博碩士論文 93624014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:35.171.45.182
姓名 高克剛(Ke-kong Kao)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 斷層對抽水試驗洩降反應之影響
(Effect of Fault on Drawdown Behavior During a Pumping Test)
相關論文
★ 單井垂直循環流場追蹤劑試驗數學模式發展★ 漸近型式尺度延散度之一維移流-延散方程式之Laplace轉換級數解
★ 延散效應對水岩交互作用反應波前的影響★ 異向垂直循環流場溶質傳輸分析
★ 溶解反應對碳酸岩孔隙率與水力傳導係數之影響★ 濁水溪沖積扇地下水硝酸鹽氮污染潛勢評估與預測模式建立
★ 異向含水層部分貫穿井溶質傳輸分析★ 溶解與沈澱反應對碳酸鈣礦石填充床孔隙率與水力傳導係數變化之影響
★ 有限長度圓形土柱實驗二維溶質傳輸之解析解★ 第三類注入邊界條件二維圓柱座標移流-延散方程式解析解發展
★ 側向延散對雙井循環流場追蹤劑試驗溶質傳輸的影響★ 關渡平原地下水流動模擬
★ 應用類神經網路模式推估二維徑向收斂流場追蹤劑試驗縱向及側向延散度★ 關渡濕地沉積物中砷之地化循環與分布
★ 結合水質變異與水流模擬模式評估屏東平原地下水適合飲用之區域★ 推估土壤傳輸參數現地試驗方法改進與數學模式發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 斷層可能是有助於地下水流動的高滲透性通道,或是阻礙地下水流動的低滲透性障壁,因此斷層的水力特性影響地下水的流動,所以研究斷層的水力特徵分析非常重要。前人發展二維解析解,推求在鄰近斷層區進行抽水試驗時,抽水洩降反應的變化,藉此反推斷層的流通係數,假設斷層寬可忽略,且斷層的補注率,與水頭差成正比。本研究中以三維的MODFLOW模擬含水層-斷層-含水層系統的抽水洩降變化,對照MODFLOW與簡化解析解,兩者推估的抽水洩降,比較驗證忽略斷層寬的適當性。結果顯示斷層寬會影響斷層的補注量,所以忽略斷層寬後,簡化解析解有高估或低估斷層流通係數的風險。
摘要(英) Fault can function as high-permeability pathways that enhance groundwater flow or as low-permeability barriers that impede groundwater flow and as a consequence may exert a strong influnce on hydroulic head distributions in faulted aquifers. Therefore, it is important to hydrogeologically characterize such fault in many practices. To provide the hydrogeological characterization, conduction of a pumping test in the neighborhood of fault zone is proposed to determine the fault zone transmissivity by previous researchers based on the analysis of drawdown behavior using a simplified analytical solution. The simplified analytical solution assumed the fault zone width is neglected and the recharge rate from the fault to the aquifer is assumed to be proportional to the head difference. In this study, a three-dimensional MODFLOW is used for the simulation of the drawdown evolution during a pumpin test behavior in an aquifer-fault-aquifer system. The drawdown evolutions obtained from the MODFLOW are compared to those from the analytical solution to test the validity of simplification. Results show that the simplified analytical solution may overestimates or underestimate the
fault zone transmissivity.
關鍵字(中) ★ 水文地質參數
★ 洩降
★ 抽水試驗
★ 斷層
關鍵字(英) ★ Hydrogeological para
★ Drawdown
★ Fault
★ Pumping test
論文目次 目錄........................................................i
圖目錄....................................................iii
表目錄.....................................................vi
符號說明..................................................vii
第一章 緒論................................................1
1.1 前言...................................................1
1.2 文獻回顧...............................................3
1.3 目的...................................................7
第二章 研究方法............................................8
2.1 泰斯解(Theis solution)概述.............................8
2.2 Shan et al. (1995)之解析解概述........................10
2.3 MODFLOW 2000介紹.....................................14
第三章 概念模型建立.......................................16
3.1 假設條件..............................................20
3.2 邊界條件..............................................20
3.3 參數設定..............................................20
第四章 模擬結果與討論.....................................24
4.1 斷層不貫穿含水層時,斷層寬對抽水洩降的影響比較........24
4.2 參數推估..............................................28
4.3 斷層貫穿含水層時,斷層寬對抽水洩降的影響比較..........32
4.4 斷層貫穿含水層與否對抽水洩降的影響....................36
4.4.1 斷層水力傳導係數大於含水層水力傳導係數..............37
4.4.2 斷層水力傳導係數等於含水層水力傳導係數..............42
4.4.3 斷層水力傳導係數小於含水層水力傳導係數..............44
第五章 結論與建議.........................................48
參考文獻...................................................50
參考文獻 Allen, D.M. and F.A. Michel, 1998, Evaluation of multi-well test data in a faulted aquifer using linear and radial flow models. Ground Water, 36(6), P. 938-948.
