博碩士論文 93625010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:3.85.214.0
姓名 李俊賢(Chun-Hsien Lee)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 以三維數值模式模擬淡水河河口及感潮段鹽度與懸浮沉積物
(Modeling Salinity and Suspended Sedimentin Tidal River of Danshuei River Estuarine System with Three-Dimensional Model)
相關論文
★ 翡翠水庫之水文特性及水理水質之模式研究★ 翡翠水庫及其集水區之氫氧碳同位素 水文學研究
★ 淡水河重金屬傳輸模式之發展★ 淡水河流域鹼度、酸鹼值與主要離子 之時空變化
★ 水體中顆粒與沈積物之有機碳、氮及其穩定同位素研究:南海及翠峰湖★ 淡水河口水舌擺盪動力機制之研究
★ 翡翠水庫之沉降顆粒及沉積物中 多環芳香族碳氫化合物(PAHs)之研究★ 呂宋海峽內潮及其強化生地化通量之數值研究
★ 南海時間序列測站(SEATS)碳循環之探討:一維物理-生地化耦合模式之應用★ 淡水河口之顆粒性有機碳、氮同位素及溶解性無機氮同位素之研究
★ 利用SPOT衛星影像探討蘭陽溪口淡水舌之時空變化★ 潮汐作用對東海生地化循環及初級生產力之影響
★ 淡水河流域溶解性有機碳通量之研究★ 淡水河流域營養鹽濃度及溶氧之變化與一維數值模擬
★ 利用衛星遙測資料探討南海與蘭陽溪河口生地化特性之時空變化★ 河口與近海環境懸浮顆粒物質之探討:顆粒性有機物之來源及懸浮顆粒之重量法測定
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 河口及感潮河川是聯繫海洋與河川間之通道,河口區域是一個半封閉的沿海岸水體,與鄰近的海域自由流通,既具有內陸河流的特徵:如逕流流量的洪、枯水期等季節變化,又有海洋的部分特徵:如潮汐的漲落,故河口與感潮段的水動力與鹽度特性極為複雜,亦影響懸浮沉積物在此的傳輸作用。淡水河流域為台灣最大之感潮河川,包含大漢溪、新店溪、基隆河三大支流;本研究蒐集民國91、92年淡水河口至大漢溪及93年淡水河口至基隆河之觀測資料,其中包含高、低平潮量測與全潮觀測之鹽度與懸浮沉積物濃度。
應用三維水理與優養數值模式(Hydrodynamic-Eutrophication Model, HEM-3D)模擬淡水河口鹽度與懸浮沉積物之分佈,模式演算之邊界條件為:大漢溪、新店溪和基隆河上游給定流量、沉積物濃度,下游因處於外海,因此在東、西及北邊界給定潮位、沉積物濃度與鹽度。數值模式於水平方向採用正交曲線座標,垂直方向採用sigma座標系統。模式模擬結果以實測鹽度與懸浮沉積物濃度資料作為比對,以探討淡水河受外海潮汐及上游淡水流量作用時河口鹽度的分層現象及懸浮沉積物最大混濁度的區域;在模擬方面,對鹽度分層現象有較好的結果,最大混濁度也可以被表現出來。最後再對影響沉積物傳輸的相關參數進行敏感度分析,並應用於淡水河不受鹽度影響,以及底床無沉積物供應、風場對鹽分及懸浮沉積物之影響與平均流量作用之數值實驗,以探討其中水理及懸浮沉積物可能產生的變化。
摘要(英) Estuaries and tidal rivers are the primary conduit between river and coastal ocean. Estuaries are the semi-enclosed coastal water body which connects with the open sea, and they have the characteristics of inland river, such as flood and dry seasonal variations due to runoff. They also exhibit the characteristics of ocean, such as the flood and ebb tides. Therefore, the hydrodynamics and salinity characteristics of the estuary and tidal river are extremely complicated, and they also affect the transport processes of suspended sediment. The Danshuei River system is the largest estuary system in Taiwan and consists of three major tributaries: Tahan Stream, Hsintien Stream and Keelung River. In this study, the measured salinity and suspended sediment data including slackwater and intense surveys were collected in the periods of 2002 to 2004. The measured stations along the Danshuei River to Tahan Stream and Danshuei River to Keelung River were conducted, respectively, from 2002 to 2003, and in 2004.
