博碩士論文 93625001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.119.107.96
姓名 鄧亦程(Yi-Cheng Teng)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 翡翠水庫之水文特性及水理水質之模式研究
(Hydrological characteristics of the Feitsui Reservoir in Northern Taiwan and numerical modeling of hydrodynamics and water quality)
相關論文
★ 翡翠水庫及其集水區之氫氧碳同位素 水文學研究★ 淡水河口環流與淡水舌之研究
★ 南灣內夏季1-4週溫降與回升現象原因之探討★ 烏坵海域夏季海流垂直結構受潮汐及風場影響之研究
★ 以三維數值模式模擬淡水河河口及感潮段鹽度與懸浮沉積物★ 淡水河重金屬傳輸模式之發展
★ 淡水河流域鹼度、酸鹼值與主要離子 之時空變化★ 水體中顆粒與沈積物之有機碳、氮及其穩定同位素研究:南海及翠峰湖
★ 淡水河口水舌擺盪動力機制之研究★ 翡翠水庫之沉降顆粒及沉積物中 多環芳香族碳氫化合物(PAHs)之研究
★ 呂宋海峽內潮及其強化生地化通量之數值研究★ 南海時間序列測站(SEATS)碳循環之探討:一維物理-生地化耦合模式之應用
★ 淡水河口之顆粒性有機碳、氮同位素及溶解性無機氮同位素之研究★ 利用SPOT衛星影像探討蘭陽溪口淡水舌之時空變化
★ 潮汐作用對東海生地化循環及初級生產力之影響★ 淡水河流域溶解性有機碳通量之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
翡翠水庫為供應大台北地區公共用水,其水質之好壞對民生用水影響甚大。根據翡翠水庫管理局所公佈之水庫水質卡爾森優養指標綜合評估,水質逐由「普養化」趨向「優養化」的現象,顯示水庫水質的變化值得關注。因此本研究最主要之目的是希望透過對水庫水質的密集監控,了解現地水質在時間及空間上的變化,並藉由實測資料取得現地的參數值,以提供本研究所發展的三維水理水質模式之用,並利用模式探討水庫特別之水理、水質現象,期能作為改善水庫水質之參考。
由歷史資料及本研究現地採樣結果得知,水庫水溫垂直剖面在夏季有非常明顯分層現象,上下水溫最大溫差可達15 ℃左右;而在冬季時,水溫之垂直分佈趨向均勻;而沿縱軸方向之等溫線有震盪情形,經由數值實驗結果顯示其可能是因表面風應力造成之內波現象。在強風(10 m/s)吹拂24小時後在水下30 m之內有明顯之內波現象,其振幅會受風應力之減弱及水深增加而變小,在微風(1 m/s)吹拂下則對水體幾乎沒有影響。而在水溫之時空分佈上,颱風時期和冬季水庫中上游的底層皆有冷水團之存在,其是由於颱風及冬季時期上游及支流注入庫區的水溫較平時低,在進入庫區後因其密度較重而沉入底部;而由數值實驗結果也顯示主流及支流進來的冷水會潛行至庫區底部並向下游推進,但無法在一個月的時間內潛行至大壩最底層並替換原來之底層水;而大壩出水口的放水,會加速水庫水體流動而有助於大壩底層水之替換。
在溶氧的時空分佈上,大致上是水下20m以上有較高溶氧之存在,中層溶氧降低,底層則呈現缺氧現象。而在3月時整個水庫水體之溶氧呈現非常均勻的分布,推測水庫水體當時乃處於翻轉後之垂直混合狀態。本研究利用簡單之收支方程式探討溶氧之輸入、輸出、產生及消耗。在研究期間平均入流所帶給水庫的溶氧增加為95.3 mg/m3/d,被排水所帶走的則為93.1 mg/m3/d,水體內產生之溶氧平均速率為16.2 mg/m3/d,水體內之消耗平均速率為14.5 mg/m3/d,底部耗氧相當於水體內之消耗平均速率為7.1 mg/m3/d。在水面之交換造成之淨輸出相當於消耗率為1.1 mg/m3/d。
藉由收支平衡估算所得之參數值可供水質模式之用。本研究所發展之水質模式在帶入這些由收支平衡所估算之參數值後其模擬結果與實測結果還算吻合,表示水質模式於翡翠水庫應當有其適用性。
摘要(英) Abstract
The Feitsui Reservoir was built as a primary source for water supply to the Taipei metropolitan area. Therefore, its water quality is a very important hydrological issue. According to the Carlson trophic state index (CTSI) reported by the Taipei Feitsui Reservoir Administration, the water quality has changed gradually from oligo-/meso-trophic condition to meso-/eu-trophic condition in the last ten years. Such a change deserves attention. Because of the increasing threat of eutrophication, we decided to develop a coupled hydrodynamic-water quality model to study the processes governing the motion and quality of water in the reservoir. We hope that our study may lead to the generation of useful information for the management of the Feitsui Reservoir in the future. Prior to the development of the model, we need to compile hydrographic and chemical data from historical records and to conduct field work in order to obtain basic information on the hydrological characteristics of the reservoir.
