Modification……………………………….......61
3.5 Relationships between the Adjusted △H and Vertical Drift Retrieved from the
TIE-GCM………………………………………………………………………..65
3.6 Conclusion………………………………………………………………………69
Chapter 4. Wind Dynamo Effects on Ground Magnetic Perturbations and Vertical
Drifts…………………………………………………………………………….71
4.1 Model Description and Simulations……………………………………………..72
4.2 Latitudinal Variation of Ground Magnetic Perturbation………………………...74
4.3 Ground Magnetic Perturbations and Vertical Drifts……………………………..79
4.4 Linear Relations between △H and Vertical Drifts...…………………………....81
4.5 Summary and Conclusion……………………………………………………….85
Chapter 5. The Post-sunset Ionosphere……………………………………………………87
5.1 The Pre-reversal Enhancement………………………………………………….87
5.2 Influences of E- and F-region Neutral Wind and Conductivities.………………92
5.3 Current Convergence during the Post-sunset Period……………………………99
5.4 Tidal Effects on the Pre-reversal Enhancement………………………………..102
5.5 Summaries……………………………………………………………………...109
Chapter 6. Causal Link of the Wave-4 Structures in Plasma Density and Vertical Plasma
Drift in the Low-latitude Ionosphere………………………………………...111
6.1 Introduction…………………………………………………………………….111
6.2 ROCSAT-1 Vertical Drift Model……………………………………………….113
6.3 Climatology of the GIP Model Ionosphere…………………………………….116
6.4 Annual and Local Time Variations of the Longitudinal Wave-4 Structure…….121
6.5 Conclusions…………………………………………………………………….128
Chapter 7. Conclusion……………………………………………………………………..129
References……………………………………………………………………………………133
參考文獻 Alken, P. and S. Maus, Spatio-temporal characterization of the equatorial electrojet from CHAMP, Orsted, and SAC-C satellite magnetic measurements. J. Geophys. Res., 112, A09305, doi:10.1029/2007JA012524, 2007.
Anandarao B. G., and R. Raghavarao, Structural changes in the currents and fields of the equatorial electrojet due to zonal and meridional winds, J. Geophys. Res., 92, 2514–2526, 1987.
Anderson, D. N., and J. A. Klobuchar, Modeling the total electron content observations above Ascension Island, J. Geophys. Res., 88, 8020, 1983.
Anderson, D. and T. Fuller-Rowell, The ionosphere, Space Environment Topics, NOAA: http://www.sel.noaa.gov/info/Iono.pdf, 1999.
Anderson, D., A. Anghel, K. Yumoto, M. Ishitsuka, and E. Kudeki, Estimating daytime vertical E×B drift velocities in the equatorial F-region using ground-based magnetometer observations. Geophys. Res. Lett., 29(12), 1596, doi: 10.1029/2001GL014562, 2002.
Anderson, D., A. Anghel, J. L. Chau, and O. Veliz, Daytime vertical E×B drift velocities inferred from ground-based magnetometer observations at low latitudes, Space Weather, 2, S11001, doi:10.1029/2004SW000095, 2004.
Anderson, D., A. Anghel, J. L. Chau, and K. Yumoto, Global, low-latitude, vertical E×B drift velocities inferred from daytime magnetometer observations, Space Weather, 4, S08003, doi:10.1029/2005SW000193, 2006.
Bailey, G. J. and R. Sellek, A mathematical model of the Earth's plasmasphere and its application in a study of He+ at L = 3. Ann. Geophys. 8, 171-189, 1990
Bailey, G. J. and N. Balan, A low-latitude ionosphere-plasmasphere model, in STEP Handbook on Ionospheric Models, edited by R. W. Schunk, pp. 173–206, Utah State Univ., Logan, Utah, 1996.
Bartels, J. and H. F. Johnston, Geomagnetic tides in horizontal intensity at Huancayo – Part Ⅱ, J. Geophys. Res., 45, 485-512, 1940.
Bougher, S. W., and R. G. Roble, Thermospherpe, p. 819-825, in The Encyclopedia of Planetary Sciences, edited by J. H. Shirley and R. W. Fairbridge, Chapman and Hall, New York, 1997.
Cahill, J. R., Jr., Rocket and satellite studies of the geomagnetic field during the IQSY, in Annals, of the IQSY, 5, A. C. Stickland, Ed., P. 349, MIT Press, Cambridge, MA, 1969.
