博碩士論文 93625006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.92.28.52
姓名 蔣忠廷(Chung-Ting Chiang)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 台灣地區降水型態分類之研究:層狀降水與對流降水型態
(A Study of Precipitation-Regime Separation in Taiwan—Convective and Stratiform Components)
相關論文
★ 地形降水對於環境條件與地形特性之敏感度測試:2維理想地形模擬研究★ 桃園大圳灌區降雨量之研究分析
★ 颱風事件下之集水區逕流模擬★ 地形降水對於環境條件與地形特性之敏感度測試:3維理想地形模擬研究
★ 2005年台灣地區季節性降雨之特徵及颱風事件之逕流模擬★ MM5模式模擬之納莉颱風(2001)登陸時風場結構變化
★ 雷達推估降雨於石門水庫霞雲集水區之流量模擬研究★ 納莉颱風(2001)之水收支分析
★ WRF模式Double-moment雲微物理參數化法對於SoWMEX IOP-4個案降水模擬之敏感度研究★ 懸浮微粒數量濃度對梅雨鋒面降水影響之敏感度研究
★ 台灣地區極端降雨颱風之環境特徵合成分析★ 納莉颱風(2001)之位渦收支分析
★ 西南氣流實驗(IOP-8 個案)觀測分析與數值模擬:雲微物理結構特徵及參數法方案比較★ 西北太平洋熱帶氣旋生成之多尺度分析
★ 颮線與山脈地形的交互作用:理想模擬研究★ 雲凝結核濃度對於納莉(2001)颱風於海洋環境之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 降水依據時空分布特性的不同,可分為層狀降水與對流降水兩種型態。層狀降水所涵蓋的水平範圍較大、持續時間長、垂直對流運動較不活躍;而對流降水水平範圍較小、持續時間短、垂直對流運動旺盛。從雷達回波的水平剖面圖來看,對流降水區域是呈小區塊狀不規則地散佈在層狀降水區域內,回波強度明顯比周圍高;而層狀降水區域則是環繞在對流降水區域外圍,範圍明顯比對流降水區域還大許多。
本研究依照Steiner et al. (1995)、Yang and Houze (1995) 以及Tremblay (2005) 三種降水型態分類方法分析台灣地區的降水資料,測試各方法應用於台灣地區的可行性。研究中選取2004年春雨、梅雨、颱風、西南氣流、夏季雷雨及東北季風降雨共六種代表不同天氣型態的降水個案,並且以不同的降雨量內插方法測試其空間敏感度,發現Steiner et al. (1995)、Yang and Houze (1995) 兩種降水分類方法的結果相當一致。在各降水個案中,春雨的對流降水最高體積比例約8%~27%,梅雨約48%~70%,颱風約74%~85%,西南氣流約82%~92%,夏季雷雨約72%~94%,東北季風降雨約24%~75%。而根據Yang et al. (2007) 納莉颱風數值模擬研究中地形敏感度實驗降水資料的分析,結果更顯示了台灣地區複雜的地形對於對流降水與層狀降水兩種降水型態的分佈有很大的影響。
摘要(英) We can partition precipitation into stratiform and convective components by their spatial and temporal characteristics. General speaking, the significant features of stratiform precipitation include larger rainfall area, longer period, and vigorous vertical convection. On the contrary, the characteristics of convective precipitation are smaller rainfall area, shorter period, and weakly vertical convection. The convective regions of precipitation locally scatter inside the stratiform regions, and the radar echo of convective precipitation is evidently stronger than the background echo. The stratiform regions of precipitation distribute around the convective regions, and the area of stratiform region is generally bigger than convective regions.
The purpose of this study is to analyze the precipitation data in Taiwan by the precipitation separation scheme of Steiner et al. (1995), Yang and Houze (1995), and Tremblay (2005). Six precipitation events in 2004—spring rainfall, Mei-Yu front, Typhoon Mindulle, the southwesterly flow triggered by Typhoon Mindulle, summer thunderstorm, and autumn cold front—were selected. We found that the convective precipitation percentage of the six rainfall events determined by the method of Steiner et al.(1995) is similar to that by the method of Yang and Houze(1995). The highest convective precipitation volume percentage is about 8%~27% in spring rainfall, 48%~70% in Mei-Yu front, 74%~85% in Typhoon Mindulle, 82%~92% in the southwesterly flow triggered by Typhoon Mindulle, 72%~94% in summer thunderstorm, and 24%~75% in autumn cold front. Analyzing the simulated surface rainfall of terrain-sensitivity experiments of Typhoon Nari(2001) by Yang et al.(2007), we conclude that the distribution of convective and stratiform precipitation is strongly affected by Taiwan terrain.