The historical records and our field data have demonstrated that the water column is strongly stratified is summer, with the maximum difference of water temperature reaching 15 ℃, and well mixed in winter. Vertical fluctuations of the isotherms are discernible in the upper layer along the main axis in the reservoir. Our numerical experiments show that the fluctuations could have been internal waves resulting from wind forcing. A strong wind with velocity of 10 m/s along the long axis of the reservoir may induce wave motion in the top 30 m within 24 hours. The amplitude of the wave decreases with increasing water depth., Weaker winds with 1/10 the velocity can hardly disturb the water column.
It was observed that colder water existed along the bottom of the upper and the middle reaches of the reservoir after the typhoons and also in the early winter. Numerical experiments have demonstrated that the cold water intrusion can proceed along the bottom of the reservoir starting from the upper reach, but the cold water cannot reach the deepest part of the reservoir within a month, if no water discharge is allowed. By contrast, the bottom water renewal by cold water intrusion is much enhanced, if the water discharge is turned on at the dam.
The space-time distribution of dissolved oxygen (DO) reveals the following pattern. The DO concentration is high in the top 20 m and drops in the middle water column. Significant oxygen deficiency occurs in the bottom layer. The distribution of DO in the reservoir in March is very uniform, indicating strong vertical mixing due to water column overturning in late winter. Using mass balance equations, we are able to evaluate the oxygen inflow, outflow, consumption and production rates. During the study period, the average inflow rate of DO is 95.3 mg/m3/d; the average outflow rate of DO is 93.1 mg/m3/d; the average oxygen production rate in the water column is 16.2 mg/m3/d; the average oxygen consumption rate in the water column is 14.5 mg/m3/d; the average oxygen consumption at the bottom is equivalent to a consumption rate in the water column of 7.1 mg/m3/d; the average oxygen exchange between the surface water and the atmosphere is nearly balanced with a small deficit equivalent to a consumption rate in the water column of 1.1 mg/m3/d.
The parameters evaluated by the mass balance equations prove useful for application to the water quality model. It has been demonstrated that the model developed in this study can simulate important features of oxygen distribution, which is one of the most important water quality indices, in the Feitsui reservoir.