Cain, J. C. and R. E. Sweeney, The POGO data. J. Atmos. Terr. Phys., 35, 1231-1247, 1973.
Chandra H., H. S. S. S. Sinha, R. G. Rastogi, Equatorial electrojet studies from rocket and ground measurements. Earth Planets Space 52, 111-120, 2000.
Chapman, S., The Equatorial Electrojet as Detected from the Abnormal Electric Current Distribution above Huancayo, Peru and Elsewhere, Arch. Meteorol. Geophys. Bioklimatol. A 44, 368-390, 1951.
Chapman, S., Some phenomena of the upper atmosphere, Proc. Phys. Soc. Lodon B, 64, 833-834, 1951.
Chapman S. and R. S. Lindzen, Atmospheric Tides, Reidel Press, Dordrecht, Holland, 1970.
Crain, D.J., R. A. Heelis, G. J. Bailey, Effects of electrical coupling on equatorial ionospheric plasma motions—When is the F region a dominant driver in the low latitude dynamo? J. Geophys. Res., 98, 6033, 1993.
Dickinson R. E., E. C. Ridley and R. Roble, A three-dimensional, time-dependent general circulation model of the thermosphere, J. Geophys. Res., 86(A3), 1499-1512, 1981.
Dickinson, R. E., E. C. Ridley, and R. G. Roble, Thermospheric general circulation with coupled dynamics and composition. J. Atmos. Sci., 41, 205-219, 1984.
Doumouya, V., J. Vassal, Y. Cohen, Y., O. Fambitakoye, and M. Menvielle, Equatorial electrojet at African longitudes: first results from magnetic measurements, Ann. Geophys., 16, 658-676, 1998.
Doumouya, V., Y. Cohen, B. R. Arora, and K. Yumoto, Local time and longitude dependence of the equatorial electrojet magnetic effects. J. Atmos. Sol. Terr. Phys., 65, 1265-1282, 2003.
Doumouya, V., Cohen, Y., Improving and testing the empirical equatorial electrojet model with CHAMP satellite data. Annales Geophysicae 22, 3323-3333, 2004.
Doumbia, V., A. Maute, A. D. Richmond, Simulation of equatorial electrojet magnetic effects with the thermosphere-ionosphere-electrodynamics general circulation model, J. Geophys. Res.,112, A09309, doi:10.1029/2007JA012308, 2007.
Drob, D. P., J. T. Emmert, G. Crowley, J. M. Picone, G. G. Shepherd, W. Skinner, P. Hays, R. J. Niciejewski, M. Larsen, C. Y. She, J. W. Meriwether, G. Hernandez, M. J. Jarvis, D. P. Sipler, C. A. Tepley, M. S. O’Brien, J. R. Bowman, Q. Wu, Y. Murayama, S. Kawamura, I. M. Reid, and R. A. Vincent, An empirical model of the Earth’s horizontal wind fields: HWM07, J. Geophys. Res., 113, A12304, doi:10.1029/2008JA013668, 2008.
Dunford, E., The relationship between the ionospheric equatorial anomaly and the E region current system, J. Atmos. Terr. Phys., 29, 1489-1498, 1967.
Eccles, J. V., Modeling investigation of the evening pre-reversal enhancement of the zonal electric field in the equatorial ionosphere. J. Geophys. Res., 103, 26709, 1998.
Egedal, J., The magnetic diurnal variation of the horizontal force near the magnetic equator, Terr. Magn. Atmos. Electr., 52, 449 – 451, 1947.
Egedal, J., Daily variation of the horizontal magnetic force at the magnetic equator, Nature, 161, 443-444, 1948.
England, S. L., S. Maus, T. J. Immel, and S. B. Mende, Longitudinal variation of the E-region electric fields caused by atmospheric tides, Geophys. Res. Lett., 33, L21105, doi:10.1029/2006GL027465, 2006.
Fambitakoye, O., P. N. Mayaud, and A. D. Richmond, Equatorial electrojet and regular daily variations SR—III. Comparison of Observations with a Physical Model, J. Atmos. Terr. Phys., 38, 113–121, 1976.