關鍵字(中) ★ 層狀降水
★ 對流降水
★ 雷達回波
關鍵字(英) ★ radar echo
★ stratiform precipitation
★ convective precipitation
論文目次 摘要..................................................... I
Abstract .............................................. III
致謝..................................................... V
目錄.................................................... VI
圖表目錄............................................... VII
第一章 緒論.............................................. 1
1.1 前言................................................. 1
1.2 文獻回顧............................................. 2
1.3 研究目的............................................. 5
第二章 資料來源及研究方法................................ 6
2.1 資料來源............................................. 6
2.1.1 中央氣象局自動雨量站資料........................... 6
2.1.2 MM5 模式資料....................................... 6
2.2 資料處理方法......................................... 7
2.2.1 CWB 測站資料之處理................................. 8
2.2.2 MM5 模式資料之處理................................. 9
2.3 研究中所使用的各種降水分類方法...................... 10
2.3.1 Yang 法........................................... 10
2.3.2 Steiner 法........................................ 11
2.3.3 Tremblay 法....................................... 12
第三章 降水個案分析與空間敏感度測試..................... 14
3.1 研究中所選取的六種不同天氣系統之降水個案............ 14
3.2 各降水個案之空間敏感度測試.......................... 14
3.2.1 內插權重比例...................................... 15
3.2.2 內插影響半徑大小.................................. 16
3.2.3 網格尺寸大小...................................... 17
3.3 Tremblay 法分析結果................................. 17
第四章 地形敏感度測試與長期分析......................... 19
4.1 對流降水在不同海拔高度之下之分布情形................ 19
4.2 納莉颱風模擬地形敏感度實驗的結果分析................ 20
4.3 降水型態分類之長期分析.............................. 21
第五章 結論與討論....................................... 23
參考文獻................................................ 25
附錄1 .................................................. 75
附錄2 .................................................. 76
參考文獻 黃小玲,2006:納莉(2001)颱風之數值模擬研究,中國文化大學地學研究所博士論文。
Churchill, D. D., and R. A. Houze, 1984: Development and structure of winter monsoon cloud clusters on 10 December 1978. Journal of the Atmospheric Sciences. 41, 933-960.
Collier, C. G., S. Lovejoy, and G. L. Austin, 1980: Analysis of bright bands from 3-D radar data. Preprints, 19th Conf. on Radar Meteorology, Miami Beach, FL, Amer. Meteor. Soc., 44-47.
Cressman, G. P., 1959: An operational objective analysis system. Mon. Wea. Rev, 87, 367-374.
Houze, R. A., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bulletin of the American Meteorological Society. 78, 2179-2196.
Rosenfeld, D., E. Amitai, and D. B. Wolff, 1995: Classification of rain regimes by the three-dimensional properties of reflectivity fields, J. Appl. Meteor., 34, 198-211.
Steiner, M., R. A. Houze, and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. Journal of Applied Meteorology. 34, 1978-2007.
Tremblay, Andre, 2005: The stratiform and convective components of surface precipitation. Journal of the Atmospheric Sciences. 62, 1513-1528.
Trenberth, K. E., A. Dai, R. M. Rasmussen, and D. Pearson, 2003: The changing character of precipitation. Bull. Amer. Meteor. Soc, 84, 1205-1217.
Yang, Ming-Jen, Hsiao-Ling Huang, and Da-Lin Zhang, 2007: A modeling study of Typhoon Nari (2001) at landfall. Part I: The topographic effects.
Yang, Ming-Jen, and R. A. Houze, 1995: Sensitivity of squall-line rear inflow to ice microphysics and environmental humidity. Monthly Weather Review, 123, 3175-3193.
Yang, Ming-Jen, and Quen-Chi Tung, 2003: Evaluation of rainfall forecasts over Taiwan by four cumulus parameterization schemes. Journal of the Meteorological Society of Japan, 81, 1163-1183.
指導教授 楊明仁(Ming-Jen Yang) 審核日期 2007-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明