博碩士論文 93623018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:3 、訪客IP:34.204.191.31
姓名 吳孟宸(Mon-Chen Wu)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 典型相關分析應用於衛星遙測影像變遷偵測之研究
(Canonical Correlations Analysis Apply to Change Detection in Remote Sensing Image)
相關論文
★ 2.4GHz無線傳輸系統於遙測與GPS數據整合之研製★ 2.4GHz之無線電波室內傳播通道特性量測與分析
★ K波段地面鏈路降雨衰減效應之研究★ 多層非均勻介質之微波散射模擬分析
★ Ka 波段地面鏈路降雨效應與植被遮蔽 效應之研究★ 地面遙測影像雷達發射與接收模組之設計
★ 合成孔徑雷達之移動目標物速度估測研究★ 小波轉換於合成孔徑雷達干涉相位雜訊之研究
★ Ka波段台灣地區降雨及地面環境傳播特性研究★ 雨滴粒徑分佈應用於Ka波段降雨衰減估計之研究
★ 全偏極合成孔徑雷達非監督式目標分類與極化方位角偏移效應估算之研究★ 全偏極合成孔徑雷達於目標分類之研究
★ 影像融合技術應用於地表分類之探討★ 應用共軛梯度演算法在掃描式合成孔徑雷達目標物特徵增強處理
★ 台灣北部地區Ka波段降雨衰減模式之研究★ 雨滴粒徑與植被遮蔽效應對Ka波段電波衰減影響之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘 要
本研究中主要使用雷達影像來進行變遷偵測,利用合成孔徑雷達衛星的全天候不受天氣影響及多偏極的特性,在每個偏極方向都包含了資訊,為了將全部偏極的資訊結合起來,便將影像做主軸的轉換。傳統主軸轉換是使用差值影像的共變異矩陣所進行的主成分分析。本研究以典型相關分析(Canonical Correlations Analysis)為基礎,反演為多變數轉化偵測法(Multivariate Alteration Detection),而此方法的特色在於此轉換方法具有線性轉換的不變性,即使兩時期影像因時間的不同有不同的背景輻射強度,或因儀器本身的補償(offsets)與增益(gain)這些線性關係的影響,也不需要作絕對的校正前處理。再以轉換後影像,利用卡方統計檢定法,判斷變遷區域,使變遷偵測的結果能更加接近實際的變遷。
研究中利用多變數轉化偵測法(Multivariate Alteration Detection),來觀察以人為改變後期影像部分區塊後的模擬結果,最後再利用ENVISAT及STOP兩組衛星影像來做變遷測試,而測試結果可以利用典型變數來觀察與原始影像每個波段或每個偏極方向的關係。
摘要(英) Abstract
SAR image is becoming more important data source for change detection, because of its advantages of all-weather、day-and-night operations and providing multi-polarization information. To perform change detection, linear transformations of the image data is usually adopted, for example, most commonly, by principal component analysis. In this study, we used the multivariate alteration detection (MAD) to perform the transformation of the two image sets. One of advantages of the multivariate alteration detection (MAD) transformation is its the linear scale invariance. This means that it is not sensitive to the offsets or gain settings of a measuring device, or to radiometric and atmospheric correction schemes that show a linear relationship with brightness counts. The change, after MAD transformation, was carried out by Chi-Square test. To verify and validate the procedure, we first used simulation images at different time and artificially making land cover changes at different polarizations. Finally, the method was test on real images from SPOT and ENVISAT multi-polarization data. The relationship between each band or polarization was investigated from canonical variates. The detection accuracy was found to be satisfactory.