Fang, T. W., A. D. Richmond, J. Y. Liu, A. Maute, C. H. Lin, C. H. Chen, and B. Harper, Model Simulation of the Equatorial Electrojet in the Peruvian and Philippine Sectors, J. Atmos. Sol. Terr. Phys., 70, 2203–2211, 2008a
Fang, T. W., A. D. Richmond, J. Y. Liu, and A. Maute, Wind Dynamo Effects on Ground Magnetic Perturbation and Vertical Drifts, J. Geophys. Res., 113, A11313, doi:10.1029/2008JA013513, 2008b.
Farley, D. T., E. Bonelli, B. G. Fejer, and M. F. Larsen, The prereversal enhancement of the zonal electric field in the equatorial ionosphere. J. Geophys. Res., 91, 13723, 1986.
Fejer, B. G., E. R. de Paula, S. A. Gonzalez, and R. F. Woodman, Average Vertical and Zonal F Region Plasma Drifts Over Jicamarca, J. Geophys. Res., 96(A8), 13,901–13,906, 1991.
Fejer, B. G., Low latitude electrodynamic plasma drifts: A review, J. Atmos. Terr. Phys., 53, 677, 1991.
Fejer, B. G., L. Scherliess, and E. R. de Paula, Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F, J. Geophys. Res., 104(A9), 19,859–19,869, 1999.
Fejer, B. G., J. W. Jensen, and S.-Y. Su, Quiet time equatorial F region vertical plasma drift model derived from ROCSAT-1 observations, J. Geophys. Res., 113, A05304, doi:10.1029/2007JA012801, 2008.
Fesen, C. G., R. E. Dickinson and R. G. Roble, Simulation of the thermospheric tides at equinox with the National Center for Atmospheric Research Thermospheric General Circulation Model, J. Geophys. Res., 91, 4471-4489, 1986.
Fesen, C. G., G. Crowley, R. G. Roble, A. D. Richmond, B. G. Fejer, Simulation of the pre-reversal enhancement in the low latitude vertical ion drifts. Geophys. Res. Lett., 27(13), 1851-1854, 2000.
Forbes, J. M., The equatorial electrojet, Rev. Geophys. Space. Phys., 19(3), 469-504, 1981.
Forbes, J. M., X. Zhang, E. R. Talaat, and W. Ward, Nonmigrating diurnal tides in the thermosphere, J. Geophys. Res., 108(A1), 1033, doi:10.1029/2002JA009262, 2003.
Forbes, J. M., J. Russell, S. Miyahara, X. Zhang, S. Palo, M. Mlynczak, C. J. Mertens, and M. E. Hagan, Troposphere-thermosphere tidal coupling as measured by the SABER instrument on TIMED during July–September 2002, J. Geophys. Res., 111, A10S06, doi:10.1029/2005JA011492, 2006.
Forbes, J. M., X. Zhang, S. Palo, J. Russell, C. J. Mertens, and M. Mlynczak, Tidal variability in the ionospheric dynamo region, J. Geophys. Res., 113, A02310, doi:10.1029/2007JA012737, 2008.
Fuller -Rowell, T. J., D. Rees, S. Quegan, R. J. Moffett, and G. J. Bailey, Interactions Between Neutral Thermospheric Composition and the Polar Ionosphere Using a Coupled Ionosphere-Thermosphere Model, J. Geophys. Res., 92(A7), 7744–7748, 1987.
Fuller-Rowell, T. J., R. A. Akmaev, F. Wu, A. Anghel, N. Maruyama, D. N. Anderson, M. V. Codrescu, M. Iredell, S. Moorthi, H.-M. Juang, Y.-T. Hou, and G. Millward, Impact of terrestrial weather on the upper atmosphere, Geophys. Res. Lett., 35, L09808, doi:10.1029/2007GL032911, 2008.
Gagnepain, J., M. Crochet, and A. D. Richmond, Comparison of equatorial electrojet models, J. Atmos. Terr. Phys., 39, 1119-1124, 1977.
Gentile, L. C., W. J. Burke, and F. J. Rich, A global climatology for equatorial plasma bubbles in the topside ionosphere, Ann. Geophys., 24, 163-172, 2006.
Gouin, P. and P. N. Mayaud, A propos de l’existens poss0069ble. d’un contrelectrojet aux latitudes magnetiques equatoriales, Ann. Geophys., 23, 41-47, 1967.
Groves, G.V., A global reference atmosphere from 18 to 80 km. AFGL report TR-85-0129, 1985.
