博碩士論文 93625009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:34.204.200.74
姓名 藍釧桂(Chuan-Gui Lan)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 垂直異質性對推估流通係數的影響
(Influence of Vertical Heterogeneity on the Estimation of Transmissivity)
相關論文
★ 微水試驗以兩階段式方法推估薄壁因子與含水層水力導數★ 受負薄壁效應影響微水實驗參數推估方法
★ 受薄壁效應影響的單井抽水試驗推估 非受壓含水層水文參數之研究★ 利用積分轉換求解定水頭部分貫穿井之混合邊界值問題
★ 定水頭部分貫穿汲水推估非受壓含水層水文參數之方法★ 單井循環流水力實驗之理論改進與發展
★ 高滲透性含水層微水實驗 壓力反應之分析★ 地震水井水力學之理論模式改良與發展及同震水位資料分析
★ 邊界條件及滲漏補注對地下水流分數維度之影響★ 地表下NAPL監測技術-薄膜擴散採樣器之發展
★ 水文地層剖析儀與氣壓式微水試驗儀調查淺層含水層水力傳導係數之研究★ Evaluation and management of groundwater resource in Hadong area of Vietnam using groundwater modeling
★ 利用時間分數階移流模式對非反應性示蹤劑在裂隙介質的分析★ 時間分數階傳輸模式對反應性示蹤劑砂箱實驗之分析
★ 利用雙封塞微水試驗推估裂隙含水層水力傳導係數★ 多深度微水試驗之測試段長度對水力傳導係數影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 傳統上,針對含水層垂直異質性對地下水流之影響的研究多使用層狀模式方法進行模擬,其中假設含水層由數過均質等向的次水層。每一個次水層有其特定的水力傳導係數(K)、比儲蓄係數(Ss)與厚度(b),因此整個含水層的K值、Ss值與b值呈現離散性的深度變化。本研究中,將K值與深度以一個連續的指數函數表示,探討垂直異質性對含水層洩降分布之影響,且此指數方程亦能代表真實含水層垂直異質的一種可能性。發展部分貫穿垂直異質含水層之定水頭試驗模式,幫助我們瞭解抽水井之部分貫穿效應與含水層之垂直異質性對洩降及流量的影響。結果顯示在抽水井附近的洩降變化同時受到部分貫穿效應與垂直異質性的偶合影響。部分貫穿效應隨距離增加而減少,終至完全消失,此範圍外的洩降分布則只受垂直異質性影響。
摘要(英) In the past, the effect of vertical heterogeneity on groundwater flow was frequently evaluated using the layered-model approach, where the aquifer is assumed to be composed of a number of homogeneous and isotropic sublayers. Each sublayer has a distinctive hydraulic conductivity, specific storativity and thickness, so the hydraulic conductivity, specific storativity and thickness of the aquifer varies with depth in a discrete sense. Here, the effect of vertical heterogeneity on drawdown distribution is investigated using a continuous exponential function of K(z) which represents one possibility of vertical heterogeneity. The pumping well partially penetrates the aquifer and is pumped under a constant drawdown. Therefore, the model developed also serves the purpose of understanding the local vertical disturbance (the partial penetrating effect) versus the global (aquifer scale) vertical heterogeneity on drawdown and discharge. It is found that drawdown variation in the vicinity of the well is under the influence of the compound effect of the partial penetration and the vertical heterogeneity. At farther distance, however, the partial penetration effect disappears and drawdown is influenced by vertical heterogeneity.
關鍵字(中) ★ 定水頭實驗
★ 部分貫穿
★ 水力傳導係數
★ 流通係數
★ 異質性
關鍵字(英) ★ hydraulic conductivity
★ constant head test
★ partially penetrate
★ transmissivity
★ heterogeneity
論文目次 目錄 I
圖目錄 III
表目錄 V
符號說明 VI
第一章 序論 1
1.1 研究背景 1
1.2 研究目的與範圍 4
1.3 研究方法 4
第二章 定水頭模式發展 6
2.1  垂直異質、暫態之數學模式建立 6
2.1.1 暫態模式解題過程與模式解 12
2.1.2 利用Gram-Schmidt方法求解Cn(p) 17
2.2  垂直異質、穩態模式解 24
2.3  均質、暫態模式解 28
2.4  定水頭模式計算結果 30
2.4.1 尋找最佳基本參數 31
2.4.2 計算結果正確性之驗證 34
第三章 模擬結果與討論 39
3.1  井篩段內通量隨深度的變化 39
3.2  部分貫穿井的影響距離(r*) 40
3.3  參數推估之半對數法 44
3.4  觀測井距離對參數推估的影響 45
3.5  井篩長度對推估流通係數的影響 47
3.6  井篩位置對推估流通係數的影響 47
第四章 參數推估 52
4.1  假想資料推估結果---垂直異質性之影響 53
4.2  假想資料推估結果---井篩長度與位置之影響 53
第五章 結論與建議 58
參考文獻 59
參考文獻 Bear, J, (1972), Dynamics of fluids in porous media, American Elsevier Publishing Company, Inc., New York, 764 pp..