A real-time, three-dimensional Hydrodynamic-Eutrophication Model (HEM-3D) was performed and applied to simulate salinity distribution and transport of suspended sediment distributions in Danshuei River estuarine. The boundaries of upstream (i.e. the Tahan Stream, Hsintien Stream, and Keelung River) are specified with constant freshwater discharge, salinity (with zero), and suspended sediment concentration. The downstream boundary is extended to the adjacent coastal sea and specified with tidal elevation, salinity, and suspended sediment concentration. Governing Equations are formulated in curvilinear-orthogonal horizontal coordinates and a sigma vertical coordinate. The comparisons of simulated result and field measurement in salinity and suspended sediment distributions were used to investigate and analyze the salinity stratification phenomenon and estuarine turbidity maximum (ETM) in the estuarine system. Moreover, the model sensitivity analyses were used to identify the vital parameter in the suspended sediment transport model. Finally, the numerical experiments were conducted with no saline effect, no sediment supply from the sediment bed, wind stress effect, and the influence by mean freshwater discharge to comprehend the influence on residual current and suspended sediment distribution in the Danshuei River estuarine system.
關鍵字(中) ★ 鹽度
★ 河口及近海
★ 淡水河
★ 懸浮沉積物
★ HEM-3D模式
★ 模式應用
關鍵字(英) ★ Suspended sediment
★ HEM-3D model
★ Salinity
★ Estuarine system and coastal sea
★ Danshuei River
★ Model application
論文目次 中文摘要 ………………………………………………………. Ⅰ
英文摘要 ………………………………………………………. Ⅲ
致 謝 ………………………………………………………. Ⅴ
目 錄 ………………………………………………………. Ⅵ
表目錄 ………………………………………………………. Ⅷ
圖目錄 ………………………………………………………. Ⅸ
第一章 緒論…………………………………………………. 1
1-1 前言…………………………………………….. 1
1-2 研究目的……………………………………….. 2
1-3 文獻回顧……………………………………….. 2
第二章 觀測資料分析……………………………………….. 6
2-1 研究區域概述………………………………….. 6
2-2 觀測資料……………………………………….. 8
2-2-1 鹽度資料分析……………………………. 8
2-2-2 懸浮沉積物濃度資料分析………………. 9
2-3 淡水河、新店溪、基隆河水文流量分析…….. 10
第三章 三維水理與懸浮細泥傳輸數值模式……………….. 19
3-1 水理與鹽分模式……………………………….. 19
3-2 懸浮沉積物傳輸…..…………………………… 22
3-3 邊界條件……………………………………….. 25
3-3-1 自由液面…………………………………. 25
3-3-2 底部………………………………………. 25
3-3-3 上游邊界…………………………………. 26
3-3-4 外海邊界…………………………………. 27
第四章 模式結果探討……………………………………….. 30