Groves, G.V., Final scientific report. AFOSR Report 84-0045, 1987.
Gustafsson, G., N. E. Papitashvili, and V. O. Papitashvili, A revised corrected geomagnetic coordinate system for epochs 1985 and 1990, J. Atmos. Terr. Phys., 54, 1609-1631, 1992.
Haerendel, G., and J. V., Eccles, The role of the equatorial electrojet in the evening ionosphere. J. Geophys. Res., 97(A2), 1181-1192, 1992a.
Haerendel, G., J. V. Eccles and S. Cakir, Theory for Modeling the Equatorial Evening Ionosphere and the Origin of the Shear in the Horizontal Plasma-Flow, J. Geophys. Res., 97 (A2), 1209–1223, 1992b.
Hagan, M. E., M. D. Burrage, J. M. Forbes, J. Hackney, W. J. Randel, and X. Zhang, GSWM-98: Results for migrating solar tides, J. Geophys. Res., 104, 6813-6828, 1999.
Hagan, M. E. and J. M. Forbes, Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release, J. Geophys. Res., 107(D24), 4754, doi:10.1029/2001JD001236, 2002.
Hagan, M. E. and J. M. Forbes, Migrating and nonmigrating semidiurnal tides in the upper atmosphere excited by tropospheric latent heat release, J. Geophys. Res.,108(A2), 1062, doi:10.1029/2002JA009466, 2003.
Hagan, M. E., A. Maute, R. G. Roble, A. D. Richmond, T. J. Immel, and S. L. England, Connections between deep tropical clouds and the Earth's ionosphere, Geophys. Res. Lett., 34, L20109, doi:10.1029/2007GL030142, 2007.
Hakura, Y., Tables and maps of geomagnetic coordinates coorected by the higher order spherical harmonic terms, Rept. Ionos. Space Res. Japan, 19, 121-157 ,1965.
Harper, R. M., A Comparison of Ionospheric Currents, Magnetic Variations, and Electric Fields at Arecibo, J. Geophys. Res., 82(22), 3233–3242, 1977.
Hartman, W. A., and R. A. Heelis, Longitudinal variations in the equatorial vertical drift in the topside ionosphere, J. Geophys. Res., 112, A03305, doi:10.1029/2006JA011773, 2007.
Hedin, A. E., Extension of the MSIS Thermosphere Model into the Middle and Lower Atmosphere, J. Geophys. Res., 96(A2), 1159–1172, 1991.
Hedin, A. E., E. L. Fleming, A. H. Manson, F. J. Schmidlin, S. K. Avery, R. R. Clark, S. J. Franke, G. J. Fraser, T. Tsuda, F. Vial, and R. A. Vincent, Empirical wind model for the upper, middle and lower atmosphere, J. Atmos. Terr. Phys., 58, 1421-1447, 1996.
Heelis, R. A., P. C. Kendall, R. J. Moffett, D. W. Windle, and H. Rishbeth, Electrical coupling of the E- and F-regions and its effect on F-region drifts and winds. Planetary and Space Science 22, 743, 1974.
Heelis, R. A., Electrodynamics in the low and middle latitude ionosphere: a tutorial, J. Atmos. Sol. Terr. Phys., 66, 825-838, 2004.
Hines, C. O., I. Paghis, T. R. Hartz, and J. A. Fejer (Eds.), Physics of the Earth’s Upper Atmosphere, Prentice-Hall, Englewood Cliffs, N.J., 1965.
Huba, J. D., G. Joyce, and J. A. Fedder, Sami2 is another model of the ionosphere (SAMI2): A new low-latitude ionosphere model, J. Geophys. Res., 105, 23,035–23,053, 2000.
Hysell, D. L., J. L. Chau, C. G. Fesen, Effects of large horizontal winds on the equatorial electrojet. J. Geophys. Res., 107(A8), 1214, 2002.
Immel, T. J., E. Sagawa, S. L. England, S. B. Henderson, M. E. Hagan, S. B. Mende, H. U. Frey, C. M. Swenson, and L. J. Paxton, Control of equatorial ionospheric morphology by atmospheric tides, Geophys. Res. Lett., 33, L15108, doi:10.1029/2006GL026161, 2006.
Immel, T. J., S. B. Mende, M. E. Hagan, P. M. Kintner, and S. L. England, Evidnece of tropospheric effects on the ionosphere, EOS, Transactions American Geophysical Union, 90, No. 9, 69-70, 2009.