關鍵字(中) ★ 水質
★ 翡翠水庫
★ 三維數值模式
★ 冷水入侵
★ 溶氧消耗
★ 水文特性
★ 水理
關鍵字(英) ★ hydrodynamics
★ three dimensional numerical model
★ oxygen consumption
★ cold water intrusion
★ hydrography
★ Feitsui Reservoir
★ water quality
論文目次 目錄
摘要 I
目錄 V
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.2.1 翡翠水庫歷年之相關調查研究 3
1.2.2 水理、水質模式歷年研究、發展 4
1.3 研究目的與策略 8
第二章 研究區域水文觀測及方法 10
2.1 研究區域 10
2.2 水文觀測 12
2.2.1 水文調查方式 12
2.3 觀測方法 12
2.3.1 觀測儀器及設備 12
2.3.2 觀測及採樣步驟 13
2.4 資料處理 15
2.4.1 水文參數資料之擷取與處理 15
2.4.2 溶氧資料之校正 15
2.4.3 葉綠素資料之擷取與處理 17
第三章 翡翠水庫水文特性 20
3.1 歷史資料之整理 20
3.1.1 翡管處之水文觀測 20
3.1.2 歷史資料之分析 22
3.2 水文觀測結果 23
3.2.1 雨量、流量及氣溫之變化 23
3.2.2 水文特質之時間序列 24
3.2.2.1 溫度之時間序列 24
3.2.2.2 溶氧之時間序列 25
3.2.2.3 濁度之時間序列 26
3.2.2.4 葉綠素之時間序列 26
3.2.3 水文特質之空間變化 27
3.2.3.1 溫度之空間分佈 27
3.2.3.2 溶氧之空間分佈 28
3.2.3.3 濁度之空間分佈 29
3.2.3.4 葉綠素之空間分佈 29
3.3 資料分析 30
3.3.1 水庫水量之變化 30
3.3.2 水庫溶氧儲量之變化 31
3.3.2.1 溶氧飽和度 31
3.3.2.2 水庫溶氧之估算 32
3.3.2.3 觀測溶氧與網格之對照 33
3.3.2.4 水庫分層溶氧量之計算 33
3.4 討論 34
3.4.1 冷水入侵 34
3.4.2 溶氧生成及消耗率之分析 35
3.5 小結 40
第四章 數值模式 43
4.1 基本控制方程式 44
4.2 紊流閉合模式 47
4.3 座標轉換 48
4.4 邊界條件 50
4.5 網格配置 51
4.6 穩定條件 52
4.7 水質模式之建立 53
4.8 模式計算流程 54
4.9 水庫模式之建立 55
4.9.1 水庫模式地形之建立 55
4.9.2 河川流量分析 55
4.9.3 氣象資料分析 56
4.9.4 水平邊界設定方式及模式輸入條件 56
第五章 數值實驗及討論 58
5.1 數值實驗之設計 58
5.2 水理部分模擬結果 58
5.2.1 風應力的效應 — 實驗A 58
5.2.1.1 實驗A-1–強風應力 59
5.2.1.2 實驗A-2–微風應力 60
5.2.2 冷水入侵的效應 — 實驗B 61
5.2.2.1 實驗B-1–冷水入侵(大壩出水口無放水) 62
5.2.2.2 實驗B-2 –冷水入侵(大壩出水口有放水) 62
5.3 水質部分模擬結果 64
5.3.1 水庫底部耗氧 — 實驗C 65
5.3.1.1 實驗C 水庫底部耗氧 65
5.3.2 實驗D 加入溶氧產生率及水體耗氧率 66
第六章 結論與建議 69
6.1 結論 69
6.2 建議 71
中文參考文獻 73
英文參考文獻 76
附錄A 疊氮修正希巴辣光度測氧法 139
附錄B 水庫分層溶氧量之計算 144
附錄C 包氏近似(BOUSSINESQ APPROXIMATION) 149
附錄D 控制方程式座標轉換推導 151
附錄E 水質模式參數敏感度分析 156
附錄F 數值實驗— 水庫水體翻轉 165
參考文獻 中文參考文獻
白書禎,2000,翡翠水庫水質垂直結構季節性變化與監測,翡翠水庫管理局委託,台大海研所執行。
余岱璟,2002,石門水庫水質模擬與水理探討,中央大學土木工程學研究所碩士論文。
李光敦,2002,水文學,五南圖書編印。
沈世傑、曾晴賢,1994,外來種魚類對於翡翠水庫生態與水質關係之研究,翡翠水庫管理局委託,中華民國自然生態保育協會執行。
吳仁友,1997,「擬似三維海岸水動力計算模式之發展」,國立台灣大學土木工程研究所碩士論文。
吳先琪、陳怡靜、王上銘,2002,翡翠水庫底泥性質及對水質影響潛勢研究計畫(II),台北翡翠水庫管理局委託,台灣大學環境工程學研究所執行。
吳俊宗、高麗珠,2002,翡翠水庫藻類與水質關係之長期監測(II),中央研究院,研究報告。
吳建鈜,1987,德基水庫二維水理與水質之模擬,台灣大學土木工程學研究所碩士論文。
林政偉,1999,「感潮河段之計算研究」,國立台灣大學土木工程研究所碩士論文。
姚俊豪,2004,翡翠水庫藻類之模擬,台灣大學土木工程學研究所碩士論文。
海研一、二、三號SBE9 CTD 資料處理步驟,2001,國家海洋科學研究中心。
張清源,1990,翡翠水庫之優養化探討,台北水庫管理局。
章瑜蓓,2004,二維水質模式之參數校正分析,中央大學水文科學研究所碩士論文。
郭振泰、龍悟生、楊州斌、羅浩文,1998~2000,翡翠水庫水質模擬與應用,台北翡翠水庫管理局委託,台灣大學土木工程學研究所執行。
郭振泰、楊德良、何政儒,1984、1985、1987,德基水庫水質模擬與應用(一) 、(二) 、 (三),水資會委託,台灣大學土木工程學研究所執行。