4-1 淡水河主流至大漢溪模擬…………………….. 31
4-1-1 鹽度分佈之比較…………………………. 31
4-1-2 懸浮沉積物分佈之比較…………………. 32
4-2 淡水河主流至基隆河模擬…………………….. 34
4-2-1 鹽度分佈之比較…………………………. 34
4-2-2 懸浮沉積物分佈之比較…………………. 35
第五章 模式參數敏感度分析……………………………….. 51
5-1 沉降速度(Ws)……………………………….. 52
5-2 臨界懸浮剪應力(τE)………………………. 53
5-3 臨界沉降剪應力(τD)………………………. 55
5-4 懸浮率(M)…………………………………… 56
第六章 模式應用…………………………………………….. 71
6-1 有、無鹽分情況之模擬……………………….. 72
6-2 底床懸浮沉積物之探討……………………….. 72
6-3 風對鹽分及懸浮沉積物之影響……………….. 73
6-4 平均流量作用下之模擬……………………….. 74
第七章 結論與建議………………………………………….. 99
7-1 結論…………………………………………….. 99
7-2 建議…………………………………………….. 100
參考文獻 ……………………………………………………….. 102
參考文獻 1. 許時雄,「淡水河下游感潮變量流之研究」,水利復刊第七期,(1969)。
2. 歐陽嶠暉,「淡水河水系水污染調查及河川自淨能力之研究」,台灣水利,第19卷3期,(1971)。
3. 經濟部水資會,「淡水河流域河川水質數學模式之研究」,(1983)。
4. 陳樹群,「河川動態水質數學模式之建立與應用」,碩士論文,國立台灣大學土木工程學研究所,(1984)。
5. 顏清連、王如意、朱紹鎔、許銘熙、呂建華、張守陽,「基隆河水理特性之研究」,水利7203,國立台灣大學土木工程學研究所,(1984)。
6. 連上堯,「枯水期基隆河水理與水質模式之研究」,碩士論文,國立台灣大學農業工程學研究所,(1987)。
7. 洪政豐,「潮流對河川污染質影響之研究」,碩士論文,國立成功大學水利及海洋工程研究所,(1988)。
8. 許銘熙、張尊國、柳文成、連上堯,「基隆河水理暨水質特性之研究(一)截流系統對河川水理之影響」,行政院國科會專題研究計畫報告,(1989)。
9. 張瑞津、石再添,「淡水河下游感潮的研究」,地理學研究第13期,(1989)。
10. 陳筱華,「河川污染特性及水質數學模式之探討─以基隆河為例」,碩士論文,國立台灣大學環境工程學研究所,(1989)。
11. 許銘熙、張尊國、柳文成、連上堯,「基隆河水理暨水質特性之研究(二)截流系統對河川水質之影響」,行政院國科會專題研究計畫報告,(1990)。
12. 柳文成,「截流系統對基隆河水質影響之研究」,碩士論文,國立台灣大學農業工程學研究所,(1990)。
13. 王順明,「基隆水質監測站網之優選與模擬」,碩士論文,國立台灣大學環境工程學研究所,(1992)。
14. 陳建維,「基隆河截彎取直對鹽分分佈影響之模擬」,碩士論文,國立台灣大學環境工程學研究所,(1994)。
15. 李鴻源,「淡水河感潮特性之探討(二)」,國立台灣大學水工試驗所,(1995)。
16. 許銘熙、郭振泰、郭義雄、柳文成,「淡水河系潮流、河口環流與鹽分佈之研究(一)、(二)」,國立臺灣大學水工試驗所研究報告239及273號,(1996, 1997)。
17. 王鑫,「地形學」,聯經出版社,台北市,(1998)。
18. 柳文成、許銘熙、郭義雄、郭振泰,「淡水河河口環流特性之研究」,台灣水利季刊,第46卷,第一期, 33-42,(1998)。
19. 劉景毅,「二維與三維水理數值模式在淡水河海域之應用與比較」,中國土木水利工程學刊,第11卷,第三期, 579-587,(1999)。
20. 陳冠倫、高樹基、劉康克,「淡水河在颱風期間懸浮顆粒物質之碳氮含量、同位素組成及輸出通量」,台灣海洋學刊,第39期,219-232,(2001)。
21. 李宜欣,「自農業資變遷初探淡水河流域之物質流課題」,碩士論文,國立臺灣大學環境工程學研究所(2002)。
22. 張勝騰,「淡水河河口水質與懸浮細泥之調查研究」,碩士論文,國立中央大學水文科學研究所(2003)。
23. 柳文成、許銘熙、張勝騰,「淡水河河口鹽度與懸浮細泥之時空變化」,台灣水利季刊,第五十二卷,第三期,16-31,(2004)。
24. 中華民國行政院環境保護署網站(http://www.epa.gov.tw/main/index.asp)。
25. 中華民國經濟部水利署水文資料庫查詢(http://gweb.wra.gov.tw/wrweb/)。
26. 中華民國經濟部水利署第十河川局(http://www.wra10.gov.tw/about011.html)。
27. Adams, C. E., J. T. Wells, and Y. A. Park, 1990. Internal hydraulics of a sediment-stratified channel flow. Marine Geology, 95, 131-145.