Ivers, D., R. J. Stening, J. Turner, D. Winch, Equatorial electrojet from Orsted scalar magnetic field observations, J. Geophys. Res., 108(A2), 1061, 2003.
Jadhav, G., M. Rajaram, and R. Rajaram, A detailed study of equatorial electrojet phenomenon using Orsted satellite observations, J. Geophys. Res., 107(A8), doi:10.1029/2001JA000183, 2002.
Jin, H., Y. Miyoshi, H. Fujiwara, and H. Shinagawa, Electrodynamics of the formation of ionospheric wave number 4 longitudinal structure, J. Geophys. Res., 113, A09307, doi:10.1029/2008JA013301, 2008.
Johnson R. M. and T. L. Killeen (Eds.), The Upper Mesosphere and Lower Thermosphere, Geophys. Monogr., Ser. No. 87, American Geophysical Union, Washington, D.C., 1995.
Kane, R. P., Relationship between H ranges at equatorial and middle latitudes, J. Atmos. Terr. Phys., 33, 319-327, 1971.
Kelley, M. C., The Earth’s Ionosphere, Plasma Physics and Electrodynamics, Academic Press, San Diego, 1989.
Kelley, M. C., J. J. Makela, B. M. Ledvina, and P. M. Kintner, Observations of equatorial spread-F from Haleakala, Hawaii, Geophys. Res. Lett., 29, 2003, doi:10.1029/2002GL015 509, 2002.
Kil, H., R. DeMajistre, L. J. Paxton, Y. Zhang, Nighttime F-region morphology in the low and middle latitudes seen from DMSP F15 and TIMED/GUVI, J. Atmos. Solar-Terr. Phys., 68, 1672-1681, 2006.
Kil, H., S.-J. Oh, M. C. Kelley, L. J. Paxton, S. L. England, E. Talaat, K.-W. Min, and S.-Y. Su, Longitudinal structure of the vertical E×B drift and ion density seen from ROCSAT-1, Geophys. Res. Lett., 34, L14110, doi:10.1029/ 2007GL030018, 2007.
Kil, H., E. R. Talaat, S.-J. Oh, L. J. Paxton, S. L. England, and S.-J. Su, Wave structures of the plasma density and vertical E × B drift in low-latitude F region, J. Geophys. Res., 113, A09312, doi:10.1029/2008JA013106, 2008.
Kil, H., L. J. Paxton, and S.-J. Oh, Global bubble distribution seen from ROCSAT-1 and its association with the evening pre-reversal enhancement, J. Geophys. Res., in press, 2009.
Kintner, P. M., H. Kil, , and Paula, E. D.: Fading time scales associated with GPS signals and potential consequences, Rad. Sci., 36, 731–743, 2001.
Klimenko, M. V., V. V. Klimenko, and V. V. Bryukhanov, Numerical modeling of the equatorial electrojet UT-variation on the basis of the model GSM TIP, Adv. Radio Sci., 5, 385-392, 2007.
Lin, C. H., W. Wang, M. E. Hagan, C. C. Hsiao, T. J. Immel, M. L. Hsu, J. Y. Liu, L. J. Paxton, T. W. Fang, and C. H. Liu, Plausible effect of atmospheric tides on the equatorial ionosphere observed by the FORMOSAT-3/COSMIC: Three-dimensional electron density structures, Geophys. Res. Lett., 34, L11112, doi:10.1029/2007GL029265, 2007a.
Lin, C. H., C. C. Hsiao, J. Y. Liu, and C. H. Liu, Longitudinal structure of the equatorial ionosphere: Time evolution of the four-peaked EIA structure, J. Geophys. Res., 112, A12305, doi:10.1029/ 2007JA012455, 2007b.
Lin, C. H., J. Y. Liu, T. W. Fang, P. Y. Chang, H. F. Tsai, C. H. Chen, and C. C. Hsiao, Motions of the equatorial ionization anomaly crests imaged by FORMOSAT-3/COSMIC, Geophys. Res. Lett., 34, L19101, doi:10.1029/2007GL030741, 2007c.
Liu, H., and S. Watanabe, Seasonal variation of the longitudinal structure of the equatorial ionosphere: Does it reflect tidal influences from below? J. Geophys. Res., 113, A08315, doi:10.1029/2008JA013027, 2008.