關鍵字(中) ★ 典型相關分析
★ 多變數轉化偵測法
★ 卡方檢定
關鍵字(英) ★ Chi-square Test
★ Canonical Correlations Analysis
★ Multivariate Alteration Detection
論文目次 摘 要 I
Abstract II
目錄 III
圖目錄 V
表目錄 IX
第1章 緒論 1
1.1 前言 1
1.2 文獻回顧 2
1.2.1 影像相減法 2
1.2.2 影像比例法 3
1.2.3 分類後比較法 4
1.2.4 主軸轉換分析法 5
1.3 研究目的及方法 7
第2章 變遷偵測方法 8
2.1 典型相關分析 9
2.2 多變數轉化偵測法 13
2.3 線性轉換不變性之證明 16
2.4 卡方檢定法 18
第3章 模擬影像測試 22
3.1 多變數轉化偵測法之抗雜訊檢定 22
3.1.1 衛星模擬影像資料 23
3.1.2 模擬影像之多變數轉化偵測法成果 38
3.1.3 模擬影像之變遷區域偵測成果 48
第4章 衛星影像測試 62
4.1 衛星測試影像資料 62
4.2 衛星測試影像之多變數轉化偵測法成果70
4.3 衛星測試影像之變遷區域偵測成果 76
4.4 多變數轉化偵測法之成分結構分析 80
第5章 結論與展望 84
5.1 結論 84
5.2 展望 85
參考文獻 86
參考文獻 [1] Cooley, W. W., and Lohnes, P. R.,“Multivariate Data Analysis,”Wiley, New York, 1971
[2] Anderson, T. W., “An Introduction to Multivariate Statistical Analysis, 2nd ed.,” Wiley, New York, 1984
[3] Nielsen, A. A., K. Conradsen and J. J. Simpson, “Multivariate Alteration Detection (MAD) and MAF Postprocessing in Multispectral, Bitemporal Image Data: New Approaches to Change
Detection Studies,” Remote Sens. Environ., vol. 64, pp. 1-19, 1998
[4] Nielsen, A. A. , “Multiset Canonical Correlations Analysis and Multispectral,Truly Multitemporal Remote Sensing Data,” IEEE Transactions on Image Processing, 11(3), 293-305, 2002
[5] Stauffer, M.L. and R.L. McKinney, “Landsat Image Differencing asAn Automated Land Cover Change Detection Technique,” Computer Sciences Corporation, Technical Memorandum CSC/TM-78/6215
Silver Spring, MD, 1978
[6] Singh, A., “Change Detection in the Tropical Forest Environmental ofNorthern India using Landsat,” Remote Sens. and Tropical Land
Management, M.J. Eden and J.T. Parry, Eds. John Wiley & Sons,London, pp.237-254, 1986
[7] Wilson, J. R., C. Blackman, and G. W. Spann, “Land use Change Detection using Ladsat Data,” Proceedings of the 5th AnnualRemote Sensing of Earth Resources Conference,University of Tennesses, Tullhama,TN, 1976, pp.79-91
[8] Rubec, C.D., and J. Thie., “Land use Monitoring with Landsat Digital Data in Southwestern Manitoba”, Proceedings of the fifth Canadian Symposium on Remote Sensing, Victoria, BC, pp. 136-150, 1987
[9] Byrne, G.F., P.F. Crapper, and K.K. Mayo, “Monitoring Land-cover Change by Principal Component Analysis of Multitemporal Landsat
Data,” Remote Sensing Environ., vol.10, pp. 175-184, 1980
[10] Fung, T. and LeDrew, E. “Application of principal components analysis to change detection, ” Photogramm. Eng. Remote Sens,. vol.
53, pp. 1649-1658, 1987
[11] Canty, M. J., A. A. Nielsen and M. Schmidt, “Automatic Radiometric Normalization of Multitemporal Satellite Imagery,” Remote Sens. Environ., vol. 91, pp. 441-451, 2004
[12] Lawrence L.Lapin“Probability and Statistics for Modern engineering, 2nded.,”Belmont, California, 1990
[13] Du, Qian, “Noise Estimation for Remote Sensing Image Data Analysis,” SPIE, Bellingham, WA., 2003
[14] Jong-Sen Lee, Senior Member, IEEE, Mitchell R .Grunes, and Stephen A.Mango ”Speckle Reduction in Multipolarization Multifrequency SAR Imagery" IEEE Transactions on Geoscience And Remote Sensing, vol. 29, no. 4, July 1991
[15] Tzeng, Y. C., K. S. Chen, W. L. Kao and A. K. Fung, “A Dynamic Learning Neural Network for Remote Sensing Applications,”IEEE Trans. Geosci. Remote Sensing, vol. 32, no. 5, Sept. 1994
[16] Y. C. Tzeng, K. S. Chen, ”A Fuzzy neural network to SAR Image Classification” IEEE Transactions on Geoscience And Remote Sensing, vol. 36, no. 1, January 1998
[17] A. A. Nielsen, “Analysis of regularly and irregularly sampled spatial, multivariate and multi-temporal data,” Ph.D. dissertation, Dept. Inform. Math. Modeling, Tech. Univ. Denmark, Lyngby, Denmark, http://www.imn.dtu.dk/~aa/phd/, 1994.
[18] J. S. Lee, K. W. Hoppel, and S. A. Mango, “Intensity and Phase Statistics of Multilook Polarimetric and Interferometric SAR Imagery”,IEEE Trans. on Geoscience and Remote Sensing, vol.32, no.5, pp.1017-1028, September, 1998
[19] Cloude S.R., Pottier E.,“Polarimetric SAR Interferomerty”, IEEE Trans. on Geoscience and Remote Sensing, vol. 36, no.5, pp.68-78, Jan. 1997
[20] 洪志賢, “多變數轉化偵測法(MAD)應用於多光譜影像變遷偵測之研究”, 國立中央大學太空科學研究所碩士論文, 2005
指導教授 陳錕山(Kun-Shan Chen) 審核日期 2006-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明