28. Amos, C. L., T. Feeney, T. F. Sutherland, and J. L. Luternauer, 1997. The stability of fine-grained sediments from the Fraser River Delta. Estuarine, Coastal and Shelf Science, 45, 507-524.
29. Austen, I., T. J. Anderson, and K. Edelvang, 1999. The influence of benthic diatoms and invertebrates on the erodibility of an intertidal mud-flat, the Danish Wadden Sea. Estuarine, Coastal and Shelf Science, 49, 99-111.
30. Blumberg, A. F. and G. L. Mellor, 1987. A description of a three-dimensional coastal ocean circulation model. In: Heaps, N. S. (ed.), American Geophysical Union, 1-16.
31. Burchar, H., and H. Baumert, 1998. The formation of estuarine turbidity maxima due to density effects in the salt wedges: A hydrodynamic process study. Journal of Physical Oceanography, 28, 309-321.
32. Byun, D. S., and X. H. Wang, 2005. The effect of sediment stratification on tidal dynamics and sediment transport patterns. Journal of Geophysical Research, 110, C03011.
33. Cameron, W. M., and D. W. Pritchard, 1963. Estuaries. In: The Sea, M.N. Hill (ed.), Vol.2, Wiley, New York, 306-324.
34. Dionne, J. C., 1963. Towards a more adequate definition of the St. Lawrence estuary. Geomorphology, 7, 36-44.
35. Dyer, K. R., 1977. Lateral circulation effects in estuaries. In Estuaries, Geophysics and the Environment, National Academic of Sciences, Washington.
36. Elliott, A. J., 1978. Observations of the meteorological induced circulation in the Potomac Estuary. Estuarine and Coastal Marine Science, 6, 285-299.
37. Guan, W. B., E. Wolanski, and L. X. Dong, 1998. Cohesive sediment transport in the Jiaojiang River Estuary, China. Estuarine, Coastal and Shelf Science, 46, 861-871.
38. Haas, L.W., 1977. The effect of spring-neap tidal cycle on the vertical salinity structure of the James, York, and Rappahannock rivers, Virginia, USA. Estuarine, Coastal Shelf Science, 5, 485-496.
39. Hamrick, J. M., 1992. A three-dimensional environmental fluid dynamics computer code: Theoretical and computational aspects. Special report on Marine Science and Ocean Engineering No. 317. Virginia Institute of Marine Science, The College of William and Mary, Gloucester Point, Virginia.
40. Hamrick, J. M., 1996. User’s manual for the environmental fluid dynamics computer code. Special Report in Applied Marine Science and Ocean Engineering No. 331. Virginia Institute of Marine Science, The College of William and Mary, Gloucester Point, Virginia.
41. Hansen, D. V., and Jr. M. Rattray, 1965. Gravitational circulation in straits and estuaries. Journal of Marine Research, 23, 104-122.
42. Hansen, D. V., and Jr. M. Rattray, 1966. New dimensions in estuarine classification. Limnology and Oceanography, 11, 319-326.
43. Houwing, E. J., 1999. Determination of critical erosion threshold of cohesive sediments on intertidal mudflats along the Dutch Wadden Sea Coast. Estuarine, Coastal and Shelf Science, 49, 545-555.
44. Jin, K. R. and Z. G. Ji, 2004. Case study: modeling of sediment transport and wind-wave impact in Lake Okeechobee. Journal of Hydraulic Engineering, ASCE, 130, 11, 1055-1067.