Luhr, H., S. Maus, and M. Rother, Noon-time equatorial electrojet: Its spatial features as determined by the CHAMP satellite. J. Geophys. Res., 109, A01306, doi:10.1029/2002JA009656, 2004.
Luhr, H., and S. Maus, Direct observation of the F region dynamo currents and the spatial structure of the EEJ by CHAMP, Geophys. Res. Lett., 33, L24102, doi:10.1029/2006GL028374, 2006.
Luhr, H., K. Hausler, and C. Stolle, Longitudinal variation of F region electron density and thermospheric zonal wind caused by atmospheric tides, Geophys. Res. Lett., 34, L16102, doi:10.1029/2007GL030639, 2007.
Luhr, H., M. Rother, K. Hausler, P. Alken, and S. Maus, Influence of nonmigrating tides on the longitudinal variation of the equatorial electrojet, J. Geophys. Res., 113, A08313, doi:10.1029/2008JA013064, 2008.
Manoj, C., H. Luhr, S. Maus, and N. Nagarajan, Evidence for short spatial correlation lengths of the noontime equatorial electrojet inferred from a comparison of satellite and ground magnetic data, J. Geophys. Res., 111, A11312, doi:10.1029/2006JA011855, 2006.
Matsushita, S., Intense Es ionization neqr the magnetic equator, J. Geomagn. Geoelectr., 3, 44-46, 1951.
Makela, J. J., B. M. Ledvina, M. C. Kelley, P. M. Kintner, Analysis of the seasonal variations of equatorial plasma bubble occurrence observed from Haleakala, Hawaii, Ann. Geophys., 22, 3109–3121, 2004.
Maus S., P. Alken, and H. Luhr, Electric fields and zonal winds in the equatorial ionosphere inferred from CHAMP satellite magnetic measurements, Geophys. Res. Lett., 34, L23102, doi:10.1029/2007GL030859, 2007.
Mayaud, P. N., Un nouveau systeme de coordonnees magnetiques pour l’ etude de la haute atmosphere: les coordonnees de l’anneau equatorial, Ann. Geophys., 278, 278-288, 1960.
Mendillo M., A. Nagy, J.H. Waite (Eds.), Atmospheres in the solar system: comparative aeronomy, American Geophysical Union, Washington, D.C., 2002.
Millward, G. H., R. J. Moffett, S. Quegan, and T. J. Fuller-Rowell, A coupled thermosphere ionosphere plasmasphere model (CTIP), in STEP Handbook on Ionospheric Models, edited by R. W. Schunk, pp. 239–279, Utah State Univ., Logan, Utah, 1996.
Millward, G. H., I. C. F. Muller-Wodarg, A. D. Aylward, T. J. Fuller- Rowell, A. D. Richmond, and R. J. Moffett, An investigation into the influence of tidal forcing on F-region equatorial vertical ion drift using a global ionosphere-thermosphere model with coupled electrodynamics, J. Geophys. Res., 106, 24,733-24,744, 2001.
Millward, G. H., A. D. Richmond, T. J. Fuller-Rowell and A. D. Aylward, Modeling the Effect of Changes in the Terrestrial Magnetic Field on the Climatology of the Mid- and Low-Latitude ionosphere, presentation, Eos Trans. AGU,88(52), Fall Meet. Suppl., Abstract SA21B-08, 2007.
Oberheide, J., Q. Wu, T. L. Killeen, M. E. Hagan, and R. G. Roble, Diurnal nonmigrating tides from TIMED Doppler Interferometer wind data: Monthly climatologies and seasonal variations, J. Geophys. Res., 111, A10S03, doi:10.1029/2005JA011491, 2006.
Oh, S.-J., H. Kil, W.-T. Kim, L. J. Paxton, and Y. H. Kim, The role of the vertical E × B drift for the formation of the longitudinal plasma density structure in the low-latitude F region, Ann. Geophys., 26, 2061–2067, 2008.
Onwumechili, C. A. and C. E. Agu, The relationship between the current and the width of the equatorial electrojet. J. Atmos. Sol.-Terr. Phys., 43, 573-578, 1981.
Onwumechili, C. A., A study of rocket measurements of ionospheric currents-I. General setting and night-time ionospheric currents, Geophys. J. International, 108, 647-659, 1992.