Butler, J. J., Jr., A. A. Lanier, J. M. Healey, S. M. Sellwood, W. McCall, and E. Garnett (2000), Direct-push hydraulic profiling in an unconsoli- dated alluvial aquifer, Kansas Geological Survey Open-File Report, 2000-62. (Available at http://www.kgs.ku.edu/Hydro/Publications/ OFR00_62/index.html)
Butler, J. J., Jr., and C. D. McElwee (1990), Variable-rate pumping tests for radially symmetric nonuniform aquifers, Water Resources Research, 26(2), 291-306.
Cassiani, G., Z. J., Kabala, and M. A. Medina Jr. (1999), Flowing partially penetrating well: solution to a mixed-type boundary value problem., Advances in Water Resources, 23(1), 59-68.
Chang, C. C., and C. S. Chen (2003), A flowing partially penetrating well in a finite-thickness aquifer: a mixed-type initial boundary value problem, Journal of Hydrology, 271, 101-118.
Cooper, H. H., Jr, and C. E. Jacob (1946), A generalized graphical method for evaluating formation constants and summarizing well field history, Transactions, American Geophysical Union, 27, 526-534.
Dagan, G. (1978), A note on packer, slug, and recovery tests in unconfined aquifers, Water Resources Research, 14, 929-934.
Evans, J. P., C. B. Forster, and J. V. Goddard (1997), Permeability of fault- related rocks, and implications for hydraulic structure of fault zones, Journal of Structural Geology, 19(11), 1393-1404.
Halford, K. J., W. D. Weight, and R. P. Schreiber (2006), Interpretation of Transmissivity Estimates from Single-Well Pumping Aquifer Tests, Ground Water, 44(3), 467-471.
Hantush, M. S. (1961), Aquifer tests on partially penetrating wells, J. Hydraul. Div., Proc. Amer. Soc. Civil Engrs., 87(5), 171-195.
Hantush, M. S. (1964), Hydraulics of wells, in Advances in hydroscience, 1, edited by V. T. Chow, Academic Press, New York, 281-432.
Hantush, M. S. (1966), Analysis of data from pumping tests in anisotropic aquifers, Journal of Geophysical Research, 71(2), 421-426.
Hemker, C. J. (1999a), Transient well flow in vertically heterogeneous aquifers, Journal of Hydrology, 225, 1-18.
Hemker, C. J. (1999b), Transient well flow in layered aquifer systems: the uniform well-face drawdown solution, Journal of Hydrology, 225, 19-44.
Huang. S. C., and Y. P. Chang (1984), Anisotropic heat conduction with mixed boundary conditions, Journal of Heat Transfer, 106, 646-648.
Jacob, C. E., and S. W. Lohman (1952), Nonsteady flow to a well of constant drawdown in an extensive aquifer, Transactions, American Geophysical Union, 33(4), 559-569.
Javandel, I., and P. A. Witherspoon (1980), A Semianalytical Solution for Partial Penetration in Two-Layered Aquifers, Water Resources Research, 16(6), 1099-1106.
Kirkham, D., and W. L. Powers (1972), Advanced Soil Physics, pp. 140- 159, Appendix 2, John Wiley, New York.
Melville, J. G., F. J. Molz, O. Guven, and M. A. Widdowson (1991), Multi- level slug tests with comparisons to tracer data, Ground Water, 29(6), 897-907.
Mishra, S., and D. Guyonnet (1992), Analysis of observation-well response during constant-head testing, Ground Water, 30(4), 523-528.
Selim, M. S., and D. Kirkham (1974), Screen theory for wells and soil drainpipes, Water Resources Research, 10(5), 1019-1030.
Sneddon, I. N. (1972), The Use of Integral Transforms, McGraw-Hill, New York.
Stehfest, H. (1970), Numerical inversion of laplace transforms, Commun. ACM, 13, 47-39.
Streltsova, T.D. (1988), Well Testing in Heterogeneous Formations, An Exxon Monograph, John Wiley and Sons, New York, 423 pp..
Thies, C. V. (1935), The relation between the lowering of the pizeometric surface and the rate and duration of discharge of a well using ground- water storage, Transactions, American Geophysical Union, 16, 519-524.
Wikramaratna, R. S. (1984), An analytical solution for the effects of adstraction from a multiple-layered aquifer with no cross flow, Water Resources Research, 20(8), 1067-1074.
Zemansky, G. M. and C. D. McElwee (2005), High-Resolution Slug Testing, Ground Water, 43(2), 222-230.
Zlotnik, V. A., and B. R. Zurbuchen (2003), Field study of hydraulic conductivity in a heterogeneous aquifer: Comparison of single-borehole measurements using different instruments, Water Resources Research, 39(4), 1101, doi:10.1029/2002WR001415.
指導教授 陳家洵(Chia-Shyun Chen) 審核日期 2006-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明