45. Jan, S., C.S. Chern, and J. Wang, 2002. Transition of tidal waves from the East to South China Seas over the Taiwan Strait : Influence of the abrupt Step in the Topography. Journal of Oceanography, 58, 837-850.
46. Johnson, B. H., K. W. Kim, R. E. Heath, B. B. Hsieh, and H. L. Butler, 1993. Validation of three-Dimensional hydrodynamic model of Chesapeake Bay. Journal of Hydraulic Engineering, ASCE, 119(1), 2-20.
47. Kuo, A. Y., J. M. Hamrick, and G. M. Sisson, 1990. Persistence of residual currents in the James Estuary and its implication to mass transport. Coastal and Estuarine Studies, 38, 398-401.
48. Kuo, A. Y., M. Nichol, and J. Lewis, 1978. Modeling sediment movement in the turbidity maximum of an estuary. Bulletin 111, Virginia Water Resources Research Center. Blacksburg, Virginia.
49. Lin, B., and R. A. Falconer, 1995. Modelling sediment fluxes in estuarine waters using a curvilinear co-ordinate grid system. Estuarine, Coastal and Shelf Science, 41, 413-428.
50. Liu, W. C., M. H. Hsu, and A. Y. Kuo, 2002. Modelling of hydrodynamics and cohesive sediment transport in Tanshui River estuarine system, Taiwan. Marine Pollution Bulletin, 44, 1076-1088.
51. Lee, C., 2005. Sensitivity analysis of sediment resuspension parameters in coastal area of southern Lake Michigan. Journal of Geophysical Research, 110, C03004.
52. Lumborg, U., 2005. Modelling the deposition, erosion, and flux of cohesive sediment through Aresund. Journal of Marine system, 56, 179-193.
53. Mellor, G. L., and T. Yamada, 1982. Development of a turbulence closure model for geophysical fluid problems. Review of Geophysical and Space Physical, 20, 851-875.
54. Park, K., A. Y. Kuo, J. Shen, and J. M. Hamrick, 1995. A three-dimensional hydrodynamic-eutrophication model (HEM-3D): Description of water quality and sediment process submodels. Special report in Applied Marine Science and Ocean Engineering No. 327. Virginia Institute of Marine Science, The College of William and Mary, Gloucester Point, Virginia.
55. Perillo, G.M.E., 1995. Geomorphology and sedimentology of estuaries, Elsevier, Amsterdam, pp.471.
56. Pritchard, D. W., 1952. Estuarine hydrography. In: Advances in Geophysics, Vol. 1, Academic Press Inc., New York, 243-280.
57. Pritchard, D. W., 1954. A study of the salt balance in a coast plain estuary. Journal of Marine Research, 13(1), 133-144.
58. Pritchard, D. W., 1956. The dynamic structure of a coastal plain estuary. Journal of Marine Research, 15(1), 33-42.
59. Shen, J., G. M. Sisson, A. Y. Kuo, J. Boon, and S. C. Kim, 1998. Three-dimensional numerical modeling of the York River system, Virginia. In: M. L. Spaulding and A. M. Blumberg (eds.), Proceedings of the 5th International Conference on Estuarine and Coastal Modeling. ASCE, Reston, Virginia, 495-510.
60. Widdows, J., M. D. Brinsley, N. Bowley, and C. Barrett, 1998. Benthic annular flume for in situ measurement of suspension feeding/biodeposition rates and erosion potential of intertidal cohesive sediments. Estuarine, Coastal and Shelf Science, 46, 27-38.
61. Winterwerp, J. C., 2002. On the flocculation and settling velocity of estuarine mud. Continental Shelf Research, 22(9), 1339-1360.
62. Zhang, Y., A. M. Baptista, and E. P. Mayers, 2004. A cross-scale model for 3D baroclinic circulation in estuary-plum-shelf system: I. Formulation and skill assessment. Continental Shelf Research, 24, 2187-2214.
指導教授 柳文成、劉康克
(Wen-Cheng Liu、Kon-Kee Liu)
審核日期 2006-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明