Onwumechili, C. A., The equatorial electrojet. Gordon and Breach Science Publishers, Amsterdam, 1997.
Otsuka, Y., K. Shiokawa and T. Ogawa, Equatorial Ionospheric Scintillations and Zonal Irregularity Drifts Observed with Closely-Spaced GPS Receivers in Indonesia. JMSJ, Vol. 84A, 343-351, 2006.
Picone, J. M., A. E. Hedin, D. P. Drob, and A. C. Aikin, NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107(A12), 1468, doi:10.1029/2002JA009430, 2002.
Raghavarao R., and B.G. Anandarao, Vertical winds: a plausible cause for the equatorial counter-electrojet, Geophys. Res. Lett., 7, 357–360, 1980.
Rama Rao, P. V. S., A. Das Gupta, J. A. Klobuchar, and R. G. Rastogi, Electrojet control over the equatorial anomaly in TEC and equivalent slab thickness, Proceedings of Symposium on Beacon Satellite Studies of the Earth's Environment, pp. 393-400, Radio Sci. Div., Natl. Phys. Lab., New Delhi, India, 1983.
Rastogi, R. G., Longitudinal variation in the equatorial electrojet, J. Atmos. Terr. Phys., 24, 1031-1040, 1962.
Rastogi, R. G., G.. Rajaram, Electrojet effects on the equatorial F region during magnetically quiet and disturbed days, Indian J. Rad. Space Phys., 9, 531-536, 1971
Rastogi, R. G., Westward equatorial electrojet during daytime hours, J. Geophys. Res., 79, 1503-1512, 1974.
Rastogi R. G., The equatorial electrojet: magnetic and ionospheric effects, Geomagnetism, vol. 3, J. Jacobs (Ed.), pp. 461–525, Academic Press Ltd., New York, 1989.
Rastogi, R. G., J. A. Klobuchar, Ionospheric electron content within the equatorial F2 layer anomaly belt. J. Geophys. Res., 95(A11), 19045-19052, 1990.
Rastogi, R. G., T. Kitamura, and K. Kitamura, Geomagnetic field variations at the equatorial electrojet station in Sri Lanka, Peredinia, Ann. Geophys., 22, 2729-2739, 2004.
Ratcliffe, J. A., An Introduction to the Ionosphere and Magnetosphere, Cambridge University Press, Cambridge, 1972.
Reddy C. A., The equatorial electrojet, Pure and Applied Geophysics, 131(3), 485-508, 1989.
Richards, P. C., J. A. Fennelly, and D. G. Torr, EUVAC: A solar EUV flux model for aeronomic calculations, J. Geophys. Res., 99, 8981-8992, 1994.
Richmond, A. D., Numerical Model of the Equatorial Electrojet, Tech. Rep. AFCRL-72-0668, ERP 421, Air Force Cambridge Res. Lab. Hanscom AFB, Bedford, Mass., 1972.
Richmond, A. D., Equatorial electrojet - I. Development of a model including winds and instabilities. J. Atmos. Terr. Phys., 35(6), 1083-1103, 1973.
Richmond, A. D., The computation of magnetic effects of field aligned magnetospheric currents, J. Atmos. Terr. Phys., 36(2), 245–252, 1974.
Richmond, A. D., M. Blanc, B. A. Emery, R. H. Wand , B. G. Fejer, R. F. Woodman, S. Ganguly, P. Amayenc, R. A. Behnke, C. Calderon, and J. V. Evans, An Empirical Model of Quiet-Day Ionospheric Electric Fields at Middle and Low Latitudes, J. Geophys. Res., 85 (A9), 4658-4664, 1980.
Richmond, A. D. and R.G. Roble, Electrodynamic effects of thermospheric winds from the NCAR thermospheric general circulation model. J. Geophys. Res., 92, pp. 12,365–12,376, 1987.
Richmond, A. D., E. C. Ridley, and R. G. Roble, A thermosphere/ionosphere general circulation model with coupled electrodynamics, Geophys. Res. Lett., 19(6), 601-604, 1992.
Richmond, A.D., Ionospheric Electrodynamics. In: Volland H. (Ed.), Handbook of Atmospheric Electrodynamics, Vol. II, pp. 249-290. CRC press, Boca Raton, Florida, 1995a.
Richmond, A. D., Ionospheric electrodynamics using magnetic apex coordinates, J. Geomag. Geoele., 47, 191– 212, 1995b.