陳太山,2001,曾文水庫二維水質模擬與風險分析,台灣大學土木工程學研究所碩士論文。
陳鎮東,1994,海洋化學,國立編譯館編印,頁229~233。
黃良雄、吳仁友、曾鈞敏 ,2001,「感潮河口之水理計算─以鹽水溪為例」,中國土木水利工程學刊,第十三卷,第三期,pp.533-541。
莊進源、森若美代子、郭崇義、林惠芳,1985,翡翠水庫初期蓄水有關浮游生物消長與水質變化研究報告,行政院衛生署環境保護局,BEP 74-06-002。
莊進源、蔡惠澤、森若美代子、齊家,1987a,翡翠水庫指標生物與水質調查報告(74年),行政院衛生署環境保護局,BEP 74-06-004。
莊進源、蔡惠澤、森若美代子、齊家,1987b,翡翠水庫指標生物與水質調查報告(75年),行政院衛生署環境保護局,BEP 74-06-007。
莊竣皓,2006,淡水河流域鹼度與pH值之時空變化-桃園大圳與翡翠水庫,中央大學水文科學研究所碩士論文。
翡翠水庫操作年報,1988-2003,台北翡翠水庫管理局。
翡翠水庫運轉資料,2004-2005。
翡翠水庫管理局網站 http://www.feitsui.gov.tw/。
詹森、陳慶生、王冑,1992,淺海地區垂直擴散受密度分層影響之初步探討,中華民國第14屆海洋工程研討會論文集,pp.194-203。
詹森、邱朝聰、連棨慧,1999,TSNOW 現場觀測資料報告,台灣海峽海況及時預報模式第二年— 潮汐、潮流數值模擬結果之驗證,台灣海峽海況即時預報模式計畫(TSNOW)研討會論文集。pp. 22-33。
趙美英,2001,德基水庫二維水質模擬與風險分析,台灣大學土木工程學研究所碩士論文。
羅浩文,1998,翡翠水庫二維水質模擬與風險分析,台灣大學土木工程學研究所碩士論文。
英文參考文獻
Blumberg, A. F. and G. L. Mellor, 1983, “Diagnostic and prognostic numerical circulation studies of the South Atlantic Bight.” J. Geophys. Res., 88, pp. 4579-4592.
Blumberg, A. F. and G. L. Mellor, 1987, “A description of a three-dimensional coastal ocean circulation model.” in Three-Dimensional Coastal Ocean Models, American Geophysical Union, Washington, D.C., Vol. 4, edited by N.Heaps, pp. 208.
Bowden, K. F. and P. Hamilton, 1975, “Some experiments with a numerical model of circulation and mixing in a tidal estuary.” Estuarine and Coastal Marine Science, 3(3), pp. 281-301.
Chao, S. Y., 1998, “Hyperpycnal and buoyant plumes from a sediment-laden river” J. Geophys. Res., 103, No. C2, pp. 3067-3081.
Chen, Y. J., Wu, S. C., Lee, B. S. and Hung, C. C., 2001, “Storm induced turbidity currents in the reservoir: Impact on the water quality, mitigation strategy and dispersion coefficient evaluation.” Taipei Feitsui Reservoir Administration Report.
David M. Farmer,1978,”Observations of long nonlinear internal waves in a lake.”, American Meteorological Soceity, Vol. 8, pp. 63–73.
Edinger, J. E. and E. M. Buchak, 1982, “User guide for LARM2, U. S. Army Corps of Engineer Waterways Experiment Station,” Hydraulies Laboratory, Instruction Report E-82-83.
Ezer, T. and Mellor G. L., 1997, “Simulations of the Atlantic Ocean with a free surface sigma coordinate ocean model.” J. Geophys. Res., 102, pp.15647–15657.
Ezer, T., 1999, “Decadal variabilities of the upper layers of the subtropical North Atlantic: An ocean model study.” J. Phys. Oceanogr., 29(12), pp.3111-3124.
Ezer, T. and. Mellor G. L, 2000, “Sensitivity studies with the North Atlantic sigma coordinate Princeton Ocean Model.” Dynamics of Atmospheres and Oceans, 32, pp.155–208.