Anderson, E. I., 2006, Analytical solutions for flow to a well through a fault. Advances in Water Resources, 42(12), P.1790-1803.
Aydin, A. 2000, Fractures, fault, and hydrocarbon entrapment, migration and flow. Marine and Petroleum Geology, 17, P.797-814.
Bense, V. F., E. H. Van den Berg, R. T. Van Balen, 2003a, Deformation mechanisms and hydraulic properties of fault zones in unconsolidated sediments; the Roer Valley Rift System, The Netherlands. Hydrogeology Journal, 11, P.319-332.
Bense, V. F., R. T. Van Balen and J. J. De Vries, 2003b, The impact of faults on the hydrogeological conditions in the Roer Valley Rift System: an overview. Netherlands Journal of Geosciences/Geologie en Mijnbouw, 82(1), P.41-54.
Bense, V. F. and R. V. Balen. 2004. The effect of fault relay and clay smearing on groundwater flow patterns in the Rhine Embayment. Basin Research, Vol.16, P.397-411.
Billi, A., F. Salvini, F. Storti, 2003, The damage zone-fault core transition in carbonate rocks: implications for fault growth, structure and permeability. Journal of Structure Geology, 25, P.1779-1794.
Bredehoeft, J. D., 1997. Fault permeability near Yucca Mountain. Water Resources Research, 33(11), P.2459-2463.
Caine, J. S., J. P. Evans, C. B. Forster, 1996, Fault zone architecture and permeability structure. Geology, 24(11), P.1025-1028.
Evans, J. P., C. B. Forster, J. V. Goddard, 1997, Permeability of fault-related rocks, and implications for hydraulic structure of fault zones. Journal of Structure Geology, 19(11), P.1393-1404.
Ganser, D. R., 1987, Hydrogeological characteristic of the Ramapo Fault northern New Jersey. Ground Water, 25(6), 664-671.
Haneberg, W. C., 1995, Steady state groundwater flow across idealized faults. Water Resources Research, 31(7), P.1815-1820.
Seaton, W. J. and T. J. Burbey, 2005, Influence of ancient thrust faults on the hydrogeology of the blue Ridge province. Ground Water, 43(3), P.301-313.
Shan, C., I. Javandel, P. A. Witherspoon, 1995. Characterization of leaky faults: Study of water flow in aquifer-fault-aquifer systerms. Water Resources Research, 31(12), P.2897-2904.
Theis, C. V., 1935, The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage, AGU Trans., P.519-524.
Titus, F. B. Jr., 1963, Geology and ground-water condition in eastern Valencia County, New Mexico. N. M. Bur. Miner. Resour. Ground Water REP., 7, P.113.
Tsutsumi, A., S. Nishino, K. Mizoguchi, T. Hirose, S. Uehara, K. Sato, W. Tanikawa, T. Shimamoto, 2004, Principal fault zone width and permeability of the active Neodani fault, Nobi fault system, Southwest Japan. Tectonphysics, 379, P.93-108.
Witherspoon, P. A., I. Javandel, S. P. Neuman, and R. A.Freeze, 1967 Interpretation of aquifer gas storage conditions from water pumping test. Am. Gas Assoc., New York.
指導教授 陳瑞昇(Jui-sheng Chen) 審核日期 2007-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明