Rishbeth, H. and O. K. Garriot, Introduction to Ionospheric Physics, Academic Press, New York and London, 1969.
Rishbeth, H., Polarization electric fields produced by winds in the equatorial F region. Planetary and Space Science 19, 357, 1971.
Roble, R. G., R.E. Dickinson, and E. C. Ridley, Global circulation and temperature structure of the thermosphere with high-latitude plasma convection, J. Geophys, Res., 87, 1599-1614, 1982.
Roble, R. G., and E. C. Ridley, An auroral model for the NCAR thermospheric general circulation model (TGCM), Annales Geophys., 5A, 369-382, 1987.
Roble, R. G., E. C. Ridley, A. D. Richmond, and R. E. Dickinson, A coupled thermosphere/ionosphere general circulation model, Geophys. Res. Lett., 15, 1325-1328, 1988.
Ronchi, C., P. L. Similon, and R. N. Sudan, A nonlocal linear theory of the gradient drift instability in the equatorial electrojet, J. Geophys. Res., 94, 1317-1326, 1989.
Rush, C. M. and D. Miller, Some aspects of day-to-day variability of the equatorial anomaly: American and Japanese sector, Radio Sci., 7, 1085, 1972.
Scherliess, L. and B. G. Fejer, Radar and satellite global equatorial F-region vertical drift model, J. Geophys. Res., 104(A4), 6829–6842, 1999.
Scherliess, L., D. C. Thompson, and R. W. Schunk, Longitudinal variability of low-latitude total electron content: Tidal influences, J. Geophys. Res., 113, A01311, doi:10.1029/ 2007JA012480, 2008.
Schunk R. W. and A. F. Nagy, Ionospheres: Physics, Plasma Physics, and Chemistry, Cambridge Univ. Press, Cambridge, 2000.
Shuman, B. M., Rocket measurement of the equatorial electrojet, J. Geophys. Res., 75, 3889, 1970.
Solomon, S. C., Numerical models of the E-region ionosphere, Adv. Space Res., 37, 1031-1037, 2006.
Stening, R. J., What drives the equatorial electrojet? J. Atmos. Terr. Phys., 57(10), 1117-1128, 1995.
Stolle, C., C. Manoj, H. Lu‥hr, S. Maus, and P. Alken, Estimating the daytime Equatorial Ionization Anomaly strength from electric field proxies, J. Geophys. Res., 113, A09310, doi:10.1029/2007JA012781, 2008.
Sugiura, M. and J. C. Cain, A model equatorial electrojet. J. Geophys. Res., 71(7), 1869–1877, 1966.
Tarpley, J. D., Seasonal movement of the Sq current foci and related effects in the equatorial electrojet. J. Atmos. Terr. Phys., 35, 1063-1071, 1973.
Torr, M. R. and D. G. Torr, The role of metastable species in the thermosphere, Rev. Geophys. Space Phys., 20 (1), 91-144, 1982.
Torr, M. R. and D. G. Torr, Ionization frequencies for solar cycle 21: revised, J. Geophys. Res. ,90, 6675-6678, 1985.
VanZandt, T. E., W. L. Clark, and J. M. Warnock, Magnetic Apex Coordinates: A magnetic coordinate system for the ionospheric F2 layer, J. Geophys. Res., 77, 2406-2411, 1972.
Wan, W., L. Liu, X. Pi, M.-L. Zhang, B. Ning, J. Xiong, and F. Ding, Wavenumber-4 patterns of the total electron content over the low latitude ionosphere, Geophys. Res. Lett., 35, L12104, doi:10.1029/2008GL033755, 2008.
Whitten, R. C. and I. G. Poppoff, Fundamentals of Aeronomy, John Wiley & Sons, Inc., New York, 1971.
Yabuzaki, T., and T. Ogawa, Rocket measurement of Sq ionospheric currents over Kagoshima, Japan, J. Geophys. Res., 79, 1974.
Yeh, H. C., S.-Y. Su, R. A. Heelis, and J. M. Wu, The ROCSAT-1 IPEI preliminary results: Vertical ion drift statistics, Terr. Atmos. Oceanic Sci., 10, 805–820, 1999.
指導教授 劉正彥
(Jann-Yenq Liu、Arthur D. Richmond)
審核日期 2009-6-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明