Ezer, T. and Mellor G. L., 2004, “A generalized coordinate ocean model and a comparison of the bottom boundary layer dynamics in terrain-following and in z-level grids.” Ocean Modeling, Vol. 6, pp. 379–403.
Lardner, W. and Cekirge, H. M., 1988, “A new algorithm for three- dimensional tidal and storm surge computation” Appl. Math. Modelling, Vol. 12, pp. 471-481.
Leendertse, J. J., 1967, “Aspects of a computational model for long-period-water-wave propagation.” RM-5294-PR, Rand Corp. Santa Monica, California.
Kuo, J. T., Liu, W. C., Lin, R. T., Lung, W. S., Yang, M. D., Yang, C. P., and Chu, S. C., 2003, “Water quality modeling for the Feitsui reservoir in northern Taiwan.” JAWRA, Vol. 39, No 3, pp. 671-687.
Martin, J. L., 1988, “Application of Two-Dimensional Water Quality Model,” Journal of Environmental Engineering, ASCE, Vol. 114, No 2, pp. 317-336.
Mellor, G. L., and T. Yamada (1982), “Development of a turbulence closure model for geophysical fluid problems” Rev. Geophys. Space Phys., 20, pp. 851-875.
Mellor, G. L., S. Hakkinen, T. Ezer and R. Patchen, 2002, “A generalization of a sigma coordinate ocean model and an intercomparison of model vertical grids.” In Pinardl, N., Wood, J.D.(Eds), Ocean Forecastings: Conceptual Basis and Applications, Springer, Berlin, pp 55-72.
Mellor, G. L. 2004, “User guide for a three-dimensional, primitive
equation, numerical ocean model”,
Http://www.aos.princeton.edu/WWWPUBLIC/htdocs.pom/
Nihoul, J. C. J., 1977, “Three-dimensional model of tides and storm surges in a shallow well-mixed continental sea.” Dyn. Atmos. Oceans, 2, pp. 29-47.
Oey, L.-Y., G. L. Mellor, and R.I. Hires, 1985a, “A three-dimensional simulation of the Hudson-Raritan estuary” Part I: Description of the model and model simulations, J. Phys. Oceanogr., 15, pp. 1676-1692.
Oey, L.-Y., G. L. Mellor, and R.I. Hires, 1985b, “A three-dimensional simulation of the Hudson-Raritan estuary” Part II: Comparison with observation, J. Phys. Oceanogr., 15, pp. 1693-1709.
Oey, L.-Y., G. L. Mellor, and R.I. Hires, 1985c, “A three-dimensional simulation of the Hudson-Raritan estuary” Part III: Salt flux analyses, J. Phys. Oceanogr., 15, pp.1711-1720.
Orlanski, I., 1976, “A simple boundary condition for unbounded hyperbolic flows.” J. Comput. Phys., 21, 251-269.
Pace, M. L., Knauer. G. A., Karl, D. M. and Martin, J. H., 1987, “Primary production and vertical flux in the eastern Pacific Ocean.” Nature, Vol. 325(26), pp. 803-804.
Park, K. and A. Y. Kuo, 1992, “A vertical two dimensional model of estuarine hydrodynamics and water quality” Special report in applied marine.
Phillips, N. A., 1957, “A coordinate system having some special advantages for numerical forecasting” J. Meteorol., 14, pp. 184-185.
Smagorinsky, J., S. Manabe, and J.L., Holloway, 1965, “Numerical results from a nine-level general circulation model of the atmosphere” Mon. Weather Rev., 93, pp. 727-768.
Steeter, H.W. and E.B. Phelps, 1925, “A Study of Pollution and Nature Purification of Ohio river,” U.S. Pub. Health Serice, Pub. Health Bull, No. 146.
Steel, J. H., 1965, Primary Production in Aquatic Environments, “Notes on Some Theoretical Problem in Production Ecology,” C. R. Goldmen (ed.), Mem. Inst. Idrobiol., Univ. of California Press. Berkeley, California, pp. 383-398, 18 Suppl.
Stelling, G. S., A. K. Wiersma and J,B.T.M. Willemse, 1986, “Practical aspects of accurate tidal computations” J. of Hydr. Eng., ASCE, No. 9, pp 802-817.
指導教授 詹森、劉康克
(Sen Jan、Kon-kee Liu)
審核日期 2006-7-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明